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Ewing’s sarcoma family tumors (ESFT) are characterized by specific chromosomal translocations, which give rise to EWS-ETS
chimeric proteins. These aberrant transcription factors are the main pathogenic drivers of ESFT. Elucidation of the factors
influencing EWS-ETS expression and/or activity will guide the development of novel therapeutic agents against this fatal disease.

1. Introduction

ESFT comprise a group of undifferentiated, highly malignant
small blue round-cell pediatric tumors. They are genetically
characterized by EWS-ETS gene rearrangements affecting
EWSR1 and genes of the ETS-family of transcription fac-
tors, predominantly FLI1 characterizing 85% of cases [1].
Numerous efforts have been undertaken in the last three
decades to explore the functional role of EWS-FLI1 in tumor
pathogenesis. EWS-FLI1 has been identified as the main
genetic factor of malignancy in ESFT [2, 3] and it is also
causal in the pathogenesis of ESFT from its cellular types
of origin [4–6]. It has been widely documented that this
chimeric protein acts both as a transcriptional activator
and repressor of similarly sized sets of target genes [7, 8].
While most mechanistic studies have concentrated on the
identification and description of downstream EWS-FLI1
regulated genes, this paper focuses on currently known
factors influencing EWS-FLI1 activity up- and downstream
of the fusion protein and consequently modulate its target
gene expression.

2. Structure and Posttranslational
Modifications Affecting the Transcriptional
Activity of EWS-FLI1

Since, due to its tumor-specific expression, EWS-FLI1 pro-
tein is considered an ideal therapeutic target [71], significant

efforts have been made to understand the function of this
fusion protein. Knowledge about the detailed EWS-FLI1
protein structure would be extremely helpful to analyse and
predict its DNA-binding properties as a basis for a better
understanding of the EWS-FLI1 transcriptional network and
for the development of inhibitory modalities with therapeu-
tic promise.

EWS-fusion proteins contain at least the N-terminal
7 exons of EWS comprising the EWS activation domain
(EAD). The EAD structure consists of multiple degenerate
hexapeptide repeats (consensus SYGQQS) with a conserved
tyrosine residue. However, systematic mutagenesis of the
EAD revealed that the overall sequence composition and
not the specific sequence of the degenerate hexapeptide
repeat confer EAD activity [72]. The C-terminal portion
of EWS-FLI1 consists of a COOH-terminal domain as
well as an ets-type winged helix-lop-helix DNA-binding
domain (DBD). Arvand et al. suggested that, in addition
to the EAD and DBD domains, the COOH-terminal FLI1
domain contributes to promote cellular transformation [73].
Mutation analysis of the EWS-DBD revealed that EWS-FLI1,
apparently, not only induces DBD-dependent but also DBD-
independent oncogenic pathways, suggesting that EWS-FLI1
interacts with other gene regulatory factors or complexes
[74].

Transcriptional regulation is tightly controlled by tran-
scription factor binding to regulatory regions within DNA as
well as recruitment of cofactors. Although ETS transcription
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factors bind predominantly as monomers to a GGAA/T
core motif in promoter or enhancer regions of their target
genes, functional interaction between ETS proteins and other
factors is crucial to enhance or modulate DNA binding
[75]. Even though EWS-FLI1 possesses protein interaction
domains such as SH2 or PDZ, the identified intrinsically
disordered protein regions may facilitate protein-protein
complexes as explained in the next chapter [76].

However, transcriptional control also involves complex
upstream signaling pathways that converge on the posttrans-
lational modification of transcription factors and their in-
teracting cofactors. Phosphorylation and glycosylation are
two examples of posttranslationally modifying mechanisms
affecting EWS-FLI1 activity. The EWS portion of about 20%
of EWS-FLI1 fusion proteins (those that retain EWS amino
acids 256 to 285) contains a conserved calmodulin-binding
motif within the IQ domain with a phosphorylated internal
Protein Kinase C recognition site at Ser 266 [9]. Mutation of
this residue was enough to significantly reduce DNA binding
of EWS-FLI1 in vitro [9, 10]. Furthermore, EWS and EWS-
FLI1 are phosphorylated at Thr 79 in the N-terminal domain
in response to DNA damage or mitogens [11]. Glycosylation
is the enzymatic process that attaches glycans to proteins,
lipids, or other organic molecules [77]. EWS-FLI1 was found
to undergo O-linked beta-N-acetylglucosaminylation (O-
GlcNAcylation). This modification seems to be reciprocally
related to phosphorylation and to influence the transcrip-
tional activation propensities of the fusion protein [12]. In
addition, N-linked glycosylation was described as essential
to sustain ESFT cell growth. Interestingly, inhibition of
N-linked glycosylation decreased the expression of EWS-
FLI1 correlating to growth arrest [13]. The highly decreased
expression levels of EWS-FLI1 observed after treatment with
HMG-CoA reductase inhibitors (i.e., lovastatin) or N-linked
glycosylation inhibitors (i.e., tunicamycin) were found to
be due to the instability of de novo-synthesized fusion
protein [13, 52]. Lovastatin triggered differentiation and
induced apoptosis without causing cell cycle arrest through
the loss of an RB-regulated G1 checkpoint [52]. Although
EWS-FLI1 contains four potential sites for this type of
posttranslational modification, no evidence for direct N-
glycosylation of the fusion protein could be obtained. There-
fore, an indirect functional interaction involving other key-
player glycoproteins has been proposed [13]. Since block-
age of N-linked glycosylation also leads to inactivation of
IGF-1R signaling by inhibiting translocation to the cell
surface [14], and since IGF-1R activity is essential to EWS-
FLI1 expression (discussed in Section 4), inactivation of
this pathway may at least partially explain why inhibi-
tion of N-linked glycosylation leads to reduced expres-
sion of the fusion protein. However, further investiga-
tions are required to test this hypothesis (summarized in
Table 1).

3. Direct EWS-FLI1 Protein Interactions

Biochemical purification and analysis identified EWS-FLI1
as an intrinsically disordered protein [72, 78]. Intrinsically
disordered proteins are defined by their lack of a stable

structure when isolated. A characteristic composition of
amino acids prevents these proteins from forming singular,
fixed structures thereby enabling them for rapid complex
formation and dissociation with relatively high specificity
and low affinity [76]. As no direct enzymatic activity has been
ascribed to EWS-FLI1, it is necessary to identify interaction
partners of the fusion protein in order to learn more about
the functional pathways in which it is involved and how to
modulate them therapeutically.

EWS-FLI1 is generally perceived as a transcriptional ac-
tivator [79–81]. Consistent with its transcriptional activator
function, EWS-FLI1 associates with several proteins of
the basal transcription machinery. Among them are RNA
polymerase II [15] and its core subunit hsRBP7 [16–18],
CREB-binding protein (CBP)/p300 [19], and RNA hel-
icase A (RHA) [22]. The interaction with (CBP)/p300 was
demonstrated to be involved in the regulation of several bona
fide EWS-FLI1 targets like p21 [82] or matrix metallopro-
teinase (MMP-1) [83]. RHA is a modulator of transcription
as it interacts with CBP/p300 and RNA polymerase II.
Interruption of this interaction induces apoptosis in vivo
and in vitro, a potential novel therapeutic strategy [22, 53].
Interaction with the putative tumor suppressor BARD1,
that associates with the breast cancer susceptibility gene
BRCA1, links EWS-FLI1 with proteins involved in genome
surveillance, DNA repair, and checkpoint control [23]. It is
likely that target site selectivity of EWS-FLI1 is mediated
via interaction with other sequence specific transcription
factors. Such an interaction has been described for FOS-
JUN dimers, which bind to AP1 sequences synergizing with
EWS-FLI1 in the regulation of a subset of EWS-FLI1 target
genes including uridine phosphorylase [24]. Recent in silico
analyses reveal a significant enrichment of E2F binding sites
in EWS-FLI1 upregulated genes suggesting an important
role of the E2F family of transcription factors in EWS-
FLI mediated transcriptional regulation [8]. Whether EWS-
FLI1 actually physically interacts with E2Fs to accomplish
upregulation of the affected genes or merely binds alongside
E2F transcription factors remains to be elucidated.

In addition to transcriptional activation, an at least equal
number of genes are downregulated by EWS-FLI1 as are
upregulated [25]. One explanation for this fact is that some
of the upregulated EWS-FLI1 targets are transcriptional
repressors as exemplified by NKX2.2, a directly EWS-FLI1-
activated target which functions as a transcriptional repres-
sor [84, 85]. Another target of EWS-FLI1, NR0B1, not only
acts as a transcriptional regulator downstream of EWS-FLI1
but also has recently been shown to interact physically with
EWS-FLI1 to influence gene expression thereby contributing
to Ewing’s sarcoma oncogenesis [25]. Due to interaction with
several RNA processing proteins including the small nuclear
ribonucleoprotein (snRNP) U1C [86], EWS-FLI1 activity
has not only been linked to RNA transcription but also to
splicing [26, 87]. U1C plays a critical role in the initiation
and regulation of pre-mRNA splicing as part of the U1
small nuclear ribonucleoprotein and commits pre-mRNAs to
the splicing process [88]. Interestingly, forced U1C expres-
sion was demonstrated to modulate dose—dependently the
transcriptional transactivation activity of EWS-FLI1 in vitro
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Table 1: Factors influencing EWS-FLI1 activity and/or expression.

Posttranslational modifications

Phosphorylation DNA binding, response to DNA damage and mitogens [9–11]

Glycosylation Transcriptional activation, cell growth, link with IGF-1 signaling [12–14]

Direct protein-protein interactions

RNA polymerase II Basal transcription machinery [15]

hsRBP7 Basal transcription machinery [16–18]

Creb-binding protein (CBP)/p300
Basal transcription machinery, regulation of EWS-FLI1 targets like
p21 or MMP-1

[19–21]

RNA helicase A (RHA) Modulator of transcription [22]

BARD1
Putative tumor suppressor; genome surveillance, DNA repair and
checkpoint control

[23]

FOS-JUN dimers
Binding to AP1 sequences synergizing with EWS-FLI1, regulation of
uridine phosphorylase

[24]

NR0B1 Transcriptional regulator downstream of EWS-FLI1 [25]

small nuclear ribonucleoprotein (snRNP) U1C pre-mRNA splicing [26]

EWS Functional consequences of this heterodimerization unknown [20]

Factors indirectly affecting EWS-FLI1 activity

p53 and INK4A pathways Loss of each one stabilizes EWS-FLI1 [27–33]

Hypoxia Apoptosis resistance via HIF, chemotherapy failure, angiogenesis [34–37]

IGF-1/IGF-1R pathway
EWS-FLI1 mediated cellular transformation, proliferation and
survival

[38–45]

bFGF Triggers EWS-FLI1 expression in serum-depleted ESFT cells [46]

BLCAP Ectopic overexpression decreases EWS-FLI1, apoptosis [47]

miRNAs

miR-145 EWS-FLI1 repressed miRNA, regulatory feedback loop [48, 49]

miR-100, miR-125b, miR-22, miR-221/222,
miR-271 and miR29a

EWS-FLI1 repressed miRNAs, targets in IGF signalling pathway [50]

let-7 family EWS-FLI1 repressed miRNA, let 7-a is a direct target of EWS-FLI1 [51]

miRNA 17–92 cluster EWS-FLI1 induced miRNAs [51]

and in vivo via interaction with the EWS amino terminal
domain [86]. In addition, experimental evidence for a direct
interaction between EWS-FLI1 and EWS was reported by
Spahn et al. [20]. Since EWS interacts with a multitude of
RNA processing factors [21], the functional consequences of
this heterodimerization on RNA splicing remains a subject
for further investigation (summarized in Table 1).

4. Factors Indirectly Affecting
EWS-FLI1 Activity

4.1. p53 and INK4A Pathways. The p53 and INK4A
(p16/p14ARF) pathways are critical in promoting cell cycle
arrest in response to mitogenic signals, and mutations in
their key components facilitate tumor progression in most
cancer types [89, 90]. In normal primary mouse fibroblasts
(MEFs), EWS-FLI1 expression is unstable eliciting a p53-
dependent growth arrest and apoptosis program. However,
in p16 or p53 defective MEFs, these effects are attenuated
and this environment allows stable expression of the fusion
protein [27, 28]. Thus, it appears that the loss of each of these
tumor suppressor genes stabilizes EWS-FLI1 expression.

Consistent with this finding, loss of p53 greatly accelerates
tumorigenesis in EWS-FLI1 transgenic mice [29]. However,
in ESFT, mutations in p53 or p16/p14ARF are found in
approximately 10% and 25% of cases, respectively. As in
most pediatric malignancies, the majority of ESFT express
wild-type p53 and p16/14ARF genes [30–32]. Functionally,
basal p53 expression is modulated by EWS-FLI1 through an
indirect mechanism that involves suppression of the Notch
signalling pathway [33].

4.2. Hypoxia. Hypoxia is a common condition in solid
tumors. It drives cancer cells towards a coordinated set of
survival responses altering the transcriptional regulation of
many genes [91], stimulating cell migration, invasiveness
and motility [92], and driving a metabolic shift towards
anaerobic glycolysis [93] or promotion of autophagy [94].
Due to its involvement in drug resistance [95], hypoxia
has been identified as a negative prognostic factor in many
cancers [96] including sarcomas [97]. HIF-1, a basic HLH
transcription factor, is a major player in the adaptive
response to hypoxic conditions, enhancing cell survival in
this unfavourable environment [92–98]. In ESFT, hypoxia
has been shown to contribute to apoptosis resistance via
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HIF-1α [99], to chemotherapy resistance [34], and to the
establishment of an alternative circulatory system [35].
Interestingly, under hypoxic conditions, EWS-FLI1 pro-
tein expression was demonstrated to increase transiently
in a HIF-1α-dependent manner [36]. HIF-1α-mediated
EWS-FLI1 accumulation involved protein regulation at the
FLI1 moiety, since the observed protein accumulation was
restricted to EWS-FLI1 and neither observed for full-length
EWS nor for an alternative EWS fusion to ERG. On the
transcriptional level, however, the upregulation of EWS-FLI1
protein did not simply result in a reinforcement of the EWS-
FLI1 transcriptional signature, but showed a more complex
effect with both synergistic and antagonistic consequences
on EWS-FLI1 regulated genes [36]. Another study has shown
colocalisation of HIF-1α and necrotic areas in an ESFT tissue
array, suggesting a role for hypoxia in in vivo induction of
HIF-1α [37]. Data thus implicates HIF as the main response
factor for hypoxic stimulus in ESFT with marked effects on
proliferation and apoptosis.

4.3. IGF-1/IGF-1R and bFGF Pathways. The autocrine loops
encompassing (IGF-1)/(IGF-1R) and (IGF-2)/(IGF-2R) play
a crucial role in the proliferation and survival of ESFT
cells via activation of AKT and ERK1/2 [38–40]. Notably,
in MEFs, expression of IGF-1R is required for EWS-
FLI1-mediated cellular transformation suggesting that the
oncogenic activity of the fusion protein is dependent on
functional IGF-1R signaling [41]. There are several lines of
evidence that support a link between EWS-FLI1 and IGF-
1/IGF1-R signalling [42, 43] also in one of the putative
progenitor cell of ESFT [44], and inhibition of this signaling
pathway reduces tumor growth in vitro [45] and in vivo
[54], blocks angiogenesis [55], induces cell death [61], and
increases chemosensitivity [100].

A further growth factor positively interacting with EWS-
FLI1 activity is basic fibroblast growth factor (bFGF). bFGF
was demonstrated to trigger EWS-FLI1 expression in serum-
depleted ESFT cells. A neutralizing antibody against bFGF
was able to disrupt this upregulation and inhibit expression
of the fusion protein in a broad panel of ESFT cell lines
[46]. No detectable effect on EWS-FLI1 expression levels
was observed upon epidermal growth factor or platelet
derived growth factor stimulation. However, the mechanism
by which bFGF specifically controls EWS-FLI1 levels remains
elusive

Most recently, a further putative signalling molecule that
is expressed on the cell surface, the bladder cancer associated
protein BLCAP, carrying a putative Ser-Pro-X-X motif and
a proline-rich area, was reported to modulate EWS-FLI1
expression [47]. The mechanism of this activity, which was
obtained upon artificial ectopic overexpression, remains to
be elucidated (summarized in Table 1).

5. miRNAs Influencing EWS-FLI1 Activity

MicroRNAs (miRNAs) are small (21–24 nucleotides), single-
stranded, and noncoding RNAs that regulate gene expression
in a variety of cellular processes [101]. By binding of the

miRNA to a partially homologous region (seed region)
within the 3′ untranslated region (UTR), coding sequences
or 5′UTRs of messenger RNAs (mRNA), it can either block
its target mRNA translation or lead to its degradation [102,
103]. Due to the imperfect base pairing of the miRNA to
its seed region, a single miRNA can regulate several target
mRNAs as part of a complex gene regulatory network [101,
104]. It is estimated that between 30% and 60% of the human
genome is regulated by miRNAs including genes involved
in mechanisms of tumorigenesis, such as proliferation,
inflammation, stress response, apoptosis, differentiation, and
invasion [101, 102]. miRNAs can either act as oncogenes
or tumor suppressors, some of them even in both ways
[101, 105, 106].

While the role of aberrantly expressed miRNAs is well
established in adult cancers, only few studies exist for pe-
diatric malignancies in general and sarcomas in particular
[107–109]. One of the best described tumor suppressive
miRNAs is miR-145, which was found to be downregulated
in several solid tumors, including lung, colorectal, breast,
and prostate cancer [110, 111]. Similarly, in ESFT, miR-
145 was recently described as the top consistently EWS-FLI1
repressed miRNA. This finding was based on the investiga-
tion of five ESFT cell lines upon RNA interference-mediated
EWS-FLI1 knockdown and on differential gene expression
patterns between primary ESFT and mesenchymal stem
cells, the most related normal tissue. In fact, miR-145 and
EWS-FLI1 were demonstrated to build a regulatory feedback
loop, in which EWS-FLI1 suppresses miR-145 and miR-
145 modulates EWS-FLI1 expression [48, 49]. This type of
positive feedback regulation has the potential to serve as a
compensating buffer for variations in EWS-FLI1 expression.
Reconstitution of miR-145 expression resulted in decreased
EWS-FLI1 expression and consequently reduced cell growth
and soft agar colony formation [48]. Of note, miR-145 has
recently been reported to target the 3′UTR of another ETS
family gene, ERG, which replaces FLI in alternative EWS
fusions associated with about 10% of ESFT [112]. The DNA
binding domain of ERG shares 98% homology with that of
FLI1 [113] and our own unpublished results suggest that
there is significant overlap between EWS-FLI1 target genes in
ESFT and ERG in prostate cancer cells. Although activity of
miR-145 on EWS-ERG in ESFT remains to be demonstrated,
the finding of ERG modulation by this miRNA in prostate
cancer cells may extend the concept of feedback regulation
between EWS-ETS fusion genes and miR-145 beyond EWS-
FLI1.

However, a recent global miRNA profiling study in the
A673 ESFT cell line did not confirm miR-145 among EWS-
FLI1 suppressed miRNAs but described a group of EWS-
FLI1 repressed miRNAs (miR-100, miR-125b, miR-22, miR-
221/222, miR-271, and miR29a) with predicted targets in
the IGF-1/IGF-1R signaling pathway [50], a key growth
regulatory signaling pathway interacting with EWS-FLI1
expression/activity [41–43]. The lack of evidence for miR-
145 suppression in this study [50] as compared to the pre-
vious study [48] may be caused by the use of different
cell lines, different screening platforms (Agilent-type micro-
array versus Applied Biosystems quantitative stem loop
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PCR), and/or the different timing of miRNA screening after
EWS-FLI1 knockdown (10 days in [50] versus 4 days in
[48]). miR-145 is the first miRNA shown to target FLI1
and FLI1 fusion genes [48, 49, 110]. Given the length of
the FLI1 3′UTR (>2 kb), it is very likely that other miRNAs
may have similar FLI1 and EWS-FLI1 modulatory activities
(summarized in Table 1).

6. Therapeutic Potentials

The existence of tumor-specific alterations in several can-
cers presents a unique opportunity for pharmacological
intervention to therapeutic benefit. Although EWS-FLI1
has only been identified in tumor cells and therefore
provides a potential ideal therapeutic target, ESFT has so
far remained a targetable disease without a targeted drug
[71, 114]. Suppression of EWS-FLI1 has been achieved by
antisense technologies [115–121], small interfering RNA
(siRNA) [122–125], short hairpin RNA (shRNA) [42, 126–
128], and small pharmacological compounds [53, 62] all
blocking the proliferation of ESFT cell lines and xenografted
tumors. Although some siRNA coupled to nanoparticles
have proved to be useful in preclinical models either alone
[129–132] or combined with other therapeutic agents as
rapamycin [133], the general lack of clinical translation of
some of these macromolecule-based strategies lies in the
challenge of pharmacological delivery [134]. Being present
only in tumor cells, directly targeting the activity of EWS-
FLI1 by focusing on its protein-protein interactions, will
be a logical step towards identifying potential targets for
developing effective anti-ESFT therapies. Along this line,
targeting binding partners essential for EWS-FLI1 oncogenic
function holds promise in combating ESFT as has been
shown for RNA helicase A using the small molecule YK-4-
279 [53]. YK-4-279 blocked RNA helicase A binding to EWS-
FLI1, induced apoptosis in ESFT cell lines and also reduced
growth in ESFT xenografts. YK-4-279 can also target a
subpopulation of chemoresistant ESFT stem cells [135] and it
has been recently described as an effective antiinvasive agent
in ETV1 and ERG fusion positive prostate tumors although
the mechanism of action of YK-4-279 in prostate cancer cells
seems to be different [136]. A further evaluation of this new
role of YK-4-279 in ESFT would be needed. O-linked beta-
N-acetylglucosamine (O-GlcNAc), which modifies nuclear
and cytoplasmic proteins on serine and threonine residues,
was delineated to serine/threonine residues of the amino-
terminal EWS transcriptional-activation domain of the
EWS-FLI1 fusion protein by our laboratory. Inhibition of
EWS-FLI1 O-GlcNAcylation interfered with transactivation
of its target gene Id2 [12]. A better understanding of EWS-
FLI1 O-GlcNAcylation as it relates to gene transcription and
the physiological mechanisms behind this process is likely to
lead to novel therapies for treating ESFT. Recently, our group
identified a positive feedback regulation between EWS-FLI1
and miR-145 as an important component of EWS-FLI1
mediated tumorigenesis [48]. As such, targeting miR-145
or other miRNAs found to affect EWS-FLI1 activity may
serve as a promising therapy strategy to improve the clinical
outcome of ESFT patients. Also, the adaptation of tumors

to hypoxia is critical for their survival and growth. Given
the central role hypoxia plays in tumor progression and
resistance to therapy, hypoxia might well be considered the
best validated target that has yet to be exploited in oncology
[137]. Some established drugs targeting hypoxia or the HIF-
1 pathway (e.g., 2-methoxyestradiol, bortezomib) have been
already tested in ESFT [63–65] and although bortezomib per
se showed no clinical benefit [138] and resistance appeared,
[139] the recent finding of hypoxia transiently enhancing
EWS-FLI1 protein expression [36] may raise hopes for
a combined therapeutic window for ESFT patients with
new agents. Also, therapeutic strategies targeting the IGF-
1/IGF-1R loop may interfere with oncogenic functions of
EWS-FLI1. Antagonistic IGF-1R antibodies or small kinase
inhibitory molecules have been developed and are therefore
currently tested in phase I/II clinical trials on ESFT patients
either alone [56–58] or in combination with the mTOR
inhibitor temsirolimus [59] showing promising results. One
important fact is the status of the insulin receptor (IR) as
ESFT patients with a low IGF-1R : IR ratio do not benefit
from anti-IGF-1R therapies [60]. A meta-analysis of small-
scale retrospective studies suggest that, although rare, ESFT
harbouring p53 or p16/p14ARF mutations form a subset with
particularly poor prognosis, highly aggressive behaviour, and
poor chemoresponse [140, 141]. Nutlin-3a, a small molecule
which antagonizes the interaction of MDM2 with p53, thus
stabilizing the tumor suppressor protein, is able to promote a
strong apoptotic arrest when applied to ESFT and showed a
synergistic effect with other chemotherapeutic agents such as
etoposide, doxorubicin, vincristine, and actinomycin D in a
dose-dependent manner [66, 67]. As downstream targets of
EWS-FLI1 have been reported to contribute to the oncogenic
activities of EWS-FLI1 [19, 25, 85, 126, 142–145], generating
compounds effectively targeting these downstream effectors
hold potential therapeutic benefits as has been shown with
ET-743 [68], Mithramycin [62], and ARA-C [69] although
it is necessary to be cautious as, for example, ARA-C has
shown minimal activity and hematologic toxicity in a phase
II clinical trial [70]. Methods to evaluate the specificity,
toxicity, metabolism, and excretion as well as adsorption and
distribution within tumor cells are warranted to advance
these potential drugs into clinical trials (summarized in
Table 2).

7. Conclusion

While attempts to understand the pathobiology of ESFT
have focused mainly on identifying EWS-FLI1 target genes
and downstream pathways, there are still many important
unresolved questions regarding factors modulating EWS-
FLI1 activity. Manipulation of these factors may offer
therapeutic promise since it is difficult to directly target a
transcription factor. This may be achieved by applying high
throughput compound screening technologies as has been
performed to block EWS-FLI1 interaction with RNA helicase
A [22, 53], and in EWS-FLI1 signature-based approaches as
in the case of Mithramycin [62]. Such compounds may be
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Table 2: Therapeutic agents targeting partners essential for EWS-FLI1.

Name Characteristics Effects Reference

Mevalonate, tunicamycin Inhibitors of N-linked glycosylation
EWS-FLI1 expression, growth arrest, inactivation
of IGF-1R signaling

[12–14]

Lovastatin HMG-CoA reductase inhibitor
Triggering of differentiation, induction of
apoptosis, inactivation of IGF-1R signaling

[14, 52]

YK-4-279
Blocking RNA helicase A binding to
EWS-FLI1

Induction of apoptosis in vitro and reduction of
growth in vivo

[53]

Anti-IGF-1R antibodies Blocking IGF-1/IGF-1R pathway
Tumor growth reduction in vitro and in vivo,
angiogenesis blockage, cell death induction and
chemosensitivity increase

[45, 54–
60]

Epigallocatechin gallate IGF-1R inhibitor, catechin derivative Blocks proliferation and induces cell death [61]

Neutralizing antibody
against bFGF

Blocking bFGF pathway
EWS-FLI1 downregulation through inhibition of
FGFR phosphorylation

[46]

Mithramycin DNA binding transcriptional inhibitor
EWS-FLI1 inhibitor, decreases tumor growth in
vitro and in vivo

[62]

2-methoxyestradiol,
bortezomib

Inhibitors of hypoxia and/or HIF-1 pathway
Induction of apoptosis, autophagy and cell cycle
arrest in vitro

[63–65]

Nutlin-3a
Small molecule which antagonizes the
interaction of MDM2 with p53

Stabilization of p53, apoptotic arrest, synergistic
effect with other chemotherapeutic agents

[66, 67]

Ecteinascidin 743
Binds and alkylates DNA at the N2 position
of guanine

Induction of apoptosis, reduction of the activity
of EWS-FLI1 targets

[68]

ARA-C (cytosine
arabinoside)

Antimetabolite, inhibitor of EWS-FLI1
EWS-FLI1 protein reduction, decrease of cell
viability, transformation and tumor growth in
vivo

[69, 70]

Synthetic Let-7a Synthetic miRNA
Restored Let-7a expression resulted in ESFT
growth inhibition in vivo

[51]

more specific and highly effective in neutralising EWS-FLI1
activity in ESFT cells with minimal toxicity.

The list of agents influencing EWS-FLI1 fusion protein
activity and/or expression is consistently enriched. Some of
them show crosstalk, as has been demonstrated between a
group of EWS-FLI1 repressed miRNAs and targets of IGF-
1/IGF-1R pathway [50]. Since very little is known about
the influence of miRNAs on EWS-FLI1 activity, employing
high-throughput screening assays to identify miRNAs with
specific effects on EWS-FLI1 activity will provide additional
targets for therapeutic development. Recently, the use of
miRNA arrays to compare the miRNA expression profile
of human mesenchymal stem cells (MSCs) and ESFT cell
lines has shown induction of the oncogenic miRNA 17–92
cluster and repression of the tumor suppressor let-7 family.
Importantly, the feasibility of delivery of synthetic miRNA in
vivo to achieve tumor growth inhibition was demonstrated
in this study [51]. For a better understanding of the interplay
between the discussed factors, it should be crucial to also
consider the individual clinical profiles of ESFT patients.

Abbreviations
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