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Citizen science projects have the potential to address hypotheses requiring
extremely large datasets that cannot be collected with the financial and
labour constraints of most scientific projects. Data collection by the general
public could expand the scope of scientific enquiry if these data accurately
capture the system under study. However, data collection inconsistencies
by the untrained public may result in biased datasets that do not accurately
represent the natural world. In this paper, we harness the availability of
scientific and public datasets of the Lyme disease tick vector to identify
and account for biases in citizen science tick collections. Estimates of tick
abundance from the citizen science dataset correspond moderately with esti-
mates from direct surveillance but exhibit consistent biases. These biases can
be mitigated by including factors that may impact collector participation or
effort in statistical models, which, in turn, result in more accurate estimates
of tick population sizes. Accounting for collection biases within large-scale,
public participation datasets could update species abundance maps and
facilitate using the wealth of citizen science data to answer scientific
questions at scales that are not feasible with traditional datasets.
1. Introduction
The rise of public participation in data collection [1] provides unprecedented
opportunities for scientific research. Voluntary public participation in scientific
research—often referred to as citizen science—allows rapid, inexpensive and
massive-scale data collection across expansive temporal and geographical
ranges [2]. Public involvement in data collection alleviates researchers from
the financial and labour constraints that often narrow the power, scale and gen-
eralizability of individual scientific projects. For example, citizen science data
have monitored weather patterns and bird populations across North America
for over a century [3,4], discovered new planets [5], classified galaxies [6] and
crowd-sourced biodiversity observations [7,8]. These and many similar projects
were made possible by the immense volumes of data collected by millions of
participants [1,9]. However, the variation in participation and effort among
untrained collectors has led some to question the reliability and accuracy of citi-
zen science datasets [9]. The inability to identify and resolve citizen science data
collection inconsistencies may result in inaccurate representations of the system
being studied [2,10,11].

The dependability of citizen science data is often inversely related to the
number of data collectors and the magnitude of the data collected. Citizen science
projects can range from the involvement of a few carefully directed individuals to
many thousands of independent contributions from the general public, the latter
being the focus of this paper [12]. Training and guidance of participants by
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researchers improve citizen science data accuracy but often at
the cost of a reduction in the number of participants and the
scope of the study [9]. For instance, smaller scale projects can
standardize datasets by accounting for the variance in data col-
lection efforts or success among participants that result from
different individual skill levels or day-of-collection factors
that cause inconsistencies in data quality [9]. By contrast, vari-
ation among volunteers from the general public cannot be
recorded and results in difficulties discerning discrepancies in
data collection [10,13]. Yet, identifying and accounting for data-
set inconsistencies from the untrained general public could
expand the possibilities of scientific enquiry by harnessing
past and future large-scale citizen science datasets.

Dependable citizen science datasets can address scientific
questions that are beyond what is currently feasible. For
example, the eBird citizen science dataset,which includes obser-
vations by 670 000 people across theworld [14], has been used to
describe thedistribution and relative abundance of over 800bird
species [15,16]. However, large-scale citizen science datasets are
rarely evaluated for data quality ([17], but see [16]), in part
because of the lack of comparable datasets, despite the wealth
and value of citizen science data [12]. Assessing the accuracy
of large-scale citizen science datasets can be accomplished by
pairing citizen science datasets with datasets built using rigor-
ous data collection protocols that have similar temporal and
spatial scopes. Ecological citizen science datasets are ideal for
validating the value of public participation over large spatial
and temporal ranges because the long-standing societal interest
in the natural world has contributed to extensive species distri-
bution collections [2,18,19]. Citizen science projects that capture
informationonpopulationdynamics as reliablyasdatacollected
by trained scientistswould consequently reduce the challenge of
large-scale ecological data collection [2,10]. Validated citizen
science datasets have the potential to depict population
dynamics more accurately over a larger geographical expanse,
such as at a state or nationwide scale, which would improve
the generalizability of findings [1,20,21]. Identification of a fra-
mework to validate and quantitatively account for the biases
within citizen science data collections could improve the
reliability of citizen science across disciplines.

Here, we investigate whether a large citizen science dataset
corresponds with scientifically rigorous data collected over a
large geographical area and across years. We focus on collec-
tions of the black-legged tick, Ixodes scapularis, which has
garnered significant public interest as the primary vector of sev-
eral human diseases, including babesiosis, anaplasmosis,
Powassan encephalitis and Lyme disease [22]. The public
health burden of the pathogens transmitted by this tick has
resulted in widespread surveys by the scientific community,
public interest in participating in tick surveillance and tick
identification and pathogen testing services available to the
public. The scale of the I. scapularis tick collections by both
the scientific community and citizen science projects has pro-
vided an ideal scenario to assess the accuracy of large-scale
citizen science data. We demonstrate that citizen science can
be used to characterize vector population abundance over one
of the largest spatial extents yet. Identifying and resolving
inconsistencies in the spatial and temporal variability of
annual population sizes found in public tick collection datasets
would improve the accuracy and applicability of citizen science
data. These data could be used to update species abundance
maps and serve as an important ecological tool to address a sig-
nificant public health issue.
2. Material and methods
2.1. Study system
New York State (NYS) has one of the highest numbers of Lyme
disease cases in the country (constituting over 10% of cases in the
USA), and I. scapularis has undergone major population expan-
sion in recent decades within the state [23–25]. Ticks are
present in all counties, although tick abundance and the timing
of tick population establishment are variable [26]. NYS is the
fourth most populous state in the country, with a population of
nearly 20 million people over 62 counties across a landmass
that would be ranked as a medium-sized country [27]. Counties
are heterogeneous in size and population density, ranging from
3 to 70 000 people per square mile [28]. The state is ecologically
diverse and contains a wide variety of habitats from wetlands
and mountainous regions to large cities and farmlands [29].

2.2. Tick data from citizen science
A nationwide free tick identification and pathogen testing service
wasmade available to the public throughNorthernArizonaUniver-
sity. The programmewas advertised to the public through awebsite
and an initial public relations campaign. The programme was con-
ducted without interruption from January 2016 to December 2017
[30]. Only I. scapularis submissions were included in these analyses.
The submission date corresponded with the tick phenology
observed in the field, with submission peaks corresponding to nym-
phal and adult activity in the spring and autumn, respectively. There
was a mean of 1.27 ticks sent per submission, with submission sizes
ranging from 1 to 17 ticks. Citizen science datawere summarized as
the total ticks submitted by each NYS county for each year. Ticks
classified as I. scapularis from NYS were submitted from March
2016 to December 2017, with 447 ticks in 2016 and 697 ticks in
2017 (electronic supplementary material).

2.3. Tick data from active surveillance
The New York State Department of Health (NYSDOH) directs an
ongoing tick surveillance programme throughout NYS that began
in 2003 [31–33]. New York City (NYC) has an autonomous Depart-
ment of Health and Mental Hygiene that independently directs
its tick collections on publicly accessible land. The five counties
that constitute NYC were thus excluded from these analyses, as
there were no available active tick surveillance data. Locations for
tick surveillance are predetermined before collection and deliber-
ately consist of regions of suspected tick presence and absences,
including locations beyond the current known geographical distri-
bution of I. scapularis in NYS. Site selection is not biased towards
regions with higher tick abundance nor towards convenience
sampling. Sites are sampled non-uniformly from April to early
December, with some sites being visited multiple times annually.
Collections followed a uniform tick sampling protocol at all sites,
consisting of standardized dragging, flagging and walking surveys
using 1 m2 of white flannel or canvas. Over 27 000 I. scapularis
nymphs have been collected across 612 sites from 2003 to
2017 (figure 1). There were 3074 and 4276 nymphal ticks collecte-
d in 2016 and 2017, respectively, over 377 sites (electronic
supplementary material).

2.4. Estimated tick population sizes for New York State
The more than 15-year collection by the NYSDOH is one of the
most extensive geospatial active surveillance efforts for ticks
and provides the best estimate of actual tick density across
NYS as collections accounted for distance surveyed and collec-
tion effort. This dataset was the basis for a validated, two-part
model described in Tran et al. [23] that accurately estimated
tick population sizes as a composite of both the probability of
occurrence and the population size [23]. The prediction accuracy



Figure 1. Active tick surveillance in 2016–2017: each point represents a collection site where a minimum of 1000 m was surveyed at each site.
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to a dataset collected in a future year which included previously
unvisited locations was 80% for the presence model and 75% for
the abundance model. Using the composite of the occurrence and
presence models, tick population sizes throughout NYS were cal-
culated as a raster map for 2016 and 2017. The results were then
summarized as the estimated total number of ticks by county for
each year, the same units as the citizen science tick submission
data, for statistical analysis as described below (electronic
supplementary materials).

2.5. Collector-associated factors
A literature review identified factors with a potential to influence
participation in a tick submission citizen science programme. The
citizen science programmedid not solicit any information frompar-
ticipants, aside from county of tick exposure, such that individual-
level human characteristics could not be used as factors to account
for the variation in collector participation or effort. Thus, all ident-
ified factors that could potentially account for variation among
participants were compiled at the county level to correspond in
scale to the citizen science dataset. The identified factors can be
grouped into three broad categories, including human demogra-
phy, level of experience with Lyme disease and human activity
level. Human demographic factors, each of which has been associ-
ated with human Lyme disease risk, include median household
income, population size, poverty level, race, education and age dis-
tribution [34]. Summary statistics of relevant demographic factors
were compiled from the United States Census [35]. Proxies for the
level of experience with Lyme disease include local Lyme disease
incidence and Google search trends [36–38]. Lyme disease inci-
dence data are summarized as the number of cases per 100 000
people in each county [39]. Google Trends data ranks the pro-
portion of annual Google searches for the term ‘Lyme disease’ in
each region,which requiredgrouping the62 counties into10 regions
during analyses [40]. The mean annual temperature was identified
as a potential predictor of human outdoor activitywhich could cor-
relate with exposure to ticks [38,41]. It is important to note that
temperature also impacts tick densities and activity and is unlikely
to explainmuch of the variability in human outdoor activity behav-
iour [42]. The mean annual temperature for each county was
obtained from the US Climate Divisional Database through the
National Oceanic and Atmospheric Administration (NOAA) [43].
The correlation between these different factors varies, ranging
between −0.74 and 0.78 using Pearson’s r coefficient.

2.6. Analysis
Spearman rank correlation was used to explore the association
between the total number of ticks per county in 2016 and 2017
estimated by citizen science data and active surveillance data.
In addition, linear regression models were used to assess the
impact of each collector-associated factor on biases in the citizen
science dataset. Briefly, the response variable in all the regression
models was the natural log-transformed annual tick abundance
from each county as estimated from active surveillance while
the predictors included log-transformed tick abundance esti-
mates from citizen science and each collector-associated factor.
Linear regression models were fitted using the iteratively
reweighted least-squares method. Estimates from the regression
models (also on the natural log scale) were then compared
with total tick estimates from NYSDOH to determine how well
models using citizen science data predict tick abundance in
NYS. Comparison of the predictive accuracy of regression
models with the addition of each predictor was based on root-
mean-square-error (RMSE), R-squared (R2) and Akaike infor-
mation criteria (AIC) (electronic supplementary materials). The
full model and the most parsimonious model—which excludes
poverty, Google trends, % white population and medium age—
have similarly accurate predictive power (R2 = 0.63; RMSE =
0.45 versus R2 = 0.61; RMSE = 0.46). However, all analyses pre-
sented focus on the full model where possible to avoid
suggesting causal relationships between any particular predictor
and the number of ticks collected.
3. Results
The number of ticks collected by the public in each county in
NYS is strongly correlated with the size of the tick population
as determined by active surveillance (figure 2). That is, the
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Figure 2. The tick population size in each county correlates with the number of ticks collected by the public in both 2016 (a) and 2017 (b). The number of ticks
submitted by the public ranked across counties (x-axis) was similar to the rank of tick population sizes estimated from active surveillance ( y-axis) with the diagonal
line showing perfect correspondence. The consistency in the discrepancies between the datasets across years can be illustrated using data from Cayuga and Nassau
counties (red points) and Warren county (blue points) as examples. That is, counties such as Cayuga and Nassau have large tick populations but few ticks were
submitted from the public. By contrast, counties such as Warren have smaller tick populations but high tick submissions from citizen science. The datasets corre-
sponded more strongly in 2017 (Spearman ρ = 0.71, p = 4.1 × 10−9) than in 2016 (ρ = 0.53, p = 2.7 × 10−4). Ticks were submitted by the public from fewer
counties in 2016 (43 counties) than in 2017 (56 counties), resulting in different axis lengths.
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Figure 3. Collector-associated factors can rectify consistent errors in citizen science datasets. Models built with tick submissions from citizen science as predictors
(x-axis) can predict actual tick population sizes, as estimated by active surveillance ( y-axis). A model using only citizen science data (a) exhibits moderate accuracy,
with evenly distributed errors as the tick population sizes are both underpredicted and overpredicted. The addition of nine collector-associated factors without Lyme
disease corrects biases in citizen science data resulting in a model (b) that accurately predicted tick abundance. Collector-associated factors improved underpredictions
and overpredictions. For example, a randomly selected set of sites that are overpredicted by the citizen science data (the red points in (a)) are much more accurately
predicted by the full model (red points representing the same counties are much closer to the diagonal line in (b)). Similarly, a randomly selected set of sites that
are underpredicted by the citizen science data (blue points in (a)) are much more accurately predicted by the full model (blue points in (b)). Both axes represent
total ticks per county on the natural log scale (e≍ 2.718) for 2016 and 2017 estimates.
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largest numbers of ticks were submitted by citizens of the
counties with the largest tick populations, and few ticks
were submitted by citizens of counties with smaller tick
populations. The congruity between the citizen science data
and the data from active surveillance was consistent between
years, although correlations were stronger in 2017 owing to
tick submissions from more counties (43 versus 56). There
were, however, several counties with relatively small tick
populations from which large numbers of ticks were sub-
mitted by the public and several counties with larger tick
populations from which few ticks were submitted. As
examples, Cayuga and Nassau counties have relatively
large tick populations but few ticks were submitted by citi-
zens from these counties (figure 2, red points); by contrast,
Warren county hosts a small tick population, but many
ticks were submitted by citizens (figure 2, blue points). The
counties in which the citizen science data did not agree
with the active surveillance data in 2016 showed the same
discrepancy in 2017 in both direction and magnitude.

The number of ticks submitted by the public from each
county accounts for 37% of the variance in tick population
size across counties (figure 3a; table 1, citizen science



Table 1. Regression models predicting the estimated number of ticks per NYS county.

description of model RMSE R2 AIC

citizen science model: ticks collected from citizen science only 0.58 0.37 172

full model without Lyme disease: ticks collected from citizen science + all nine collector-associated factors but Lyme disease 0.45 0.63 139

all models below include citizen science tick submissions as a predictor

median household income 0.51 0.52 148

mean temperature 0.51 0.51 149

population 0.53 0.48 155

% below poverty 0.55 0.44 163

Google trends 0.55 0.43 164

% white population 0.56 0.43 164

% bachelor’s degree or higher 0.57 0.39 170

% children (0–14 years old) 0.57 0.39 170

county’s median age 0.58 0.38 172

Lyme disease models include citizen science tick submissions as a predictor

Lyme disease incidence rate 0.58 0.38 172

full model with Lyme disease: ticks collected from citizen science + all nine collector-associated factors with Lyme disease 0.44 0.64 138
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model). That is, the number of ticks submitted by the public
from each county can estimate the underlying tick population
sizes of each county with modest accuracy. However, the
regression model including only citizen science data as a pre-
dictor consistently underestimates tick population sizes in
areas with many ticks. Additionally, this model has propor-
tionally large errors that are evenly distributed in counties
with fewer ticks, owing to the coarseness of the citizen science
estimates from counties that submitted fewer than five ticks.

A linear model that includes citizen science data and nine
collector-associated factors as predictors accounts for 63% of
the variation in tick population sizes among counties (table 1,
full model without Lyme disease). Several of the predictors
improved the fit of the model only marginally when included
as the only collector-associated factor with tick submissions
from citizen science (i.e. median age and the proportion of chil-
dren in a county), while other predictors had much larger
effects on model fit (i.e. income and temperature). Including
county population size and household income in the linear
model substantially improves underestimates of tick popu-
lation sizes while including county poverty levels improves
overestimates (red and blue points in figure 3, respectively).
A 10-fold cross-validation evaluation of the full model without
Lyme disease resulted in a similar model fit (R2 = 0.61; RMSE =
0.49), suggesting that these results are robust to overfitting.
Model residuals of this full model without Lyme disease
showed no departure from normality and no evidence of auto-
correlation (figure 3b). The accuracy of this statistical model
enabled predictions to counties in nearby states (figure 4).
4. Discussion
The immense quantity of citizen science data can capture
population sizes in ecological systems across large spatial
scales—information which is essential to conservation, agri-
culture and public health efforts [21]. However, citizen
science data may be distorted by systematic inconsistencies
in data collection [9,10]. The public tick collection data
coarsely correspond with scientifically collected data at the
county level across NYS. Further, the discrepancies and
congruencies were consistent between years, suggesting
consistency in participation biases (figure 2). These consistent
participation biases can be accounted for in statistical models
using collector-associated epidemiological and human be-
havioural information. Statistical models that include citizen
science data and any single collector-associated predictors
examined improve the accuracy of tick population size esti-
mates over the citizen science data alone, although several
resulted in only marginal improvements. Statistical models
including all of the collector-associated factors investigated
in this study resulted in highly accurate estimates of tick
population sizes. Including collector-associated information
to model large-scale animal population sizes leads to broad,
new possibilities of harnessing the wealth of citizen science
data to address important ecological questions and monitor
populations in real time.

Systematic biases in citizen science datasets must be ident-
ified and resolved in order to rigorously assess scientific
hypotheses. For example, citizen science tick collections gener-
ally measure tick exposure—where and when humans come
into contact with ticks—whereas active surveillance assesses
actual tick density by collecting in diverse settings, including
locations uncommonly visited by the public. Citizen science
datasets can complement or expand active surveillance data or,
more importantly, address scientific hypotheses after demon-
strating that the data accurately represent the underlying tick
density and are scaled appropriately [30]. However, identifying
systematic errors in large citizen science datasets collected by
anonymous or undirectedmembers of the population is challen-
ging without an equivalent scientifically collected dataset.
Comparing similarly structured datasets can identify consistent
errors that can be used to correct systematic biases, as was done
in this study. The analysis of the active surveillance and citizen
science datasets revealed that the free tick testing programme
exhibited consistent but addressable participation bias, perhaps
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Figure 4. Models built on citizen science tick submissions and collector-associated factors can be extrapolated across the northeastern USA ((a) 2016 and (b) 2017).
The high predictive accuracy of the models in NYS suggests a powerful tool to estimate I. scapularis population sizes in the counties of nearby states. Predictions
from the full model without Lyme disease capture tick population size variability both among counties and between years in the same counties across northeastern
states. Tick population sizes are represented as a heat map, with darker colours representing larger population sizes. Grey represents counties with no citizen science
tick submissions. Predictions were made using the full model without Lyme disease with the exception of the Google Trends predictor owing to the lack of these
data at the appropriate resolution.
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manifesting from uneven public awareness of the citizen science
programme [30,44] (figure 2). Scientifically collected datasets
across large geographical and temporal ranges at sufficiently
fine resolutions to appropriately compare with a citizen science
dataset are expensive in both time and effort, thus obviating
much of the power of citizen science.

The size and expanse of the scientifically collected dataset
needed to validate a citizen science dataset could be greatly
reduced with a priori knowledge about human-relevant fac-
tors that may influence the public. Rather than relying on
individual-level information to account for data collection
biases, as has normally been done with citizen science data
(e.g. [45–48]), this study incorporated prior knowledge of
the disease system [34] to identify human-relevant, broad-
scale factors that dramatically increased the accuracy of the
citizen science dataset (figure 3). However, it is highly prob-
able that many factors that may address systematic biases
were not investigated (e.g. hospital visits or annual state
park visits). Regardless, this study demonstrates the potential
value of using population-level, collector-associated factors to
account for biases in existing citizen science datasets. Seeking
expertise from other fields such as anthropology or sociology
will probably identify many additional collector-associated
factors that could influence citizen science participation.
Including experts who are knowledgeable about both the
study system and the human population participating in citi-
zen science-based studies may be essential to realize the
power of these datasets.

The human-relevant, broad-scale factors investigated in this
studywere chosen a prioribasedonbothprior studies suggesting
their connection to Lyme disease epidemiology and accessibility
of the data at appropriate spatial and temporal scales [34].
Although individuals with greater risk for Lyme disease
were expected to be more motivated to participate in Lyme
disease-related studies (based on behavioural studies from dis-
ease immediacy bias [49]), this link was not directly supported
by the analyses. That is, local Lyme disease incidence rates
pairedwith the citizen science dataset did not improve estimates
of tick abundance (table 1). However, neither nonlinear relation-
ships nor interactions with Lyme disease epidemiology were
explored, whichmayaccount for additional variation.Neverthe-
less, the combination of collector-associated factors and public
tick submissions as predictors did result in accurate estimates
of tick population sizes, although the impact of each individual
factor varied considerably. The value of using human-relevant,
broad-scale factors to account for systematic errors in citizen
science datasets suggests unexplored intersections of social
science data and citizen science-based ecological studies.

The Lyme disease system provides a uniquely rich collec-
tion of datasets, including multiple estimates of tick
abundance through both traditional scientific collections and
large-scale citizen science projects. This data-rich environment
is ideal for estimating the suitability of large-scale citizen
science datasets [50,51]. Further, bias-corrected citizen science
datasets can be used to extrapolate tick abundance to nearby
states, although these predictions to neighbouring states
require validation through active tick collections (figure 4).
Similar citizen science datasets are available for the pathogens
vectored by these and other ticks across all US states, which
can be useful in updating national tick and pathogen maps
(e.g. [30]). Although the depth of these datasets is influenced
by the public attention associated with Lyme disease, the
approach to evaluating citizen science projects can be applied
to other systems to capitalize on available citizen science data
[52–55]. Identification of factors that correct biases in study sys-
tems with ongoing public submission and sample collection
could be guided by collector-associated factors indirectly
related to the study system.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210610

7
The ongoing expansion of citizen science data provides
unrealized potential to address many of the constraints that
pervade large-scale scientific investigations. Effective popu-
lation surveillance requires frequent, reliable observations
over a broad geographical expanse to assess natural fluctu-
ations in population sizes [56]. Public participation in data
collection reduces the financial challenges and geospatial
limitations to monitor populations more comprehensively.
Moreover, delimiting the geographical range of species
extends beyond ecological and conservation goals to surveil-
lance for existing and emerging public health threats [57].
Citizen science projects can monitor animal hosts or the
microbes they host as early sentinels prior to realizing the con-
sequences of outbreaks of emerging and re-emerging diseases.
Worldwide pathogen monitoring has taken on a new signifi-
cance in light of recent concerns about disease spillovers
between wildlife and incidental hosts, including humans.

Data accessibility. The analytical R code used in this paper is available at
Dryad (https://doi.org/10.5061/dryad.v9s4mw6vq). Tick sub-
mission data for the citizen science data can be found in Nieto et al.
[30]. Relevant R code and tick collection data for the NYSDOH
data that were previously published can be found at MendeleyData
(https://doi.org/10.17632/rtd52gnbyy.1) with further detail in the
supplementary material for Tran et al. [23].
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