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Refining transcription factor binding sites<p>BoCaTFBS, a new method that combines noisy data from ChIP-chip experiments with known binding-site patterns, is described and applied to the ENCODE project.</p>

Abstract

Comprehensive mapping of transcription factor binding sites is essential in postgenomic biology.
For this, we propose a mining approach combining noisy data from ChIP (chromatin
immunoprecipitation)-chip experiments with known binding site patterns. Our method
(BoCaTFBS) uses boosted cascades of classifiers for optimum efficiency, in which components are
alternating decision trees; it exploits interpositional correlations; and it explicitly integrates massive
negative information from ChIP-chip experiments. We applied BoCaTFBS within the ENCODE
project and showed that it outperforms many traditional binding site identification methods (for
instance, profiles).

Background
The diverse phenotypes from an invariant set of genes are
controlled by a biochemical process that regulates gene activ-
ity [1]. Transcription is central to the regulation mechanisms
in the process of gene expression. It is regulated by interplay
between transcription factors and their binding sites.

Understanding the targets that are regulated by transcription
factors in the human genome is highly desirable in the post-
genomic era. Some experimental methods, such as footprint-
ing [2] and SELEX (systematic evolution of ligands by
exponential evolution) [3], exist for identifying transcription
factor binding sites (TFBSs). Chromatin immunoprecipita-
tion (ChIP)-chip technology was introduced originally to
identify genomic binding regions of transcription factors in
yeast [4-6]. It was later applied to the human genome [7].
There have been many applications to single chromosomes in

human. ChIP-chip technology, otherwise known as micro-
array-based readout of chromatin immunoprecipitation
assays, is a procedure for mapping in vivo targets of tran-
scription factors by ChIP with antibodies to a transcription
factor of interest in order to isolate protein-bound DNA, fol-
lowed by probing a microarray containing genomic DNA
sequences with the immunoprecipitated DNA.

Snyder and colleagues [8] mapped nuclear factor (NF)-κB
binding sites in human chromosome 22 in a high-throughput
manner. A number of other publications have similarly
mapped the sites of other transcription factors [9,10]. ChIP-
chip technology has been applied to the human genome for a
variety of different factors [11]. Additionally, there are related
techniques such as ChIP-SAGE (serial analysis of gene
expression) [12-14]. Unfortunately, the ChIP-chip technique
and its variants are still time consuming, sensitive to the
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physiologic perturbation, and expensive to use for screening
TFBSs in the whole genome.

Many computational methods for identifying TFBSs have
been proposed in the literature [15-17]. Some of the methods
attempt to discover potential binding sites for any transcrip-
tion factor given only a collection of unaligned promoter
regions for suspected coregulated genes (for example MEME
[18], AlignAce [Gibbs sampling] [19], and BioProspector
[20]). Other methods attempt to predict TFBSs for a specific
transcription factor given a collection of known binding sites
already available [15,21-23]. Our proposed method in this
paper is relevant to the latter problem.

Consensus sequences or regular expressions are still fre-
quently used to depict the binding specificities of transcrip-
tion factors. They represent a somewhat simplistic view of the
binding sequence and only work well in highly conserved
motifs because they do not contain useful information about
the relative likelihood of observing the alternate nucleotides
at different positions of a TFBS. However, variability is
believed to have a critical impact on the fine regulation of
gene expression. This makes it very difficult to identify all
potential binding sites without the aid of computational
techniques.

Another more common method is the profile method, also
known as positional specific scoring matrix (PSSM) or posi-
tion weight matrix [21]. The largest and most commonly used
collection is the TRANSFAC database, which catalogs tran-
scription factors, their known binding sites, and the corre-
sponding profiles (PSSMs) [23]. In addition, a number of
tools such as MATRIX SEARCH [24], MatInd/MatInspector
[25], Mapper [26], SIGNAL SCAN [27], and rVISTA [28],
have been developed to enable the user to search an input
sequence for matches to a PSSM or a library of PSSMs. How-
ever, PSSMs treat each position of the binding sites as inde-
pendent from each other. They cannot model the interactions
between positions within DNA-binding sites, nor can they
model explicit coevolution of related positions within binding
sites. PSSMs normally describe only a fixed length motif,
whereas many DNA-binding proteins can bind to variable
length sites. Finally, it is not always feasible to construct a
multiple alignment of the binding sites necessary to build a
PSSM.

Graphical models were also introduced to represent the
dependences between positions [29,30]. In particular,
Markov chains were utilized to statistically model the number
and relative locations of TFBSs within a sequence. Although
the hidden Markov model allows dependencies among posi-
tions to be encoded in the state transition probabilities [29],
not all dependencies are well treated systematically. An opti-
mized Markov chain algorithm was introduced to integrate
pair-wise correlation into Markov models to predict a partic-

ular transcription factor's binding sites (hepatocyte nuclear
factor 4α) [22].

An alternative approach, phylogenetic footprinting, identifies
functional regulation elements from noncoding DNA
sequence conservation between related species [31-33]. It has
successfully been applied to single genome loci, but this
method is limited by the short length of functional binding
sites and the large number of insertion/deletion events within
regulatory regions. There are also other methods, such as
maximal dependence decomposition [34] and the nonpara-
metric method [35]. Singh and coworkers [15] evaluated tra-
ditional TFBS prediction methods and introduced per-
position information content and local pair-wise nucleotide
dependencies to four major traditional methods (for further
detail, see Materials and methods, below). Their benchmark
results on Escherichia coli transcription factors indicated
that the best results were achieved by incorporating both per-
position information content and local pair-wise correlation;
however, all of the conventional methods of TFBS prediction
generate a high false-positive rate when applied to the
genome [36].

Local pair-wise correlation within TFBSs was discovered in
some recent experimental and theoretical research. Microar-
ray binding experiments indicated that nucleotides of TFBSs
exert interdependent effects on the binding affinities of tran-
scription factors [37]. Also, Kwiatkowski and coworkers [38]
showed that there are nucleotide positions in the TFBSs that
interact with each other by using principle coordinate analy-
sis to predict the effects of single nucleotide polymorphisms
within regulatory sequences on DNA-protein interactions.

Finding TFBSs is particularly challenging in the human
genome in comparison with simpler organisms such as yeast
and fly. TFBSs can occur downstream, upstream, or possibly
in the introns of the genes they regulate [8-10]. Moreover, the
human genome is about 200 times larger than the yeast
genome, and approximately 99% does not encode proteins.
Thus, it can be very difficult to find TFBSs in noncoding
sequences using relatively simple computational tools.

In this postgenomic era, comprehensive high-throughput
experiments (such as ChIP-chip) or gene annotation provides
a huge amount of information about sites that are not bound
by a factor, as well as some information about the sites that
are bound. In fact, such techniques provide better informa-
tion about nonbinding sites than about binding sites because
the resolution of the binding sites is limited by the size of
probes in the ChIP-chip experiments and there are only lim-
ited binding regions detected, whereas there is a very large
amount of information on sites not bound. Moreover, the
ENCyclopedia Of DNA Elements (ENCODE) Project [39] is
expected to produce a surge in the availability of massive
ChIP-chip datasets.
Genome Biology 2006, 7:R102
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Here we propose a general and robust method for automati-
cally identifying TFBSs. Because an enormous amount of
nonbinding information has been generated from ChIP-chip
experiments, our new method should not only be able to uti-
lize positional information and interpositional correlation in
TFBSs, but it should also systematically incorporate informa-
tion from the numerous nonbinding sites.

Our method is designed to harness specifically this informa-
tion about sites that are not bound. We call this negative
information 'massive nonbinding site information'. The non-
binding regions from yeast were recently used in another
computational method proposed by Hong and coworkers. In
particular, those investigators described a single boosting
approach (MotifBooster) and applied it to yeast ChIP-chip
data [40]. MotifBooster classifies the bound and nonbound
regions of ChIP-chip experiments, and represents a signifi-
cant innovation by explicitly including the nonbinding region
information. A single boosting classifier using PSSMs as the
basis for its weak classifiers was trained over the yeast ChIP-
chip datasets. However, in the human genome, data become
substantially more massive and the distribution of the class
labels (binding or nonbinding) is even more skewed. As is
described below, to train a single boosting classifier can be
difficult for the whole human genome because of the compu-
tational inefficiency for training over massive datasets [41].

Efficiency and scalability are key challenges for handling
massive datasets in a boosting paradigm [42]. The amount of
nonbinding information in the whole human genome ChIP-
chip experiment is truly massive [39]. It is on the order of bil-
lions (3 million negative probes multiplied by their average
length of 1000 base pairs [bp]). It is critical to incorporate
efficiently the large scale negative, nonbinding information.
One of the issues for a standard boosting method is that it
must consider sequentially all of the positive and negative
instances at each iteration of the boosting process. However,
when the size of the dataset becomes very large, efficiency and
scalability issues arise. A straightforward static sampling over
such a large dataset may result in a significant loss of infor-
mation and a potentially biased classifier. A standard boost-
ing algorithm can not deal with such datasets efficiently [42].

In this report we propose an efficient and effective classifica-
tion method based on a boosted cascade of ADTboost in order
to predict the TFBSs, focusing on the human genome. Our
method (which we call 'BoCaTFBS') is specifically designed to
be coupled with ChIP-chip experiments. These experiments
only give an approximation of the locations of binding
regions, but they produce a massive amount of nonbinding
information. We use this massive nonbinding information
and the known binding information for prediction of the
binding sites. Our method efficiently integrates nonbinding
information as well as positional information and interposi-
tional relationships. Thus, it has many advantages in identify-
ing TFBSs. First, we trained BoCaTFBS with negative samples

in addition to positive samples in order to decrease the high
positive rate inherent in traditional methods such as PSSM.
Second, its efficient cascade structure quickly discards the
'easy' over-represented class samples and focuses on the
'harder' ones and the promising regions. This boosted cas-
cade procedure improves the detection performance through
stages and decreases the computation time, which is an
important consideration for genome-scale applications.
Third, there is massive nonbinding site information and only
limited binding site information. Thus, classification may be
biased toward the over-represented class. The boosted cas-
cade also solves the imbalance issue by random subset selec-
tion and removal of the over-represented set in an inherent,
natural way. Fourth, the BoCaTFBS method uses ADTboost
as the learner for each stage. It considers features from both
positions and relationships among positions within TFBSs.
ADTboost provides classification with a real-valued measure-
ment, whose absolute value has been interpreted as a confi-
dence measure. One of the features of ADTboost is that it
generates classification rules that are smaller and easier to
interpret than other machine learning methods (such as sup-
port vector machine and neural networks).

In addition to presenting this method, we benchmarked per-
formance of BoCaTFBS. We comprehensively compared it
with many traditional methods (PSSM, Centroid, Berg von
Hippel, consensus, and their improved variants), 'crippled'
BoCaTFBS, and single boosting algorithm. Moreover, we
applied BoCaTFBS to ongoing ENCODE projects.

Results
Cross-validation and receiver operating characteristic 
analysis
At first, experimental results of NF-κB binding sites in human
chromosome 22 were utilized to benchmark our method.
Repetitive 10-fold cross-validation was performed for our
BoCaTFBS method (see Materials and methods, below), as
well as for four traditional methods in TFBS prediction: con-
sensus, PSSM, Berg and von Hippel (BvH), and centroid.

In principle, one could define an optimization framework in
which the number of classifier stages and the number of
boosting steps in each stage are traded off during the cascade
training. Unfortunately, finding this optimum is a difficult
and impractical problem [41,43]. In practice, a very simple
approach is used to produce an effective classifier empirically.
An arbitrary number of cascade stages and number of boost-
ing steps in each stage may be predefined. These parameters
are adjusted and determined by testing on a randomly
selected small validation subset for good performance. The
boosting procedure will stop if adding one more base classi-
fier or cascade stage increases the error for the reserved vali-
dation set. An example is shown in Figure 1. Two cascade
stages and 12 features in each stage are predefined for NF-κB
binding site prediction. This cascade predictor was tested by
Genome Biology 2006, 7:R102
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cross-validation, and shows 82% sensitivity (true positive
rate) at a 5% false-positive rate. The resulting classifier incor-
porates discriminative features, rather than just the descrip-
tive features, and differentiates the binding sites from the
nonbinding sites. In contrast, the single ADTboost classifier
at the first cascade stage shows 71% true positive rate at 5%
false positive rate. It seems that the further stage refines the
positive prediction and increases the true positive rate over
the prior cascade stages.

Figure 2  shows the receiver operating characteristic (ROC)
curve analysis results based on the performance of these five
methods. Each ROC curve plots the percentage of correctly
predicted positive examples (true positive rate; specifically,
the ratio of true positives over the sum of true positives and
false negatives) as a function of the percentage of incorrectly
predicted negative examples (false positive rate; namely the
ratio of the false positives over the sum of false positives and
true negatives).

The results indicate that our BoCaTFBS method performs
consistently better than all four traditional methods. For
example, at the 5.5% false-positive rate level, the sensitivity of
our method is approximately 11% higher than the centroid,
BvH, and PSSM approaches. At each specificity level, the true
positive rate of our BoCaTFBS prediction method is clearly
higher than the other methods, whereas the false-positive
rate of our method is less than that with the other methods at
each sensitivity level. The consensus approach has the worst
performance, as anticipated; the other three traditional
methods had comparable performance. Additionally, for our
BoCaTFBS method, a P value was estimated by permuting the
dataset labels ('binding' or 'nonbinding') randomly and re-
evaluating the sensitivity rate at the same specificity level
(5.5%). We permuted the dataset 1000 times and found that
none of the classifiers had better sensitivity at the same spe-
cificity level. This shows empirically that the P value is less
than 1/1000.2

Comparison with positional information methods
We compared our BoCaTFBS method with the improved
methods reported by Singh and coworkers [15], which intro-
duced the per-position information content and pair-wise
correlations with the four traditional methods (described in
Materials and methods, below). Cross-validation and com-
parative studies were performed between these methods and
our BoCaTFBS method on NF-κB binding prediction by ROC
analysis.

Figure 3 evaluated the performance of our BoCaTFBS method
and the other four methods incorporating the per-position
information content (IC). The results indicate that our
BoCaTFBS method consistently outperforms the other four
methods utilizing the per-position IC. At the 5.5% false-posi-
tive rate level, for example, our boosted cascade method out-
performs the centroid-IC, BvH-IC, and PSSM-IC approaches

by approximately 9%. At each specificity level, the true posi-
tive rate of our BoCaTFBS method is clearly higher than that
with the other methods, whereas at each sensitivity level the
false-positive rate of our BoCaTFBS method is lower than that
of the other four methods. The consensus-IC approach still
performs the worst, although it gains improvement by incor-
porating the per-position IC.

The performance of our BoCaTFBS method and the other
four methods incorporating both the local pair-wise correla-
tions and per-position information content (pair IC) was eval-
uated in Figure 4. Although the centroid-pair IC, BvH-pair IC,
and PSSM-pair IC gain some improvement over their simpler
counterparts, our BoCaTFBS method still consistently has the
best performance. For example, at the 5.5% false-positive
rate, our boosted cascade method outperforms the centroid-
pair IC, BvH-pair IC, and PSSM-pair IC approaches by about
7% to 8%.

Demonstration of the value of non-binding information 
from ChIP-chip experiments
ChIP-chip experiments distinguish between binding regions
and nonbinding regions for transcription factors [8].
Although the binding regions can only be narrowed down to
thousands of nucleotides instead of precise sites, the non-
binding regions from these experiments provide useful infor-
mation for identifying TFBSs.

We evaluated the contribution of the negative information
from ChIP-chip experiments to the prediction capability of a
classifier. We did this by comparing the performance of the
normal BoCaTFBS built with ChIP-chip data and a specially
'crippled' classifier built without the negative information
from ChIP-chip data. For this 'crippled' classifier, we still
used the 52 NF-κB (p65) binding sites [38] as the positive
dataset. However, for the negative data pool for cascade train-
ing, we selected a total of 99,837 ten-nucleotide segments
randomly from among 16,944,132 DNA segments tiled on
chromosome 22 in the experimental design reported by Mar-
tone and coworkers [8]. That is, we picked negatives ran-
domly from the segments used in the ChIP-chip experiment
without knowing their actual binding results in the ChIP-chip
experiment. The 52 known binding sites are excluded from
this negative picking process. Both the positive dataset and
negative data pool were utilized for 10-fold cross-validation
and ROC curve calculation. As shown in Figure 5, at each spe-
cificity level the sensitivity of this 'crippled' BoCaTFBS pre-
diction without correct negative samples from ChIP-chip
experiments is about 7% to 8% below our normal BoCaTFBS
prediction using nonbinding information from ChIP-chip
experiments. Also, the results show that there is no improve-
ment using our TFBS prediction method without nonbinding
information from ChIP-chip experiments against other prior
methods (centroid-pair IC, BvH-pair IC, and PSSM-pair IC).
The results indicate that ChIP-chip experiments provide
Genome Biology 2006, 7:R102
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useful and discriminative information for our TFBS predic-
tion method.

Applications to the ENCODE project and further 
comparisons
In this section, we describe how we applied our BoCaTFBS
method to the ENCODE regions of the human genome. These
ENCODE regions were selected because they are intensively
studied and we can investigate a variety of different transcrip-
tion factors present in them. They provide an ideal platform
for assessing the scalability and applicability of the method to
the entire genome. The ongoing ENCODE project is making
more human genome-wide ChIP-chip experimental data
available [39]. Furthermore, we compared BoCaTFBS with
other benchmarks, including the single boosting method, on
the ENCODE regions.

Three transcription factors (Sp1, cMyc, and P53) datasets
were retrieved from the work of Cawley and coworkers [44].
To obtain the positive training set, we used Clover, a program
for identifying functional sites in DNA sequences [45], on the
ChIP-chip binding regions (P < 10-5) to acquire the putative
binding sites on these regions. The source of motifs is the
JASPAR CORE collection of eukaryote TFBS patterns [46].
To avoid introducing more noise, we set a stringent threshold
using a Clover P value of 0.01, which indicates the probability
that the motif's presence in the target set can be explained just
by chance, to retrieve these binding sites. The putative bind-
ing sites on chromosome 22 were retrieved by Clover in this
way. There are 173 Sp1 binding sites, 627 cMyc binding sites,
and 43 P53 binding sites identified in these regions on chro-
mosome 22. Moreover, the nonbinding sites were retrieved
based on the chromosome 22 sequence (14 September 2001,

A BoCaTFBS classifier trained over NF-κB ChIP-chip experimental dataFigure 1
A BoCaTFBS classifier trained over NF-κB ChIP-chip experimental data. It consists of two cascade stages and 12 features for each stage (partially shown). 
This cascade predictor was tested by cross-validation and achieved 82% sensitivity (true positive rate) at a 5% false-positive rate. BoCaTFBS classifiers are 
built on discriminative features, which differentiate positives (the binding sites) from the chosen negative training set (the nonbinding sites). For example, in 
stage 1, the sequence where position 4 is not C is more likely to have more binding propensity. The consensus sequence of binding sites is 
GGGRNNYYCC (R is purine, Y is pyrimidine, and N is any nucleotide). The classifier at each stage is built upon a random small subset of the over-
represented class at each stage. Moreover, each classifier is dependent on the results of the classifiers in the previous stages. NF-κB, nuclear factor-κB.

Instances
Predict

“positive”

Predict “negative”

Y

N N

YY
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sequence 'release 3') [47], which is available from the Human
Chromosome 22 Project website [48]. To simplify the prob-
lem, the preprocessing also included the application of
RepeatMasker [49], a program that screens DNA sequences
for interspersed repeats and low complexity DNA sequences
[47]. There are a total of 34,344,351 cMyc nonbinding sites,
34,539,027 Sp1 nonbinding sites, and 34,566,391 P53 non-
binding sites on chromosome 22. For simplicity, a sliding
window of five nucleotides was applied. Therefore, there are
6,869,066 cMyc nonbinding sites, 6,907,805 Sp1 nonbinding
sites, and 6,913,291 P53 nonbinding sites. Both the binding
sites and nonbinding sites were used for the training of the
algorithms and cross-validation.

We compared our BoCaTFBS method with other methods on
these three transcription factor datasets. The detection
results of the binding sites on chromosome 22 for all of these
three transcription factors (at false-positive rate 0.001) are
shown in Table  1. The parameters were set empirically: the
size of negative pool (δ) was set at 2000 arbitrarily; 25 cas-
cade stages and 35 boosting steps for each stage were set for
the cMyc BoCaTFBS learner; 20 cascade stages and 28 boost-

ing steps for each stage were set for the Sp1 BoCaTFBS
learner; and three cascade stages and 25 boosting steps for
each stage were set for P53 BoCaTFBS learner. Moreover,
because there was a memory insufficiency problem for a sin-
gle boosting learner to train over all the negative data, we
trained the single boosting learner from the positive training
set and a fairly large (50,000) negative training subset. The
number of iterations for the single boosting learner is the
number of cascade stages multiplied by the number of the
boosting steps per stage correspondingly. The results indicate
that our BoCaTFBS method and the single boosting method
performs consistently better than PSSM, centroid and BvH
methods, and the improved variants reported by Singh and
coworkers [15] (the consensus method performs consistently
worse than all other methods as expected). The findings indi-
cate that the discriminative methods (BoCaTFBS and single
boosting method) take account of the discriminative features
extracted from nonbinding sites, in addition to the informa-
tion from binding sites.

Thus, our BoCaTFBS method and the single boosting method
are capable of providing more accurate and delicate detection

ROC curves depicting the performance of BoCaTFBS versus that of traditional methodsFigure 2
ROC curves depicting the performance of BoCaTFBS versus that of traditional methods. The traditional methods considered included centroid, Berg and 
von Hippel, PSSM, and consensus. False positive rate, also known as 1-specificity, is defined as the ratio of false positives over the sum of false positives and 
true negatives. True positive rate, also known as sensitivity, is defined as the ratio of true positives over the sum of true positives and false negatives. The 
error bars are 95% confidence intervals. Our BoCaTFBS method notably outperforms the other four methods. PSSM, positional specific scoring matrix; 
ROC, receiver operating characteristic.
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of the binding sites. Moreover, BoCaTFBS performs better in
ENCODE applications than the single boosting method
trained on 'reduced-to-fit' datasets. This indicates that an
intelligent subsampling strategy embedded in BoCaTFBS cas-
cade is more robust and efficient than a static 'reduce-to-fit'
sampling. Boosting is known as a sequential procedure that is
efficiently applicable only to relatively moderate datasets
[41,42]. A straightforward sampling over a massive volume of
data will possibly lose information and potentially become
biased. BoCaTFBS intelligently re-samples and discards the
'easy negatives' rapidly through the cascade process (see
Materials and methods, below). It avoids training over all the
massive negative data in the repetitive learning process and is
able to take more complete negative information into account
through the cascade.

Discussion
The position-specific scoring matrix technique is the basis for
the majority of the TFBS prediction methods. However, this
technique does not explicitly deal with negatives. Our BoCaT-

FBS method uses the nonbinding site information and
improves the prediction accuracy of binding site identifica-
tion. BoCaTFBS also incorporates the positional information
and inter-dependence between positions. There is an abun-
dance of nonbinding information available from ChIP-chip
and other high-throughput experiments. BoCaTFBS provides
an efficient and scalable method, and serves as a powerful
complementary tool for experimental studies for identifying
potential target genes of a given transcription factor. We fore-
see that a combination of computational searches and exper-
iments will become an efficient approach for the
identification of TFBSs.

We compared our method with a number of important pre-
ceding methods. In particular, we compared our method with
four levels of benchmarks. First, we included in our
comparison relatively simple traditional methods such as
PSSM. We observed that our method achieves a clear
improvement over these traditional methods. Second, we
compared BoCaTFBS with enhanced versions of traditional
methods that incorporate per-position IC and inter-posi-

ROC curves comparing BoCaTFBS with centroid-IC, BvH-IC, PSSM-IC, and consensus-IC methodsFigure 3
ROC curves comparing BoCaTFBS with centroid-IC, BvH-IC, PSSM-IC, and consensus-IC methods. The latter four methods are the four traditional 
methods incorporating per-position IC [15]. The error bars are 95% confidence intervals. Our BoCaTFBS method clearly outperforms the other four 
methods. BvH, Berg and von Hippel; IC, information content; PSSM, positional specific scoring matrix; ROC, receiver operating characteristic.
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tional relationship. We can see that these enhanced methods
exhibit better performance than their simpler counterparts,
but they proved less effective than our method. We next
compared our method with the 'crippled' version of our clas-
sifier without negative information from ChIP-chip data. This
resulted in inferior performance compared to the normal
BoCaTFBS, which does incorporate the negative information.
This outcome indicates that our method's improvement is
contingent upon the negative information from the ChIP-chip
assays. Finally, we applied our BoCaTFBS method to large-
scale ENCODE data. In contrast to single boosting algo-
rithms, which cannot scale to deal with massive datasets such
as the human genome, the BoCaTFBS method's cascade
structure adopts an intelligent data subsampling strategy to
build an efficient TFBS identification framework that is scal-
able to the whole genome applications.

Our benchmark results indicate that our BoCaTFBS method
outperforms the four traditional methods and their advanced
variants in terms of sensitivity and specificity. Our method

correctly identifies many transcription factor binding regions
in human chromosome 22 based on the results of ChIP-chip
experiments. Potentially, the optimized Markov chain
method may be slightly more effective than the profile
method (PSSM). Ellrott and coworkers [22], in fact, reported
a 71% success rate on a small subset of their predictions in
identifying the hepatocyte nuclear factor 4α binding site.
However, we were unable to conduct a comparison of their
technique with ours in detail because of the lack of accessibil-
ity of the optimized Markov chain code.

BoCaTFBS not only utilizes the massive amount of nonbind-
ing information but also incorporates the positional informa-
tion and interdependence information in creating a unified
theme for TFBS prediction. It provides an integrative tool to
search for TFBSs in the genome.

There are three major differences between our BoCaTFBS
method and the MotifBooster approach proposed by Hong
and coworkers [40]. First, MotifBooster constructs a 'ensem-

ROC curves comparing BoCaTFBS with centroid-pair IC, BvH-pair IC, PSSM-pair IC, and consensus-pair IC methodsFigure 4
ROC curves comparing BoCaTFBS with centroid-pair IC, BvH-pair IC, PSSM-pair IC, and consensus-pair IC methods. The latter four methods are the four 
traditional methods incorporating both pair-wise correlation (full scope) and per-position information content (pair IC) [15]. The error bars are 95% 
confidence intervals. Our BoCaTFBS method noticeably outperforms the other four advanced methods. BvH, Berg and von Hippel; IC, information 
content; PSSM, positional specific scoring matrix; ROC, receiver operating characteristic.
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ble' motif model that scores and classifies the bound and non-
bound yeast ChIP-chip regions given a motif seed, whereas
our BoCaTFBS method aims to classify the precise binding
sites and massive nonbinding sites based on the human
genome-wide ChIP-chip experiments. Second, the base clas-
sifier for MotifBooster is based on position-specific scoring
matrix, whereas BoCaTFBS uses alternating decision trees
(ADTBoost) within the cascade, which directly takes into
account inter-position correlations as well as positional infor-
mation. Finally, and most importantly, MotifBooster uses a
standard boosting algorithm [42] that does not scale to mas-
sive datasets [42]. Our BoCaTFBS method adopts a boosted
cascade framework [41], which provide an efficient and scal-
able method for massive and highly unbalanced datasets.
Therefore, BoCaTFBS has wide application in genome-wide
studies.

Currently, the ENCODE project is creating an increased avail-
ability of massive ChIP-chip datasets. More ChIP-chip 'tracks'
will be available from the ENCODE browser for UCSC human
genome assembly [50-52]1. This trend has motivated us to
develop fast, scalable, and accurate approaches to ChIP-chip

data analysis and binding site recognition. The boosting tech-
nique has proved to be a good solution for differentiating true
binding targets in ChIP-chip data from yeast [40], which has
a small genome of only 16 megabases (Mb) of DNA. However,
a single boosting classifier has limitations on massive data-
sets, because the size of the dataset can be a bottleneck. One
has to load sequentially and train on all of the 'massive train-
ing samples' repetitively during each step in trying to learn a
single complex classifier [42]. This is impractical in many sit-
uations in human genomic research. Even in our simplified
example, where we only focused on ChIP-chip experimental
results of the second smallest human chromosome (chromo-
some 22), the enumeration of negative segments from NF-κB
nonbinding regions already takes 809 Mb in FASTA format
[8]. Furthermore, the Human Genome Project has finished
about 3 gigabases of sequence (released April 2003). Finally,
the highly skewed distribution of training samples makes the
classifier biased toward the dominant class, which is undesir-
able. The expanding large-scale human genomic ChIP-chip
datasets present a challenge that demands scalable and effi-
cient methods.

ROC curves showing the classification results for 'crippled' BoCaTFBS versus those of BoCaTFBSFigure 5
ROC curves showing the classification results for 'crippled' BoCaTFBS versus those of BoCaTFBS. In this comparison we used a 'crippled' classifier built 
without negative information from ChIP-chip data (dense discrete points in the graph), and compared the performance with that of our BoCaTFBS method 
using nonbinding site information from ChIP-chip experiments. The error bars are 95% confidence intervals. The results from traditional methods are also 
shown. ChIP, chromatin immunoprecipitation; ROC, receiver operating characteristic.
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To handle massive datasets, it is necessary to bypass the need
for loading and repetitively training over the entire dataset in
the memory of a single computer as standard boosting
requires. Notably, the boosted cascade employed in our
BoCaTFBS method is computationally efficient by training
only over small subsets and cascading its training and evalu-
ation. In particular, the technique of boosted cascade has
proved to perform extremely quickly in domains where the
distribution of the positive and negative examples is highly
skewed [41,53]. The key idea of the boosted cascade is that
smaller and therefore more efficient boosted classifiers based
on a small subset instead of the whole dataset can be con-
structed to reject many of the negatives while detecting most
of the positive instances. In the training, simple classifiers are
utilized to exclude the majority of the negatives and focus on
only false positives before more complex classifiers are called
upon to achieve a low false-positive rate. Therefore, BoCaT-
FBS avoids storing and training over all the massive amount
of negative information in the repetitive boosting process and
achieves optimal efficiency. In the testing, the cascade also
attempts to reject as many negatives as possible in the earliest
stages. Thus, the boosted cascade is one of the most efficient
algorithms when the distribution of the positive and negative
examples is highly unbalanced, like the TFBS identification
problem. The computational efficiency and scalability of our
BoCaTFBS method is very important given the large sizes of
chromosomes in the genome that need to be scanned. As the
running time of our BoCaTFBS method is in minutes when

applied to our experiments on chromosome 22, we can esti-
mate that our method will most likely finish in hours when
applied to the whole genome.

Conclusion
In order to understand the molecular mechanisms of gene
regulation, a robust method is required to discriminate
TFBSs from nonbinding sites on a genomic scale. Experimen-
tal methods such as ChIP-chip experiments, although gaining
great success, remain time-consuming, expensive, and noisy.
Traditional computational methods for binding site identifi-
cation, such as consensus sequences, profile methods, and
hidden Markov models, are known to generate high false-pos-
itive rates when applied on a genome-wide basis. They are
based on training only with positive data, which are small
number of known binding sites. Thus, we were motivated to
propose a new computational method (BoCaTFBS) to dis-
cover TFBSs that combines the noisy data from ChIP-chip
experiments with known positive binding site patterns.

Our method uses a boosted cascade of classifiers, in which
each component is an individual alternating decision tree (an
ADTBoost classifier). It uses known motifs, taking advantage
of the inter-positional correlations within the motifs, and it
explicitly integrates the massive amount of negative data
from ChIP-chip experiments. We tune BoCaTFBS to reduce
the false-positive rate when applied genome-wide and use the

Table 1

BoCaTFBS application in ENCODE projects

Transcription factor Methods TFBSs detected correctly

Original IC Pair IC

cMyc PSSM 234 234 261

Centroid 232 236 241

Berg and von Hippel 245 247 252

Consensus 154 219 221

Single boosting 347

BoCaTFBS 444

Sp1 PSSM 86 86 90

Centroid 93 93 104

Berg and von Hippel 107 109 115

Consensus 62 68 68

Single boosting 119

BoCaTFBS 123

P53 PSSM 16 17 29

Centroid 15 15 23

Berg and von Hippel 16 19 29

Consensus 7 12 17

Single boosting 30

BoCaTFBS 35

IC, information content; PSSM, positional specific scoring matrix; TFBS, transcription factor binding site.
Genome Biology 2006, 7:R102
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cascade for optimum computational efficiency, an important
consideration for genome-scale applications. We show that
BoCaTFBS outperforms many traditional binding site identi-
fication methods (such as profiles) in terms of sensitivity and
specificity. We also show how its improvement is directly tied
to the inclusion of the negative information from ChIP-chip
experiments. Moreover, we show that BoCaTFBS can be suc-
cessfully applied in the ongoing ENCODE project, which aims
to identify all functional elements in the human genome
sequence.

Given the scale of the human genome and the noisiness and
error in both the purely computational predictions and the
ChIP-chip experiments, we feel that this hybrid approach,
which combines ChIP-chip data with efficient computational
learning, provides promise for the future. We envision that
when more data are available from larger experiments, we
will be able to refine our classifier further, thereby achieving
a lower false-positive rate.

Materials and methods
In order to predict the TFBSs, we employ a form of supervised
machine learning: a number of ADTboost learners coupled in
a boosted cascade. ADTboost is a special extension of Ada-
Boost. For clarity, we introduce our algorithm for identifying
TFBSs in a logical order of AdaBoost, ADTboost, and Boosted
Cascade (see the supplementary website [54]).

Initially, we start with the following type of data. In the train-
ing stage of TFBS prediction, its input is (x1, y1) ... (xn, yn),
where each xi belongs to an instance space of a string of four
nucleotides (A, T, G, C) corresponding to each position in the
TFBSs and yi belongs to label set Y = {+1,-1} (where +1 repre-
sents 'binding' and -1 represents 'nonbinding' for a given tran-
scription factor).

AdaBoost
In general, boosting is a method for improving the accuracy of
any given learning algorithm. AdaBoost solved many practi-

The boosting algorithm: AdaBoostFigure 6
The boosting algorithm: AdaBoost.

Input: Sample S = {(x1, y1), ..., (xn, yn)}, where xi ∈ X, yi ∈ Y :
{−1, +1}
Initialize W1(i) = 1

m
, 1

l
for y = −1, 1 respectively, where m and l are

the number of negatives and positives respectively
For each t = 1, ..., T
(1) Train the base learner using distribution Wt

(2) Get Weak hypothesis ht : X → {−1, +1} with error
εt = Pri∼Wt [ht(xi) �= yi]
(3) Choose αt = 1

2
ln(1−εt

εt
)

(4) Update:

Wt+1(i) =
Wt(i)

Zt

×
{

e−αt if ht(xi) = yi

eαt if ht(xi) �= yi
(1)

i.e.Wt+1(i) =
Wt(i)e

(−αtyiht(xi))

Zt

(2)

where Zt is a normalization factor

Output: Final hypothesis

H(x) =
T∑

t=1

αtht(x) (3)
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ADTboost algorithmFigure 7
ADTboost algorithm.

Input: Sample S = {(x1, y1), ..., (xn, yn)} ,where xi ∈ X, yi ∈ Y :
{−1, +1}; A set of base conditions Θ (A base condition is a boolean
predicate over instances).

Initialize w1(i) = 1
m

, 1
l

for y = −1, 1 respectively, where m and l
are the number of negatives and positives respectively
Initialize the Alternating Decision Tree:
R1 = {r1: (if T then (if T then (1

2
ln(W+(T )

W−(T )
)) else 0) else 0)}

Initialize the set of preconditions: P1 = {T } (A precondition is a
conjunction of base conditions and negations of base conditions)
For each t = 1, ..., T
(1) Choose C1 ∈ Pt and c2 ∈ Θ ,which minimize Zt(C1, c2) according
to Equation:

Zt(C1, c2) = 2(
√

W+(C1 ∧ c2)W−(C1 ∧ c2) +

+
√

W+(C1 ∧ ¬c2)W−(C1 ∧ ¬c2)) +

+ W (¬C1) (1)

where W+(C) denotes the sum of the weights of the positive examples
that satisfy condition C; and W−(C) denotes the sum of the weights
of the negative examples that satisfy condition C
(2) Rt+1 = Rt ∪ {rt+1: (if C1 then (if c2 then (1

2
ln(W+(C1∧c2)

W−(C1∧c2)
)) else

1
2
ln(W+(C1∧¬c2)

W−(C1∧¬c2)
)) else 0)}

(3) Pt+1 = Pt ∪ {C1 ∧ c2, C1 ∧ ¬c2}
(4) Update weights:
wt+1(i) = wt(i)e

−yirt(xi)

Output: Alternating Decision Tree : RT+1
Genome Biology 2006, 7:R102
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cal difficulties of earlier boosting methods [55,56]. It takes
the training data as described above. AdaBoost repeatedly
calls a given base learning algorithm in t rounds. Wt(i) repre-
sents the weight of the distribution on training example i on
round t (set of weights over the training examples). At each
iteration t, the base learner is utilized to find a weak hypo-
thesis ht: X → {-1,+1} appropriate for the distribution. The
weights will be updated. Usually, the weights of incorrectly
classified examples are increased so that the base learner is
forced to concentrate on the hard examples in the training set.
The base learner is called again with new weights over the
training examples, and the process repeats. At last, all the
weak hypotheses are combined into a single, strong hypo-
thesis using a weighted majority vote (see algorithm details in
Figure 6).

ADTboost
In this report we utilize a special extension of AdaBoost called
the alternating decision tree (ADTboost). AdaBoost is used to

learn the decision rules constituting the tree and to combine
these rules through weighted voting [57] (refer to algorithm
details in Figure 7). The resulting tree is in a well presented,
intuitive format. It generates decision rules that are easily
interpretable.

AdaBoost generates the 'alternating decision tree' from the
training data (as described above) as the detailed algorithm in
Figure 7 shows [57]. In the testing stage, the alternating tree
maps each instance to a real valued prediction, which is the
sum of the predictions of the base rules in its set along the
related paths in the tree that actually incorporates positional
information and inter-positional relationships by logical
combination. The classification of an instance is the sign of
the prediction. In order to explain the concept in a simple
way, we utilize a straightforward example. This example,
shown in Figure 8, predicts some molecules' DNA-binding
sites based on the sequence after training on both binding and
nonbinding sites.

A simple example of the alternating decision tree (ADTboost)Figure 8
A simple example of the alternating decision tree (ADTboost). The alternating decision tree contains splitter nodes (squares, associated with a test) and 
prediction nodes (circles, associated with a value). Each prediction node represents the results of a weak prediction rule. The number in the prediction 
nodes (circles) defines the contributions to the prediction score. In this example, negative contributions are evidence of nonbinding, whereas positive 
contributions are evidence of binding. The position and nucleotide features are used for constructing the weak prediction rule. In order to evaluate the 
prediction for a particular DNA sequence, we begin from the top node and follow the arrows down. We sum all the values at all the prediction nodes 
reached. This sum represents the prediction score, and its sign is the prediction by default. For instance, in the DNA sequence of AACGCTAATA, the 
nucleotide at position 1 is A, the nucleotide at position 3 is C, position 4 is not A, position 5 is not T, position 6 is not G, and position 7 is A. Applying the 
alternating decision tree in the figure to this, we derive the following prediction nodes: +0.541 (from A at position 1), +0.425 + -0.444 (from C at position 
3 followed by not A), +0.441 + -0.167 (from not T at position 5, followed by not G), and +0.138 (from A at position 7). Notice that we do not refer to 
position 2 and other positions because they are not relevant to the rules here. The overall sum of all the nodes is +0.803, a confident score indicating that 
this is predicted to be a binding site.

AACAGGAATA

ATCAAGACAT

TTCACGAATG

…… ……

ACGTCGATAC

Binding sites

GAGATGACAA

CTAATCGAGC

TTCCTCGATG

…… ……

GATGTGTTCT

Non-binding sites

-0.062

Position1 = A Position3 = C Position5 = T Position7  = A

+0.541 -0.626 +0.425

y n y

-0.731

n

Position4 = A

+0.528 -0.444

y n

-0.536

y

+0.441

Position6 = G
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n
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y

-1.495

n
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Boosted cascadeFigure 9
Boosted cascade. (a) Flowchart of training a cascade of classifiers. (b) Detection cascade. A series of classifiers are applied to each instance. Each layer of 
classifier eliminates negative examples. This cascade of classifiers achieves increased detection performance while radically reducing computation time.
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Boosted cascade
For TFBSs, there are a number of binding sites (positive train-
ing sets) and a significantly large quantity of nonbinding sites
(negative training sets). In machine learning, besides the
scalability and efficiency issues, an imbalance problem also
arises when there is a great size disparity between the positive
and negative training sets. This imbalance problem could lead
to accurate prediction of the over-represented class but
unfortunately incorrect prediction of the under-represented
class. To solve these problems, an algorithm for constructing
a cascade of classifiers [41] was developed, achieving excel-
lent detection performance while radically reducing
computation time. Our BoCaTFBS method uses such a cas-
cade of classifiers for the TFBS identification problem.

To train a cascade of classifiers, we can construct boosted
classifiers that reject many of the negative instances while
detecting almost all the positive instances; specifically, the
threshold of a boosted classifier can be adjusted so that the
false-negative rate is close to zero. The process of training a
cascade of classifiers is an iterative process. First, randomly
choose a negative training subset δ from the negative training
set N. Second, train a classifier C(i) with a positive training set
P and the chosen negative training subset δ using ADTboost.
Third, adjust the threshold to minimize the false negatives (to
make all the positive training samples predict 'positive').
Fourth, screen the negative training set N by the adjusted
threshold in step three to arrive at set N'. Fifth, redefine N' to
be the negative training set N. Finally, repeat this process
above until some predefined criteria is met to stop the
cascade.

The detection process is also represented as a 'cascade'. A pos-
itive result from the first classifier triggers the evaluation of
the second classifier, which has also been adjusted to achieve
very high detection rates. A positive result from the second
classifier triggers a third classifier, and so on. A negative out-
come at any point leads to immediate rejection. Figure 9 pan-
els a and b depict the training and detection cascades,
respectively.

Datasets for application of the method
We utilized transcription factor NF-κB (p65) as the test case
for our methods. The 52 NF-κB (p65) binding sites [38] are
used as the positive dataset. For simplicity, a total of 99,837
nonbinding sites for NF-κB from ChIP-chip experimental
data on human chromosome 22 [8] were utilized as the
negative data pool for cascade training. These 99,837
nonbinding sites were randomly chosen from the 16,775,258
nonbinding sites from the ChIP-chip experiments to facilitate
computation. In the training cascade, each negative subset δ,
consisting of 3000 sequences, was randomly chosen from the
screened negative training set N. Both the positive dataset
and negative data pool were utilized for repeated tenfold
cross-validation and ROC curve analysis. The ROC curves for
every prediction method were averaged vertically based on
repeated tenfold cross-validation in order to evaluate the per-
formance of each prediction method [58].

We also applied our method to the ChIP-chip datasets from
the ENCODE project. Three transcription factors (Sp1, cMyc,
and P53) datasets were retrieved from the work of Cawley and
coworkers [44]. The ChIP-chip binding regions of these three
new transcription factors are available on the world wide web
[59].

Other TFBS prediction methods compared
We compared the performance of our method with those of
other TFBS prediction methods and their advanced exten-
sions (Table 2). We only very briefly describe these methods
as follows. At first, we considered four basic methods
(consensus, PSSM, BvH, and centroid), and then considered
enhancements to those methods and a crippled version of
BoCaTFBS, and finally MotifBooster.

Consensus
The consensus method is the simplest method for TFBS pre-
diction. For each position, if the frequency of the most fre-
quent base is larger than 0.5, then this base is the consensus
base for the position. Otherwise, if the sum of the frequencies
of the most frequent base and the second most frequent base
is larger than 0.75, then these two bases are the consensus
bases. If neither of the preceding is true, then there is no con-

Table 2

Traditional TFBS prediction methods and their extensions

Method Incorporate per-position IC Incorporate both per-position IC and pair-wise correlation

Consensus Consensus-IC Consensus-pair IC

Centroid Centroid-IC Centroid-pair IC

Berg and von Hippel Berg and von Hippel-IC Berg and von Hippel-pair IC

PSSM PSSM-IC PSSM-pair IC

The details of the scoring schemes are described in the report by Signh and coworkers [15]. In our calculation, we use full scope for incorporating 
pair-wise correlation to the four TFBS prediction methods. IC, information content; PSSM, positional specific scoring matrix; TFBS, transcription 
factor binding site.
Genome Biology 2006, 7:R102
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sensus sequence base for the position. The score of the pre-
dicted sequence is obtained by counting the number of times
the base of the sequence agrees with the corresponding con-
sensus base for each position [60].

Profile (or PSSM)
This method assumes independence between positions and
computes the log-odds score for a potential binding site.
Bayesian estimate was utilized to estimate the zero frequency
case [61].

Berg and von Hippel (BvH)
This method is a statistical mechanics based method that
makes the connection between base-pair statistics of a set of
sites and its binding free energy [62,63].

Centroid
This method scores a sequence by computing the average
shared identity between this sequence and every known bind-
ing site sequence for a given transcription factor [15].

Information content and local pair-wise correlation
Singh and coworkers [15] introduced information content
(IC) and local pair-wise correlation concept into these four
basic methods to augment the prediction performance. They
extended the four methods above by incorporating pair-wise
dependencies. The notion of scope delimits the pairs that are
considered correlated into the scoring scheme. IC is an
important concept based on the information theoretic notion
of entropy. The entropy of a binding site position expresses
the number of bits necessary to describe that position, and the
information content of a position is defined as the difference
between the position's maximum possible entropy and its
entropy. They incorporated the per-position information con-
tent as a multiplicative factor to weigh the contribution of
each position (or pair of positions) in scoring a target binding
site sequence. Based on the benchmark results on E. coli
TFBS predictions reported by Singh and coworkers [15], the
use of per-position IC improves the performance of the four
traditional methods in many cases, and the best prediction
results were obtained by incorporating both IC and local pair-
wise correlations.

'Crippled' BoCaTFBS
To evaluate the contribution of negative information from
ChIP-chip experiments, we also use a 'crippled' BoCaTFBS as
a benchmark. The only difference between 'crippled' and
normal BoCaTFBS is that the 'crippled' one is built without
the negative information from ChIP-chip data.

MotifBooster and related method
Hong and coworkers [40] introduced a standard boosting
approach to model transcription factor-DNA binding using
yeast ChIP-chip data. It constructs an ensemble motif model,
which scores and classifies bound and nonbound regions in
ChIP-chip experiments. The base classifiers of MotifBooster

are derived from PSSMs. BoCaTFBS, in contrast, classifies
binding sites instead of binding regions. To compare BoCaT-
FBS with single boosting method, we used ADTboost, a vari-
ant of single boosting algorithm, as a benchmark. ADTboost
takes into account not only positional preferences but also
inter-positional relationships directly as features in classify-
ing binding versus nonbinding sites.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 shows a BoCaTFBS
classifier trained over NF-κB ChIP-chip experimental data
(the complete version of that shown in Figure 1). Additional
data file 2 illustrates the relationship between BoCaTFBS
with a single boosting classifier on a moderate dataset.
Additional data file 3 lists 627 cMyc binding sites, 173 Sp1
binding sites, and 43 P53 binding sites on chromosome 22.
The supplementary website is available at [54].
Additional data file 1BoCaTFBS classifier trained over NF-κB ChIP-chip experimental dataA BoCaTFBS classifier trained over NF-κB ChIP-chip experimental data (the complete version of that shown in Figure 1).Click here for fileAdditional data file 2Relationship between BoCaTFBS with a single boosting classifier on a moderate datasetRelationship between BoCaTFBS with a single boosting classifier on a moderate dataset.Click here for fileAdditional data file 3List of 627 cMyc binding sites, 173 Sp1 binding sites, and 43 P53 binding sites on chromosome 22List of 627 cMyc binding sites, 173 Sp1 binding sites, and 43 P53 binding sites on chromosome 22.Click here for file

Acknowledgements
We thank the anonymous reviewers for their advice and comments. We
also thank Drs Joel Rozowsky, Dorin Comaniciu, Zhuowen Tu, Shaohua
Kevin Zhou, Daniel Fasulo, Amit Chakraborty and Ghia Euskirchen for
their valuable comments. We thank many other colleagues for their help in
proofreading the manuscript. This work was supported by NIH/NHGRI
grant P50 HG02357-01 for the Yale Center of Excellence in Genomic Sci-
ences (CEGS).

References
1. Haverty PM, Hansen U, Weng Z: Computational Inference of

Transcriptional regulatory networks from expression profil-
ing and transcription factor binding site identification.  Nucleic
Acids Res 2004, 32:179-188.

2. Dumitru I, McNeil J: A simple in vivo footprinting method to
examine DNA-protein interactions over the yeast PYK UAS
element.  Nucleic Acids Res 1994, 22:1450-1455.

3. Drolet D, Jenison R, Smith D, Pratt D, Hicke B: A high throughput
platform for systematic evolution of ligands by exponential
enrichment (SELEX).  Comb Chem High Throughput Screen 1999,
2:271-278.

4. Ren B, Robert F, Wyrick J, Aparicio O, Jennings E, Simon I, Zeitlinger
J, Schreiber J, Hannett N, Kanin E, et al.: Genome-wide location
and function of DNA binding proteins.  Science 2000,
290:2306-2309.

5. Iyer V, Horak C, Scafe C, Botstein D, Snyder M, Brown P: Genomic
binding sites of the yeast cell-cycle transcription factors SBF
and MBF.  Nature 2001, 409:533-538.

6. Lieb JD, Liu X, Botstein D, Brown P: Promoter-specific binding of
Rap1 revealed by genome-wide maps of protein-DNA
association.  Nat Genet 2001, 28:327-334.

7. Horak C, Mahajan M, Luscombe N, Gerstein M, Weissman S, Snyder
M: GATA-1 binding sites mapped in the beta-globin locus by
using mammalian ChIp-chip analysis.  Proc Natl Acad Sci USA
2002, 99:2924-2929.

8. Martone R, Euskirchen G, Bertone P, Hartman S, Royce T, Luscombe
R, Rinn J, Nelson K, Miller P, Gerstein M, et al.: Distribution of NF-
κB-binding sites across human chromosome 22.  Proc Natl Acad
Sci USA 2003, 100:12247-12252.

9. Li Z, Van Calcar S, Qu C, Cavenee W, Zhang M, Ren B: A global
transcriptional regulatory role for c-Myc in Burkitt's lym-
phoma cells.  Proc Natl Acad Sci USA 2003, 100:8164-8169.

10. Euskirchen G, Royce T, Bertone P, Martone R, Rinn J, Nelson F, Say-
ward F, Luscombe N, Miller P, Gerstein M, et al.: CREB binds to
multiple loci on human chromosome 22.  Mol Cell Biol 2004,
24:3804-3814.
Genome Biology 2006, 7:R102

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8190636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8190636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8190636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10539988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10539988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10539988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11206552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11206552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11206552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11455386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11455386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11455386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11867748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11867748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14527995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15082775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15082775


http://genomebiology.com/2006/7/11/R102 Genome Biology 2006,     Volume 7, Issue 11, Article R102       Wang et al.

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

11. Kim TH, Barrera LO, Zheng M, Qu C, Singer M, Richmond T, Wu Y,
Green R, Ren B: A high-resolution map of active promoters in
the human genome.  Nature 2005, 436:876-880.

12. Roh TY, Cuddapah S, Zhao K: Active chromatin domains are
defined by acetylation islands revealed by genome-wide
mapping.  Genes Dev 2005, 19:542-552.

13. Roh T, Ngau W, Cui K, Landsman D, Zhao K: High-resolution
genome-wide mapping of histone modifications.  Nat
Biotechnol 2004, 22:1013-1016.

14. Chen J, Sadowski I: Identification of the mismatch repair genes
PMS2 and MLH1 as p53 target genes by using serial analysis
of binding elements.  Proc Natl Acad Sci USA 2005, 102:4813-4818.

15. Osada R, Zaslavsky E, Signh M: Comparative analysis of methods
for representing and searching for transcription factor bind-
ing sites.  Bioinformatics 2004, 20:3516-3525.

16. Tompa M, Li N, Bailey T, Church G, De Moor B, Eskin E, Favorov A,
Frith M, Fu Y, Kent W, et al.: Assessing computational tools for
the discovery of transcription factor binding sites.  Nat
Biotechnol 2005, 23:137-144.

17. Foat BC, Morozov AV, Bussemaker HJ: Statistical mechanical
modeling of genome-wide transcription factor occupancy
data.  Bioinformatics 2006, 22:e141-e149.

18. Bailey T, Elkan C: Fitting a mixture model by expectation max-
imization to discover motifs in biopolymers.  In Proceedings of
the Second International Conference on Intelligent Systems for Molecular
Biology; 14-17 August 1994 Volume 2. Stanford, CA. Menlo Park, CA:
AAAI press; 1994:28-36. 

19. Hughes JD, Estep P, Tavazoie S, Church G: Computational identi-
fication of cis-regulatory elements associated with groups of
functionally related genes in Saccharomyces cerevisiae.  J Mol
Biol 2000, 296:1205-1214.

20. Liu X, Brutlag DL, Liu JS: BioProspector: discovering conserved
DNA motifs in upstream regulatory region of co-expressed
genes.  In Proceedings of the 6th Pacific Symposium on Biocomputing (PSB
2001); 3-7 January 2001 Hawaii. Singapore: World Scientific
Publishing; 2001:127-138. 

21. Stormo G: DNA binding sites: representation and discovery.
Bioinformatics 2000, 16:16-23.

22. Ellrott K, Yang C, Sladek F, Jiang T: Identifying transcription fac-
tor binding sites through Markov chain optimization.  Bioinfor-
matics 2002, 18 (Suppl 2)():S100-S109.

23. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hor-
nischer K, Karas D, Kel A, Kel-Margoulis O: TRANSFAC: tran-
scriptional regulation, from patterns to profiles.  Nucleic Acids
Res 2003, 31:374-378.

24. Chen Q, Hertz G, Stormo G: MATRIX SEARCH 1.0: a compu-
ter program that scans DNA sequences for transcriptional
elements using a database of weight matrices.  Comput Appl
Biosci 1995, 11:563-566.

25. Quandt K, Frech K, Karas H, Wingender E, Werner T: MatInd and
MatInspector: new fast and versatile tools for detection of
consensus matches in nucleotide sequence data.  Nucleic Acids
Res 1995, 23:4878-4884.

26. Marinescu VD, Kohane IS, Riva A: The MAPPER database: a
multi-genome catalog of putative transcription factor bind-
ing sites.  Nucleic Acids Res 2005:D91-D97.

27. Prestridge D: SIGNAL SCAN 4.0: additional databases and
sequence formats.  Comput Appl Biosci 1996, 12:157-160.

28. Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM: rVista for
comparative sequence-based discovery of functional tran-
scription factor binding sites.  Genome Res 2002, 12:832-839.

29. Pavlidis P, Furey T, Liberto M, Haussler D, Grundy W: Promoter
region-based classification of genes.  In Proceedings of the 6th
Pacific Symposium on Biocomputing (PSB 2001); 3-7 January 2001 Hawaii.
Singapore: World Scientific Publishing; 2001:151-163. 

30. Barash Y, Elidan G, Friedman N, Kaplan T: Modeling dependencies
in protein-DNA binding sites.  In Proceedings of the Seventh Annual
International Conference on Computational Biology; 10-13 April 2003 Ber-
lin, Germany. Washington, DC: ACM Press; 2003:28-37. 

31. Gelfand MS, Koonin EV, Mironov AA: Prediction of transcription
regulatory sites in Archaea by a comparative genomic
approach.  Nucleic Acids Res 2000, 28:695-765.

32. Pennacchio LA, Rubin EM: Genomic strategies to identify mam-
malian regulatory sequences.  Nat Rev Genet 2001, 2:100-109.

33. Blachette M, Tampa M: Discovery of regulatory elements by a
computational method for phylogenetic footprinting.
Genome Res 2002, 12:739-748.

34. Burge C, Karlin S: Prediction of complete gene structures in

human genomic DNA.  J Mol Biol 1997, 268:78-94.
35. King O, Roth P: A non-parametric model for transcription fac-

tor binding sites.  Nucleic Acids Res 2003, 31:e116.
36. Wasserman W, Sandelin A: Applied bioinformatics for the iden-

tification of regulatory elements.  Nature 2004, 5:278-287.
37. Bulyk ML, Johnson PL, Church GM: Nucleotides of transcription

factor binding sites exert interdependent effects on the bind-
ing affinities of transcription factors.  Nucleic Acids Res 2002,
30:1255-1261.

38. Udalova I, Mott R, Field D, Kwiatkowski D: Quantitative predic-
tion of NF-κB DNA-protein interactions.  Proc Natl Acad Sci USA
2002, 99:8167-8172.

39. ENCODE Consortium: The ENCODE (ENCyclopedia Of DNA
Elements) Project.  Science 2004, 306:636-640.

40. Hong P, Liu X, Zhou Q, Lu X, WH W: A boosting approach for
motif modeling using ChIP-chip data.  Bioinformatics 2005,
21:2636-2643.

41. Viola P, Jones M: Rapid object detection using a boosted cas-
cade of simple features.  In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition; 8-14
December 2001 Volume 1. Kauai, Hawaii. New York, NY: IEEE Com-
puter Society Press; 2001:511-518. 

42. Chawla N, Hall L, Bowyer K, Kegelmeyer W: Learning ensembles
from bites: a scalable and accurate approach.  J Machine Learn-
ing Res 2004, 5:421-451.

43. Rudin C, Daubechies I, Schapire RE: The dynamics of AdaBoost:
cyclic behavior and convergence of margins.  J Machine Learning
Res 2004, 5:1557-1595.

44. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D,
Piccolboni A, Sementchenko VI, Cheng J, Williams AJ, et al.: Unbi-
ased mapping of transcription factor binding sites along
human chromosomes 21 and 22 points to widespread regu-
lation of non-coding RNAs.  Cell 2004, 116:499-509.

45. Frith MC, Fu Y, Yu L, Chen J, Hansen U, Weng Z: Detection of
functional DNA motifs via statistical over-representation.
Nucleic Acids Res 2004, 32:1372-1381.

46. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B:
JASPAR: an open-access database for eukaryotic transcrip-
tion factor binding profiles.  Nucleic Acids Res 2004, 32:D91-D94.

47. Dunham I, Shimizu N, Roe B, Chissoe S, Hunt A, Collins J, Bruskie-
wich R, Beare D, Clamp M, Smink L, et al.: The DNA sequence of
human chromosome 22.  Nature 1999, 402:489-495.

48. Human Chromosome 22 Project   [http://www.sanger.ac.uk/
HGP/Chr22]

49. RepeatMasker Open-3.0   [http://www.repeatmasker.org]
50. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT,

Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, et al.: The UCSC
Genome Browser Database.  Nucleic Acids Res 2003, 31:51-54.

51. Kent W, Sugnet C, Furey T, Roskin K, Pringle T, Zahler A, Haussler
D: The Human Genome Browser at UCSC.  Genome Res 2002,
12:996-1006.

52. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Claw-
son H, Diekhans M, Furey TS, Harte RA, Hsu F, et al.: The UCSC
Genome Browser Database: update 2006.  Nucleic Acids Res
2006:D590-D598.

53. Lienhart R, Kuranov A, Pisarevsky V: Empirical analysis of detec-
tion cascades of boosted classifiers for rapid object detec-
tion.  In Proceedings of the 25th Pattern Recognition Symposium; 10-12
September 2003 Volume 2781. Magdeburg, Germany. Berlin/Heidel-
berg: Springer; 2003:297-304. 

54. BoCaTFBS   [http://www.gersteinlab.org/proj/BoCaTFBS/]
55. Freund Y, Schapire R: A short introduction to boosting.  J Jpn Soc

Art Intell 1999, 14:771-780.
56. Shapire R: The Boosting approach to machine learning: an

overview.  In MSRP Workshop on Nonlinear Estimation and Classifica-
tion; Lecture Notes in Computer Science: 2002 Berkeley, CA: Springer-
Verlag; 2002:1-23. 

57. Freund Y, Mason L: The alternating decision tree learning algo-
rithm.  In Proceedings of 16th International Conference on Machine
Learning: 27-30 June 1999 Bled, Slovenia. San Francisco, CA: Morgan
Kaufmann; 1999:124-133. 

58. Provost F, Fawcett T: Robust classification systems for impre-
cise environments.  In Proceedings of the Fifteenth National Confer-
ence on Artificial Intelligence (AAAI-98), 26-30 July 1998 Madison, WI.
Menlo Park, CA: AAAI Press; 1998:706-713. 

59. Human Transcriptome Project   [http://transcriptome.affyme
trix.com/publication/tfbs/]

60. Yamauchi K: The sequence flanking translation initiation site
Genome Biology 2006, 7:R102

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15988478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15235610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15235610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15781865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15637633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10698627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10812473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12385991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8590181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8532532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608292
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8744779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10637320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10637320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10637320
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11253049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11253049
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9149143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14500844
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12048232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15499007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15499007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15817698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15817698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14980218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14988425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10591208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10591208
http://www.sanger.ac.uk/HGP/Chr22
http://www.sanger.ac.uk/HGP/Chr22
http://www.repeatmasker.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12045153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381938
http://www.gersteinlab.org/proj/BoCaTFBS/
http://transcriptome.affymetrix.com/publication/tfbs/
http://transcriptome.affymetrix.com/publication/tfbs/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2041747


R102.18 Genome Biology 2006,     Volume 7, Issue 11, Article R102       Wang et al. http://genomebiology.com/2006/7/11/R102
in protozoa.  Nucleic Acids Res 1991, 19:2715-2720.
61. Lawrence CE, Alteschul SF, Boguski MS, Liu JS, Neuwald AF, Woot-

ton JJ: Detecting subtle sequence signals: a Gibbs sampling
strategy for multiple alignment.  Science 1993, 262:208-214.

62. Berg OG, von Hippel PH: Selection of DNA binding sites by reg-
ulatory proteins. Statistical-mechanical theory and
applications to operators and promoters.  J Mol Biol 1987,
193:723-750.

63. Berg OG, von Hippel PH: Selection of DNA binding sites by reg-
ulatory proteins II. The Binding specificity of cyclic AMP
receptor protein to recognition sites.  J Mol Biol 1988,
200:709-723.
Genome Biology 2006, 7:R102

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2041747
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8211139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8211139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3612791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3612791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3612791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3045325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3045325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3045325

	Abstract
	Background
	Results
	Cross-validation and receiver operating characteristic analysis
	Comparison with positional information methods
	Demonstration of the value of non-binding information from ChIP-chip experiments
	Applications to the ENCODE project and further comparisons

	Discussion
	Conclusion
	Materials and methods
	AdaBoost
	ADTboost
	Boosted cascade
	Datasets for application of the method
	Other TFBS prediction methods compared
	Consensus
	Profile (or PSSM)
	Berg and von Hippel (BvH)
	Centroid
	Information content and local pair-wise correlation
	'Crippled' BoCaTFBS
	MotifBooster and related method


	Additional data files
	Acknowledgements
	References

