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ABSTRACT

Multi-agent biohybrid microrobotic systems, owing to their small size and distributed nature, offer powerful solutions to challenges in
biomedicine, bioremediation, and biosensing. Synthetic biology enables programmed emergent behaviors in the biotic component of biohybrid
machines, expounding vast potential benefits for building biohybrid swarms with sophisticated control schemes. The design of synthetic genetic
circuits tailored toward specific performance characteristics is an iterative process that relies on experimental characterization of spatially
homogeneous engineered cell suspensions. However, biohybrid systems often distribute heterogeneously in complex environments, which will
alter circuit performance. Thus, there is a critically unmet need for simple predictive models that describe emergent behaviors of biohybrid
systems to inform synthetic gene circuit design. Here, we report a data-driven statistical model for computationally efficient recapitulation of
the motility dynamics of two types of Escherichia coli bacteria-based biohybrid swarms—NanoBEADS and BacteriaBots. The statistical model
was coupled with a computational model of cooperative gene expression, known as quorum sensing (QS). We determined differences in time-
scales for programmed emergent behavior in BacteriaBots and NanoBEADS swarms, using bacteria as a comparative baseline. We show that
agent localization and genetic circuit sensitivity strongly influence the timeframe and the robustness of the emergent behavior in both systems.
Finally, we use our model to design a QS-based decentralized control scheme wherein agents make independent decisions based on their
interaction with other agents and the local environment. We show that synergistic integration of synthetic biology and predictive modeling is
requisite for the efficient development of biohybrid systems with robust emergent behaviors.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5134926

I. INTRODUCTION

Microrobots defined as autonomous or semi-autonomous sys-
tems with characteristic dimensions O (1lm) were envisioned as
valuable non-invasive tools for medical intervention well before they
became technologically feasible.1 Recent decades have seen a myriad
of microrobotic concepts and prototypes developed, mainly for medi-
cal applications.2,3 The most significant challenges in developing such
systems are incorporating effective mechanisms for actuation, sensing,
and control, all without the need for an onboard power source.
Repeatedly, biology has offered great solutions to these challenges both

as a source for design inspiration4 and, more prominently, by the
incorporation of biological materials themselves as part of the micro-
robotic systems.5 Designs have incorporated eukaryotic cells or unicel-
lular organisms, such as algae,6 spermatozoa,7 macrophages,8 and
cardiomyocytes9,10 but more commonly have relied upon swimming
bacteria as actuators.11,12 Bacteria efficiently transduce chemical
energy from their environment into kinetic energy for self-propulsion
and possess robust mechanisms to sense a wide range of environmen-
tal stimuli including chemical, optical, thermal, or magnetic.13–18

These characteristics, along with their small physical dimensions,
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O (1lm), and their ability to tolerate changes in temperature, pH,
nutrient availability, and other environmental conditions have made
bacteria an ideal candidate for building biohybrid microrobotic sys-
tems and have been investigated for such applications for over
15 years.19–22 Pioneering bacteria-based microrobotic works include
development of a bacteria-based microassembly system by Martel
et al.,21 using Magnetospirillum gryphiswaldense to position micropar-
ticles under the control of an external magnetic field. One of the earli-
est works demonstrating bacteria-based drug delivery, a primary
application of microrobots, was the use of Listeria monocytogenes
to transfer drug-loaded nanoparticles into the cytoplasm of cancer
cells by Akin et al., taking advantage of the bacteria’s natural pro-
pensity for cellular invasion.23 In the same year, Behkam and
Sitti20 developed a chemical switching technique for on-demand
stop/go control of the motility of Serratia marcescens-propelled
polystyrene microparticles by turning the flagellar motors off and
on through introduction of copper ions and subsequent sequestra-
tion of the ions via ethylenediaminetetraacetic acid (EDTA).

The sensing capabilities of bacteria make centralized control via
externally imposed stimuli gradients an attractive microrobotic system
design paradigm. Indeed, centralized directional control of bacteria-
based biohybrid systems has been achieved utilizing the wide array of
bacterial taxis mechanisms for gradient sensing. Martel and colleagues
have extensively developed magnetotactic bacteria-based microrobots
that sense and respond to magnetic fields for particle placement,21

complex assembly,24 and drug delivery, including an in vivo demon-
stration.25 In addition to utilizing native biological mechanisms,
magnetic-field based directional control has been achieved using the
model motile bacteria Escherichia coli assembled with erythrocytes
that were loaded with magnetic nanoparticles and doxorubicin26 and
swimming algae with conjugated magnetic nanoparticles.27 Gradients
of chemoattractants have been utilized to directionally control a vari-
ety of bacteria-based biohybrid systems, which was first demonstrated
when our group used casamino acids to bias the migration of spherical
polystyrene microparticles decorated with S. marcescens.28 Since then,
we and others have shown that chemotaxis in bacterial biohybrid sys-
tems in response to several chemoeffectors,29–31 can be used to control
microrobotic systems such as E. coli-propelled microparticles of vari-
ous geometries,32 E. coli coated with nanoparticles,33 and others.31,34,35

Other centralized control mechanisms reported include the use of UV
light,22 pH gradients,36 and electric field gradients.37

The small size and limited capabilities of an individual microro-
botic agent necessitate the cooperation of a large number of agents,
often swarms of hundreds or more, to accomplish a given task.
Centralized control approaches can be effective in controlling popula-
tions, but individual addressability of each agent is limited, precluding
the ability to achieve fully deterministic outcomes. For instance, che-
motactic control of microrobot migration cannot realize perfect sort-
ing; only a fraction of the population will respond.33 Centralized
control approaches that allow individual addressability, such as using
electric field actuation control and UV light for individual steering, are
more robust; however, scalability to large populations may be
limited.38 Robust and scalable outcomes could be achieved by imple-
menting hybrid control strategies that combine a centralized control
scheme with a decentralized one. A decentralized control scheme
would allow each agent to make independent decisions based on their
interaction with other agents and their local environment. For

instance, in a drug delivery application, a decentralized control mecha-
nism may be utilized to minimize off-target cargo release by the agents
that failed to respond to the centralized control signal to reach the site
of interest. This way, the agents will autonomously become activated
and perform their desired task only if a large fraction of the swarm
reaches the site of interest. Lagging agents would either never become
activated or only later become activated upon successfully reaching the
site of interest.

The burgeoning field of synthetic biology allows for the engineer-
ing of programmed behavior in eukaryotic and prokaryotic cells39 and
has vast potential benefits for building biohybrid microrobotic swarms
with sophisticated centralized and decentralized control schemes. One
particularly powerful genetic circuit paradigm is quorum sensing (QS),
which is a number-density dependent form of population cooperation.
In QS organisms, small diffusible signaling molecules (hereafter
referred to as the signal) are produced constantly at a low basal rate.40

Regulation of the enzyme that produces the signal is controlled by a
positive-feedback loop with a signal-activated transcription factor. The
circuit is bistable, and thus upon being exposed to a critical amount of
signal (i.e., a minimum concentration threshold for a sufficient period
of time), the circuit exhibits a switch-like behavior to an “activated”
state of high signal enzyme production, as well as the transcription of
any other genes downstream of the QS promoter. This mechanism has
been extensively used for engineering bacterial populations to achieve
programmed cell death,41 directional control,42 and advanced cancer
therapies,43 including cytotoxin release for chemotherapy,44,45 and to
deliver immunotherapeutic nanobodies.46

Synthetic biology is being increasingly integrated with biohybrid
microrobotics to achieve new capabilities. We recently demonstrated
that synthetic QS circuits can be used to address the need for engineer-
ing decentralized emergent behaviors in populations of biohybrid
microrobots.47 Other functions, including engineering active biohybrid
materials,48 creating biohybrid microrobotic sensors,49 and light-based
control of cargo release by microrobots,50 have been reported. It
should be noted that the design of synthetic circuits tailored toward
specific functional property and performance characteristics is iterative
in nature.39 Engineered circuits are traditionally characterized in small
volumes of spatially homogeneous cell suspensions (i.e., in well plates),
whereas biohybrid microrobotic systems are dynamic in nature and
often distribute heterogeneously in complex environments with
diverse transport boundary conditions. Thus, there is a critically
unmet need for predictive models that describe the programmed
emergent behavior of biohybrid systems to complement the standard
experimental characterization of the engineered cells. The synergistic
combination of the two approaches will streamline the development of
biohybrid machines with robust and predictable emergent behaviors.
Existing models of biohybrid microrobots either involve computation-
ally intensive calculations of forces at the individual agent-scale28,51–53

or are carried out on the population-scale54 and unable to accurately
capture the effects of motility on QS activation at the low agent con-
centrations relevant for biomedical applications.

In this paper, we aim to address this gap through the
development of a computationally efficient stochastic model that reca-
pitulates motility, chemotaxis, and QS in two types of biohybrid
bacteria-based agents, BacteriaBots (BB)55 and NanoBEADS (NB),56

both of which were developed for controlled transport of cargo (e.g.,
drug delivery) applications. The agents are fundamentally different in
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design; as a result, they differ significantly from one another in motile
and cooperative behaviors. A BacteriaBot consists of 6lm-diameter
spherical particles conjugated with 8–15 E. coli bacteria, while a
NanoBEADS agent consists of a bacterium conjugated with an average
of 20 nanoparticles on the outer membrane [Figs. 1(a)–1(d)]. We
report an agent-based computational model that directly utilizes
experimental data to simulate the motile behavior and spatial distribu-
tion of the agents, which is then used to predict the emergent behavior
of QS in BacteriaBots and NanoBEADS [Fig. 1(e)]. We show that by
collecting limited experimental data on agent motility in a chemically
isotropic environment (i.e., in the absence of a chemoattractant gradi-
ent), we are able to closely recapitulate the experimental migration
bias in response to a chemoattractant gradient in both space and time.
Our method is simple, fast, and generalizable to any type of biohybrid
system with random motility. Here, we use our model to explore dif-
ferences between the timescales for emergent behavior in populations
of BacteriaBots and NanoBEADS, using free-swimming bacteria as a
comparative baseline. We then explore the sensitivity and robustness
of each system across the QS genetic circuit design space with respect

to migration bias. Finally, we show that QS-based decentralized con-
trol can be an effective mechanism for causing the desired activation
within a target site among spatially separated subpopulations but that
results depend critically on the agent type, demonstrating the crucial
role of computational modeling in the design of biohybrid microro-
bots with robust emergent behavior.

II. RESULTS AND DISCUSSION
A. A data-driven model of biohybrid microrobot motil-
ity and chemotaxis

The primary goal of the computational framework developed
herein is to enable computationally efficient recapitulation of the
dynamics of swarms of BacteriaBots and NanoBEADS, toward the
predictive modeling of their emergent behavior such as a QS response.
The ability to faithfully recapitulate motility and chemotaxis is crucial
as QS inherently depends upon local agent concentration and trans-
port properties. We aimed to establish a computationally efficient and
straightforward model that can be quickly adopted by researchers of
diverse backgrounds in the biohybrid machines community. To this

FIG. 1. BacteriaBots and NanoBEADS biohybrid drug delivery agents. (a) E. coli bacteria are engineered with synthetic genetic circuits inserted into plasmids; (b) the engi-
neered bacteria are integrated into biohybrid systems to make BacteriaBots (6 lm polystyrene particles conjugated with several bacteria) and NanoBEADS (bacteria coated
with several polystyrene nanoparticles). Representative microscopy images of a BacteriaBot and a NanoBEADS agent are shown in (c) and (d), respectively. (e) The engi-
neered biohybrid systems are capable of responding to centralized control signals (chemoeffector gradients) and commencing population density dependent programmed
behavior upon detecting a high enough local concentration of QS signaling molecules (decentralized control).
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end, we conducted a series of motility assays and utilized the experi-
mental data in our simulations, as an alternative to building a force-
based model that would be a more complex and computationally
intensive approach. We accomplished this by recording time-lapse
images of motile BacteriaBots and NanoBEADS in chemically isotro-
pic environments and tracking the positions of the agents over time
[Figs. 2(a) and 2(b)]. The velocity vector between every two consecu-
tive data points was calculated, providing the speed and orientation of
each agent with respect to time [Fig. 2(c)]. The average speed and the
time rate of orientation change of BacteriaBots were 2.826 1.62lm/s

and 7.966 70.0 deg/s, respectively. NanoBEADS swam substantially
faster with an average speed of 23.46 10.0lm/s and a rate of orienta-
tion change of 62.76 606 deg/s. For isotropic simulations, each agent
randomly selected the trajectory data of a tracked experimental agent,
capturing its motile behavior by sampling from its speeds and rates of
orientation change in sequence at time intervals consistent with exper-
imental data acquisition. Once a simulated agent utilized the entire
duration of data for a selected experimental agent, the data for another
experimental agent were randomly chosen, creating continuous trajec-
tories for the duration of the simulation.

FIG. 2. The data-based statistical motility model accurately recapitulates NanoBEADS and BacteriaBots swimming behavior. Representative trajectories for a NanoBEADS
agent (a) and a BacteriaBot (b) produced from the experimental data (yellow stars represent the starting position while green dots represent the final position of the tracked
agents), (c) a schematic of the successive agent position vectors and orientation change, persistence as a function of time for each tracked (d) and simulated (e) NanoBEADS
agent, (f) persistence vs time averaged over tracked and simulated NanoBEADS agents, persistence vs time for each tracked (g) and simulated (h) BacteriaBot agent, and (i)
persistence vs time averaged over tracked and simulated BacteriaBots agents. A total of 154 NanoBEADS and 26 BacteriaBots agents were tracked from experiments, and all
tracked data were collected in isotropic chemical environments. Thick red and black curves in (d)–(i) indicate average persistence. The red and black dashed traces in (f) and
(i) indicate 6standard deviation for simulated and experimental data, respectively.
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We used persistence as a metric by which to compare the motile
behavior of simulated and experimental agents,

P tNð Þ ¼
displacement

distance
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xN � x0ð Þ2 þ yN � y0ð Þ2

q
XN
i¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xi�1ð Þ2 þ yi � yi�1ð Þ2

q ; (1)

where t is time, N is the number of time steps, and x and y are an
agent’s coordinates. As shown in Fig. 2(d), the persistence of
NanoBEADS in time varied widely, with some agents being highly
persistent over the entire duration of a trajectory and others moving at
very low persistence. The persistence of BacteriaBots [Fig. 2(g)] was
much higher than that of NanoBEADS, particularly when the time-
scale of tracked data is considered. Simulations of each agent type cap-
tured both the distributions [Figs. 2(e) and 2(h)] and the averages
[Figs. 2(f) and 2(i)] of persistence values in time. It is important to
note that capturing the persistence distribution required our method
of sampling speed and rate of orientation change in sequence.
Randomly sampling from the values extracted for a highly persistent
agent did not capture the essence of that agent’s trajectory [Figs. 3(a)
and 3(b)]. This resulted in persistence values of the simulated agent
much lower than those of the experimental agent [Fig. 3(c)], while
sampling in sequence well captured the trajectory in silico [Fig. 3(d)].
Overall, random sampling failed to produce the subpopulation of
highly persistent agents observed experimentally (Fig. S1).

In order to simulate responses to linear chemoattractant gra-
dients (i.e., chemotaxis) across a rectangular domain, we randomly
chose two equally sized subsets of experimental trajectories—one from
which simulated agents moving in the negative x-direction (at the start
of a new trajectory) were sampled and one from which simulated
agents moving in the positive x-direction were sampled. In this way,
the simulated agent movement could be biased due to the net migra-
tion bias present in the separated experimental data. This process was
repeated iteratively (i.e., randomly creating new subsets each time)
until the simulated spatial distribution of the agents matched the
experimental data collected at the chemoattractant gradient that pro-
duced the maximum population distribution bias (Sec. IVA). The che-
motaxis partition coefficient (CPC) was used as a metric for
comparing bias in the swarm spatial distribution due to chemotaxis:

CPC ¼ BR � BL

BR þ BL
; (2)

where BL and BR are the numbers of agents in the left-hand half and
the right-hand half of the domain, respectively [Fig. 1(e)]. As described
above, the simulated CPC was produced through the iterative determi-
nation of particular separations of the experimental trajectory data
that led to strong matches between simulated and experimental che-
motaxis responses for both BacteriaBots [Fig. 4(a)] and NanoBEADS
[Fig. 4(b)] as a function of time.

Our unique method of directly utilizing isotropic experimental
data for simulations of motility and chemotaxis has several distinct
advantages. Most important for the purposes of our model, it is guar-
anteed to accurately capture the speed, rate of orientation change, and
persistence of actual agents. It is far more computationally efficient
than resolving forces generated on a microparticle in the case of
BacteriaBots28 or than modeling the drag forces acting on a bacterial

FIG. 3. Data sampling in-sequence is required to recapitulate experimental agent
motile behavior. (a) The spatial trajectory of a representative highly persistent
NanoBEADS agent experimental agent, (b) the spatial trajectory of an agent simu-
lated by random sampling, (c) persistence vs time for a single agent (red curve) by
random sampling from a single tracked experimental agent (black curve), and (d)
the spatial trajectory of the agent by sampling in sequence from the data for the
same experimental agent. Note that once all experimental data have been sampled
(without replacement), all data are reset to permit simulations of indefinite duration.
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cell due to attached nanoparticles in the case of NanoBEADS.56

Moreover, the method is generalizable to any motile agent and could
be quickly implemented by any researcher. Finally, only a relatively
limited amount of tracking data is needed to impart the ability to sim-
ulate agents moving isotropically or in a particular biased manner, as
illustrated by our matching of CPC as a function of time using 26
BacteriaBot trajectories.

B. Engineering QS-based cooperative behavior in bac-
terial biohybrid systems

We used our data-driven motility and chemotaxis model in
conjunction with our experimentally validated model of cell–cell
communication and QS response47,57 to investigate the timeframe for
QS-based emergent behavior to commence (hereafter referred to as
the QS activation time) in populations of NanoBEADS and
BacteriaBots. For this work, QS activation time was determined by
finding the point in time when the average intracellular concentration
of QS-controlled green fluorescent protein (GFP) surpassed a detect-
able threshold (218 molecules/bacterium), but in practice, the gene for
GFP expression may be replaced with another to produce desirable
behavior (e.g., synthesis of cytotoxic drugs for cancer therapy). For
each simulation, we considered a 1000� 1000lm2 domain with peri-
odic y-boundaries and zero-concentration x-boundaries placed at a
distance of 1000lm from the 1000� 1000lm2 motility domain. QS
activation time in engineered free-swimming bacteria was also com-
puted to provide a baseline for comparison. For simulating free-

swimming bacteria, we used our previously validated run-and-tumble
and chemotaxis models.57

We first investigated activation time at biomedically relevant
agent concentrations, both in chemically isotropic environments and
in the presence of optimum chemoattractant gradients. Given that
attenuated bacteria have been reported to colonize tumors at concen-
trations on the order of 108 bacteria/cm3 (Refs. 58–61) and assuming a
tissue density of 1 g/cm3, we simulated bacteria concentrations ranging
from�2� 107ml�1 to 50� 107ml�1 (corresponding to 20–500 simu-
lated bacteria). For all simulations, we compared equivalent numbers
of total bacteria; therefore, any given concentration of NanoBEADS
was compared with BacteriaBots at 1/12th the concentration, as an
average of 12 bacteria are attached to a particle for each BacteriaBot
[Figs. 1(b) and 1(c)]. In addition to biohybrid agents, we also simu-
lated free-swimming bacteria (speed of 34.0lm/s) as a comparative
baseline using our previously developed stochastic motility and che-
motaxis models.57 The doubling time of bacteria was taken to be
43min for free-swimming bacteria and 121min for NanoBEADS and
bacteria attached to microparticles (Sec. IVD), leading to shorter acti-
vation times for bacteria in low concentration scenarios (when the
timescale for activation was long enough to allow for an appreciable
amount of growth). In isotropic cases at an initial concentration of
2.4� 107ml�1 for NanoBEADS and 0.2� 107ml�1 for BacteriaBots,
respectively, 88% and 28% more time was required for the agents to
become activated, compared with free-swimming bacteria [Fig. 4(c)].
The differences were greater with simulated chemotaxis, with
NanoBEADS and BacteriaBots having 110% and 49% longer

FIG. 4. The emergent behavior of populations of BacteriaBots (BB) and NanoBEADS (NB). Experimental and simulated CPC as a function of time for BacteriaBots (a) and
NanoBEADS (b). QS activation time as a function of the concentration of BacteriaBots or equivalent total number of free-swimming bacteria without (isotropic) or with (gradient)
an imposed chemoattractant gradient with experimentally measured doubling times of 43 min for free-swimming bacteria and 121min for NanoBEADS and BacteriaBot-
conjugated bacteria (c) and without growth (d). (e) and (f) respectively show snapshots of the QS signal concentration field and agent positions at the QS activation time in sim-
ulations of BacteriaBots at a concentration of 0.4� 107 ml�1 and the corresponding concentration of 4.8� 107 ml�1 NanoBEADS, both in isotropic environments.
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activation times than bacteria, respectively. Overall, differences
between activation times of the different agent types were most pro-
nounced at low concentration. At very high concentrations
(>24� 107ml�1), activation times converged regardless of the agent
type and migration bias. Chemotaxis had virtually no effect on the
activation time of BacteriaBots and only a small relative effect on
NanoBEADS (average 5% increase in activation time for isotropic
cases up to 24� 107ml�1). However, chemotaxis had a moderate
effect on the activation time for free swimming bacteria at low concen-
trations, causing a 30% delay on average in simulated isotropic cases
relative to chemotaxis cases for initial concentrations up to
24� 107ml�1. This is because bacteria become highly localized more
quickly than NanoBEADS or BacteriaBots in the chemotactic scenar-
ios, reaching steady state CPCs of approximately 0.95 after only 5min.
In contrast, it took NanoBEADS 20min to reach a steady state CPC of
approximately 0.6 [Fig. 4(b)]. For BacteriaBots, chemotaxis played
almost no role because for the same number of bacteria, there were
many fewer individual agents (average of 12 bacteria per BacteriaBot),
making the role of stochastic movement more significant than that of
an emergent population-scale distribution bias.

In addition to simulating scenarios with growth, it is important to
consider situations in which growth would not occur (e.g., nutrient-limited
environment) or bacteria may be eliminated from the region of the interest
(e.g., due to immune response) such that the population size will remain
largely unchanged. As shown in Fig. 4(d), activation time was greatly
affected by the lack of growth, particularly at concentrations below
16.8� 107ml�1 (1.4� 107ml�1 for BacteriaBots). Activation did not
occur below a concentration of 4.8� 107ml�1 for NanoBEADS and only
with a chemical gradient for free-swimming bacteria but did occur for
BacteriaBots at an equivalent concentration of 0.3� 107ml�1. At a higher
concentration of 4.8� 107ml�1 (0.4� 107ml�1 BacteriaBots), QS activa-
tion of free-swimming bacteria and NanoBEADS was comparable but
about 70% longer than BacteriaBots in isotropic cases. This is due to the
high local concentration of bacteria constrained on the surface of each
BacteriaBot agent. The positive feedback behavior of the genetic circuit
causes BacteriaBot behavior to be more stochastic than that of
NanoBEADS at comparable concentrations, as moving near to one
another for a short period of time once a sufficient level of background QS
signal has accumulated facilitated activation [Fig. 4(e)]. This is less likely to
occur with NanoBEADS since many (�12 more) individual agents are
more dispersed in the analogous case [Fig. 4(f)]. As the concentration
increased, activation times converged to similar values but remained
shorter for BacteriaBots relative to bacteria in all isotropic cases and shorter
relative to NanoBEADS in all cases. Interestingly, the activation time for
free bacteria was longer than that of corresponding NanoBEADS simula-
tions in all isotropic cases but shorter in all gradient cases. Differences
between the isotropic cases are likely due to the lower speed of
NanoBEADS (average of 23.4lm/s) relative to free-swimming bacteria
(34.0lm/s), while faster activation of the bacteria in gradient cases is due
to their stronger chemotaxis response. These results highlight the role of
spatial distribution of agents in the temporal evolution of the QS response
and the importance of accurately modeling motility and chemotaxis to
faithfully recapitulate temporal changes in the spatial distribution of agents.

C. Investigating system sensitivity and robustness

One of the primary design considerations in engineering micro-
robotic swarms cooperating through QS is the sensitivity and

robustness in their response. From a synthetic biology standpoint, the
sensitivity of the QS genetic circuits (i.e., the amount of signal needed
to cause the system to transition from its non-activated to its activated
state) can be modulated across a wide range by altering the strength of
the ribosomal binding site (RBS) for the luxI gene.57 As circuit sensi-
tivity is increased, fewer agents and less time are needed to activate the
circuit. This provides a valuable mechanism by which synthetic
bacteria-based systems may be designed in practice to achieve target
activation times. We have previously shown that we can accurately
model the effects of changes in QS genetic circuit sensitivity on QS
activation time.57 Nevertheless, uncertainties in key parameters affect-
ing system performance, such as the growth rate, chemotaxis, mass
transport boundary conditions, and environmental transport proper-
ties, among many others, will undoubtedly be present in any practical
situation with the potential for deleterious effects on performance.
Thus, in addition to the sensitivity, robustness in the response of the
engineered systems should also be considered. We used our model to
explore the sensitivity and robustness of the design space for
BacteriaBots and NanoBEADS with respect to migration bias, using
free-swimming bacteria as a comparative baseline. Experimental tra-
jectory data were binned to provide steady-state CPC values for biohy-
brid agents ranging from 0 to approximately 0.9. Likewise, we
imposed L-aspartic acid gradients to provide the same CPC range in
free-swimming bacteria cases. These L-aspartic acid gradients or sets of
binned trajectory data were ranked from weakest to strongest resulting
CPC and defined as migration bias, ranging from 0 (corresponding to
a CPC of 0) to 1 (corresponding to a CPC of�0.9). We then simulated
each system for a biomedically relevant initial bacterial concentration
of 4.8� 107ml�1 (0.4� 107ml�1 BacteriaBots) across a RBS design
space, which ranges from the lowest relative RBS strength that permit-
ted activation of at least one agent type with no growth to the reference
strength.57 Simulations were performed with no growth, growth at half
the experimentally measured rates, and growth at the experimentally
measured rates (Fig. 5). The sensitivity in QS response, assessed by
quantitating the QS activation time, was investigated as a function of
the migration bias and RBS strength. Interestingly, BacteriaBots proved
to be the most sensitive in the absence of growth [Fig. 5(b-i)], as activa-
tion occurred at RBS strengths as low as 0.55. In contrast, simulations
at the same RBS strengths predicted large zones where activation did
not occur for both bacteria [Fig. 5(a-i)] and NanoBEADS [Fig. 5(c-i)].
Moreover, BacteriaBot sensitivity was largely unaffected by the migra-
tion bias, even in scenarios with growth [Figs. 5(b-ii) and 5(b-iii)],
while NanoBEADS activation time was affected by the migration bias,
particularly in scenarios with growth [Figs. 5(a) and 5(c)]. This is
because BacteriaBots’ lower motility speed and unchanged proximity
of the attached bacteria on each agent effectively concentrate QS signal
generation in a small space. The nature of the QS regulatory circuit,
i.e., its positive feedback-based self-regulation, allows BacteriaBots to
become more robustly activated in scenarios when free bacteria and
NanoBEADS may not.

Next, the robustness in QS response, assessed by quantitating the
standard deviation in QS activation time, was investigated as a func-
tion of migration bias and RBS strength (Fig. 6). Smaller values and
less variation across the parameter space indicate higher fidelity in
achieving a designed activation time. In the absence of growth [Fig.
6(i)], each system is relatively robust for RBS designs of strength
approximately 0.63 or higher. More relative variations occurred for
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simulations with growth. In all cases, more variation in activation time
occurred at low RBS strengths and/or low migration biases. The plots
for BacteriaBot simulations, shown in Fig. 6(b), are particularly
insightful. While BacteriaBot activation time did not appear to signifi-
cantly depend on migration bias [Fig. 5(b)], a clear role of chemotaxis
in robustness is illustrated by its effect on standard deviation [Fig.
6(b)]. The fact that chemotaxis had a minimal role in robustness in
the absence of growth [Fig. 6(b-i)] demonstrates that it is the chemo-
taxis of free bacteria derived from those attached to the microparticles,
not the BacteriaBots themselves, that influence activation time robust-
ness. Ascertaining unexpected results such as these highlights the
important role simulation can play in robust system design.

D. Decentralized control of microbial biohybrid
systems for localized decision making

Finally, we investigated the decentralized control of swarms of
NanoBEADS and BacteriaBots as a mechanism to facilitate local

decision making through QS activation at high population densities
while precluding it in areas that do not become densely colonized.
This would be crucial to our ability to design QS-based drug delivery
systems that would become activated in the densely colonized tumor
tissue but not in the surrounding normal tissue, for instance. To this
end, we considered a hypothetical scenario wherein the same total
number of NanoBEADS agents (an overall concentration of
0.3� 107ml�1 in a 4� 4mm2 simulation domain, which amounts to
48 agents) densely colonize, without growth, two spatially separated
100� 100lm2 regions within the domain at various ratios to repre-
sent a given dose being seeded in multiple locations [Fig. 7(a)]. Given
that the QS signal considered in our system is the small molecule
3-oxohexanoyl-homoserine lactone (AHL, MW: 213Da), we simu-
lated signal transport with a diffusion coefficient reduced to 75% of its
value in water (490 lm2/s), as an estimated diffusion coefficient for
AHL in the extracellular matrix. We found that two different stable
states (i.e., activated and not-activated) would indeed occur given the
appropriate population densities and sufficient separation between the

FIG. 5. Emergent behavior across circuit sensitivity design space. Simulated activation time as a function of the chemotaxis response (migration bias) and RBS strength (circuit
sensitivity) for Bacteria (a), BacteriaBots (b), and NanoBEADS (c) without growth (i), at half the experimentally measured growth rates (ii), and at the experimentally measured
growth rates (iii). Representative distributions of agents (and free bacteria resulting from growth) at various migration bias after �100min of simulation are shown for each
agent type. Black shaded regions in (a-i) and (c-i) indicate zones where the agents reached a steady non-activated state.
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two. For a separation distance of 2.7mm, populations smaller than
8% of the total dose (<0.4� 109ml�1) remained in a stable non-
activated state. On the other hand, the signal concentration quickly
rose to cause rapid local activation at the larger population consisting
of a fraction of 92% or more of the population [>4.4� 109ml�1,
Figs. 7(b)–7(e)]. If the fraction of the total population present in the
smaller population was increased to a critical amount of 8% or
higher, it became activated following the activation of the larger pop-
ulation due to diffusion of the signal. As the fractions of the popula-
tions became more comparable, signal concentration increases and
subsequent activation was further delayed in the larger population
and reduced in the smaller population [Fig. 7(f)] until the low local
concentration of each population precluded activation [Figs.
7(b)–7(e), magenta curves]. This is because the local concentration
of each population was not high enough to produce signal at suffi-
cient rates to overcome signal loss due to degradation and transport
away from the agents [Fig. 7(a-iii)]. In contrast to NanoBEADS
(with each agent comprising one bacterium), analogous simulations
with BacteriaBots (each agent contains 12 bacteria on average) pre-
dict that two different but stable activation states cannot occur for
the same 2.7mm separation distance [Fig. 7(g)]. For four simulated
BacteriaBot agents, a 3:1 separation ratio always resulted in activa-
tion of both populations. Populations at a 1:1 ratio (each concen-
trated to 2.0� 108ml�1) however resulted in a highly stochastic
outcome in which activation sometimes occurred and sometimes did

not. In an analogous scenario, for more uniformly dispersed
NanoBEADS (the two populations each at 2.4� 109ml�1), activation
would never occur for either.

Overall, the robustness of activation of the entire population
increased when the separation distance was decreased. When the same
overall dose and concentration ratios discussed above were seeded at a
reduced separation distance of 1.3mm, activation occurred in both
populations regardless of the ratio until the same critical low-density
threshold as was found for the 2.7mm separation distance was reached
[54% and 46% of the total population in larger and small populations,
respectively; Fig. 8(a)]. As long as one population was locally dense
enough to become activated, signal transport dynamics allowed for
activation of the smaller population [Figs. 8(b)–8(d)]. This further
demonstrates the robustness of QS-based decentralized control.
Although a target site may be colonized at several distinct locations by
the administered dose, agents throughout the site will become acti-
vated due to their proximity. At the same time, other far away sites
will remain inactive.

Altogether, our results demonstrate several key principles in bio-
hybrid system design: (1) agents densely colonizing a target site (e.g.,
tumor) may perform their task without causing activation of sparse
populations in off-target sites nearby, (2) the choice of agent dictates
dose and robustness requirements, and (3) simulations are critical in
illuminating non-intuitive results toward informed design with pre-
dictable outcomes.

FIG. 6. Robustness of emergent behavior across circuit sensitivity and migration bias design space. The standard deviation in simulated activation time as a function of the
chemotaxis response (migration bias) and RBS strength (circuit sensitivity) for the free-swimming bacteria (a), BacteriaBots (b), and NanoBEADS (c) in the absence of growth
(i), at half the experimentally measured growth rates (ii), and the experimentally measured growth rates (iii). Black shaded regions indicate zones where the agents reached a
steady non-activated state.
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FIG. 7. Localized decision making in distributed biohybrid swarms. (a) Snapshots of the signal concentration field for two populations of NanoBEADS seeded at various ratios
leading to steady state activation (green) of the larger and steady state inactivation (black) of the smaller (i), steady state activation of both (ii), and steady state inactivation of
both (iii), average signal concentration perceived by the agents of the larger (b) and smaller populations (c) vs time for each ratio (legend indicates percentage of total dose),
average intracellular GFP concentration for agents of the larger (d) and smaller (e) populations vs time for each ratio, (f) the activation time for each population of agents for
each ratio, and (g) activation time for each population of BacteriaBots seeded in an analogous scenario across five simulation replicates. The overall concentration of
NanoBEADS and BacteriaBots contained an equivalent concentration of bacteria (4.8� 109 ml�1; 1 per NanoBEADS or 12 per BacteriaBot) in all scenarios.
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III. CONCLUSIONS

We have implemented a unique data-driven stochastic model for
simulating the motility and chemotaxis of bacteria-based biohybrid
agents based on limited amounts of experimental data. We integrated
this computationally efficient model with an experimentally validated
computational model of QS to simulate the emergent behavior in pop-
ulations of biohybrid cargo-carrying agents, BacteriaBots and
NanoBEADS, and compared the results to free-swimming engineered
bacteria. We then investigated system robustness across genetic circuit
sensitivity design space, offering a practical means for making
informed biohybrid system design decisions. Finally, we showed how
decentralized control can be an effective mechanism for causing
desired activation at target sites, even when the agents are spread
across several zones in close proximity, but that off-target sites colo-
nized at low density would remain in a non-activated state. Overall,
we showed that NanoBEADS offer comparable performance to
free-swimming bacteria, making them a suitable choice as drug deliv-
ery agents when engineering bacteria for drug synthesis is not an
option. BacteriaBot emergent behavior proved to allow for activation
at lower equivalent bacterial concentrations than NanoBEADS, albeit
more stochastic, although the agent size may be a limiting factor for

some in vivo applications. In the future, our method of simulating
agent motility could be applied to other motile biohybrid systems, and
our model could be used for other biohybrid systems coupled with
engineered QS bacteria.

IV. METHODS
A. Modeling motility and chemotaxis

The xy-coordinates in each time-lapse image of swimming
NanoBEADS agents, recorded at approximately 14.1 frames per sec-
ond (FPS) or 12.4 FPS, were tracked for approximately 6 s, and the
coordinates of motile BacteriaBots were obtained from time-lapse
images acquired at 1.3 FPS for 50 s. NanoBEADS were not tracked if
the attached particles were not visible (assessed through fluorescence
imaging) or if they physically interacted with another agent during the
duration of the experiment. Likewise, BacteriaBots were not tracked if
they interacted with another agent during the experiment. A total of
154 NanoBEADS tracks and 26 BacteriaBots tracks were analyzed.
The velocity vector between every two successive data points was cal-
culated and used to determine the rate of translation (speed) and
the time rate of orientation change between each two velocity vectors
[Fig. 2(c)]. These data were stored in sequence. For simulations, half of

FIG. 8. Decentralized control is robust across spatially separated populations in close proximity. (a) Activation time for each population of NanoBEADS separated by 1.7 mm,
(b) a snapshot of the signal concentration field at the activation time for the 83%:17% ratio case, and average signal concentration perceived by the agents of the larger (c),
and smaller (d) population fractions.
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all experimental trajectories were randomly grouped together, while
the remaining half was placed in a second group. For simulations that
included a chemical gradient, agents that were oriented to translate
toward an increasing concentration randomly chose a set of rates of
orientation change and speeds derived from a single tracked agent
from the first group and implemented these in its motile behavior.
Likewise, agents facing a decreasing simulated chemical concentration
were sampled from the second group. The particular speed and rate of
orientation change for NanoBEADS agents were updated every 0.07 s
(14 FPS) in accordance with experimental data, implementing the sub-
sequent speed and rate of orientation change from the chosen trajec-
tory. The speed and rate of orientation change for BacteriaBots were
updated every 0.77 s (1.3 FPS) in accordance with experimental data.
When any given simulated agent implemented every recorded speed
and rate of orientation change of an experimental trajectory, another
trajectory was randomly selected from the appropriate group, depend-
ing on the agent’s orientation at that point in time.

In order to match experimental chemotaxis curves, data were
randomly pooled 300 times, and simulations of 1000 agents were run
for each particular separation of data. The binned data that gave the
best match between experimental and simulated CPC at each point in
time analyzed in experiments was chosen and used for subsequent
simulations at that particular chemical gradient. For the robustness
simulations used to produce Figs. 5 and 6, simulations of 1000 agents
were run for 85min, and the mean CPC for the final 20min was taken
as the steady state CPC. Particular sets of binned data were chosen to
provide steady state CPCs ranging from 0 to 0.9, which corresponds
the migration bias parameter ranging from 0 to 1.0 (i.e., a migration
bias of 0 corresponds to a steady state CPC of 0, but a migration bias
of 1.0 corresponds with a steady state CPC of 0.9).

The motility and chemotaxis of free-swimming bacteria, used for
baseline comparison in this work, was based on our previous work.57

Briefly, the motility of each bacteria agent was modeled as periods of
runs (i.e., linear continuous translations), interspersed with tumble
periods (i.e., directional reorientations). The probability, pðsÞ, of a run
or tumble event increases with time,

p sð Þ ¼
ðs
0

kie
�ki tdt; (3)

where k�1i is the mean run or tumble duration, and s is the particular
duration.51 The detection of a gradient of a chemoeffector causes a
biased random walk by altering the mean duration of the run period.
Thus, the run duration depends on the spatial and temporal derivative
of chemoeffector concentrations. The mean run time was modeled as62

s6 ~r ; tð Þ ¼ s0exp 6rchemo
DC
Dt

� �
; (4)

where~r ¼ ðx; y; zÞ is the location of the bacterium, s0 is the average
run duration in a chemically isotropic environment,63 rchemo is the
chemotactic sensitivity, D=Dt is the material derivative, and C is the
number of chemoreceptors to which chemoeffector molecules are
bound. Michaelis-Menten-like receptor–ligand binding kinetics was
assumed,

C sð Þ ¼ CTs
Kd þ s

; (5)

where CT is the total number of chemoreceptors for an agent,
s ¼ sð~r ; tÞ is the local concentration of the chemoeffector, and Kd is
the dissociation constant for a chemoeffector binding to a receptor.
From Eqs. (4) and (5), the mean run time is

s6 ~r ; tð Þ ¼ s0exp 6rchemo
CTKd

Kd þ sð Þ2
@s
@t
þ ~V b � rs

� �" #
; (6)

where ~V b is the bacterium agent’s velocity vector. For all chemoattrac-
tants (all simulations herein), s ¼ sþ.

In simulations, each bacterium agent was assigned a run time fol-
lowing the end of a tumble period by using Eq. (6) to first calculate a
mean run time, followed by Eq. (3) to modulate the run time for sto-
chastic variability (with k�1i ¼ s6). The orientation of a bacterium
agent was changed during a tumble phase by randomly sampling from
a log-normal distribution with a mean of hl and a variance of h2r:

63

The values used for parameters of the chemotaxis model are given in
Table I.

B. Modeling physical interactions

For simplicity, the model assumes that all agents are spherical for
the purposes of modeling collisions and preventing agent overlap.
Bacteria and NanoBEADS were each modeled as 2lm-diameter
spheres, while BacteriaBots were modeled as 6lm-diameter spheres.
Collisions were modeled as inelastic and simply resulted in agent
pause until a change in orientation caused the collision to end. Note
that agent collisions were not highly prevalent in this work, as most of
the simulated concentrations were very low.

C. Modeling QS

We utilized our experimentally validated model of QS in this
work.57 Briefly, the QS circuit is bi-stable with a “low” (non-activated)
state and a “high” (activated) state. This can be modeled using a Hill
function,64,65

At ¼ g A1 þ A2
QH

QH þ QH
0

 !
; (7)

where At is the total rate of signaling molecule production, A1 and A2

are the constitutive and upregulated rates of signal generation, respec-
tively, Q ¼ Qð~r ; tÞ is the local concentration of the signal, Q0 is the
upregulation threshold concentration, and H is the Hill constant,
which indicates how quickly the system transitions from its low state
to its high state after being exposed to a critical concentration, Q. The
circuit sensitivity is g, which we defined as the predicted translation
initiation rate (TIR) of an RBS sequence relative to the predicted TIR
of a reference RBS.66,67 In our experimental system, we placed the
gfpmut3b gene for green fluorescent protein (GFP) with an lva degra-
dation tag (BBa_J04031) downstream of the lux QS promoter to serve
as a proxy for QS activation. In practice, another gene of practical
interest for the target application could be used to replace gfpmut3b.
We adopted the coupled system of differential equations presented in
Ref. 68 to model the intracellular kinetics of immature GFP (Gi) trans-
lation and its maturation into its fluorescent form Gm:

dGi

dt
¼ ktr

QH

QH þ QH
0
� kGmGi � lGi � kdeg

Gi

Gi þ Gm þ Km
(8)
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and

dGm

dt
¼ kGmGi � lGm � kdeg

Gm

Gi þ Gm þ Km
; (9)

where ktr is the maximum rate of production of immature GFP, kGm is
the rate of maturation of Gi into Gm;

69 l is the bacterial agents’ (e.g.,
bacteria, NanoBEADS, or bacteria attached to a microparticle) growth
rate, kdeg is the maximum rate of protease-mediated degradation,70,71

and Km is the concentration of GFP at which the rate of degradation is
half its maximum rate (kinetics was assumed to be the same for both
Gi and Gm).

Signal transport and degradation in the extracellular environ-
ment are governed by a diffusion–reaction equation,

@Q
@t
¼ r � DsignalrQ

� �
� RdQ; (10)

where Dsignal is the diffusion coefficient of the signal72 and Rd is the
rate of signal degradation.73 Note that we have shown that advection is
insignificant relative to the rate of transport via diffusion of the small
AHL signaling molecules (P�eclet Number Pe ¼ Lc~V b

Dsignal
� 0:28); thus,

advective transport was not modeled.57 All parameters for the QS
model are given in Table I.

D. Modeling growth

Growth was modeled by assigning timers to each agent at the
start of a simulation, each measuring the time until that agent should
double. For NanoBEADS and free-swimming bacteria, a daughter
agent of the same type (i.e., a NanoBEADS agent or bacterium agent)
was created at the location of the mother agent. For BacteriaBots, we
assumed that the attached bacteria doubled at the same rate as
NanoBEADS agents, but the daughter agent became a free-swimming
bacterium agent, thus also adopting the growth rate of free-swimming

bacteria. Doubling times were implemented as the experimentally
measured values of 43 min and 121min for free-swimming bacteria
and NanoBEADS, respectively, unless otherwise indicated.74 The ini-
tial doubling time of agents at the start of the simulation was made sto-
chastic by randomly sampling from a uniform distribution ranging
from 0 to sdbl, where sdbl is the input doubling time for each agent
type. Once an agent produced a daughter cell, its growth timer was
reset to sdbl.

E. Experiments

1. BacteriaBot assembly and microfluidic chemotaxis
experiments

Experimental methods followed were similar to the methods
described in a prior work.32 Briefly, motile isolates of E. coli MG1655
harboring a plasmid (pHC60) for green fluorescent protein (GFP)
expression were cultured at 32 �C and 150 RPM overnight in
tryptone broth (1% w/v tryptone, 0.5% w/v sodium chloride) supple-
mented with 10lg/ml tetracycline. The bacteria were diluted 100-fold
and grown until an OD600 of 0.5 was reached. The bacteria were then
harvested and resuspended in a formulation of motility medium that
provided neutral BacteriaBot buoyancy (0.01 M potassium phosphate,
0.067 M sodium chloride, 10�4 M EDTA, 0.21 M glucose, and 0.002%
Tween-20, pH¼ 7.0) and supplemented with biotin-labeled goat
polyclonal anti-lipid A lipopolysaccharide (LPS) antibody (Thermo
Scientific, Waltham, MA) at 1lg/ml. Spherical carboxylate polysty-
rene particles (Polysciences, Warrington, PA) of 6lm-diameter were
washed with 30% isopropanol and suspended in motility buffer
supplemented with 5lg/ml streptavidin-Cy3 (Sigma-Aldrich, St.
Louis, MO). Each solution was incubated separately for at room tem-
perature for 1 h while vortex mixing at 500 RPM. The two were then
combined and vortex-mixed for another 30min. All BacteriaBot

TABLE I. Model parameters.

Parameter Variable Value Source

Average run duration in the absence of a chemoeffector gradient s0 0.86 s 63

Average tumble duration sT 0.14 s 63

Chemotactic sensitivity for L-aspartic acid rchemoCT 35 s Estimated
Dissociation constant for L-aspartic acid Kd 18 lM Estimated
Bacteria swimming speed k~Vbk 34 lm/s Measured
Mean change in bacteria bearing between successive run phases hl 68� 63

Standard deviation of bacteria bearing change between run phases hr 36� 63

Basal QS signal (AHL) generation rate A1 3.19 molecules/s Fitted
Upregulated QS signal (AHL) generation rate A2 234 molecules /s Fitted
Hill constant H 2.5 65

QS signal (AHL) upregulation threshold Q0 1.87 nM Fitted
Rate of GFP translation ktr 4.0� 10�1 molecules/s Fitted
Rate of GFP maturation kGm 3.02� 10�3 s�1 Estimated69

Maximum rate of GFP degradation kdeg 5.54 molecules/s Estimated70,71

Half-maximum concentration for GFP degradation Km 6650 molecules/cell Estimated70

Diffusion coefficient of the QS signaling molecule (AHL) in water Dsignal 490 lm2/s 72

Rate of QS signal (AHL) degradation Rd 10.8% h�1 73
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experiments were performed in the neutrally buoyant motility
medium to limit changes in the vertical location of the agents.

Experiments were performed using a microfluidic device with
three parallel channels in polyethylene glycol diacrylate (PEG-DA)
gel.75 For chemotaxis experiments, a quasi-linear gradient of
1.7� 10�5 M/mm L-aspartic acid (chemoattractant) was established in
motility medium by flowing motility buffer through one outer channel
and a solution of 33.8lM concentration through the other outer chan-
nel, causing the L-aspartic acid to diffuse across the center channel
containing BacteriaBots. To gather the data tracked and used for the
motility model, isotropic experiments were performed with motility
buffer flowed through each side channel.

2. NanoBEAD assembly and microfluidic chemotaxis
experiments

NanoBEADS were assembled based on reported methods.56

E. coli MG1655 was used in all experiments.76 Bacteria cultures
were incubated overnight in 10ml of fresh Luria-Bertani (LB) Broth
(1% w/v of tryptone, 0.5% w/v of NaCl, and 0.5% w/v of yeast extract)
at 30 �C and 150 RPM. A 100ll volume of the dense overnight culture
was used to inoculate 10ml fresh LB, and the bacteria were grown to
an OD600 of 0.5. The bacteria were harvested (1ml) and centrifuged at
1700�g at room temperature for 5min and resuspended in 1ml of
motility buffer [0.01 M potassium phosphate, 0.067 M sodium
chloride, 10�4 M EDTA, 0.01 M glucose, and 0.002% (v/v) Tween-20].
The bacteria were twice washed in this motility buffer before being
incubated with biotin-conjugated goat polyclonal anti-lipid A LPS
antibody (Thermo Scientific, Waltham, MA) at 10lg/ml. This suspen-
sion of bacteria and antibody was mixed using a vortex shaker for 1 h
at 600 RPM to promote robust antibody labeling of each bacterial cell.
The labeled bacterial suspension was then centrifuged at 1700�g for
5min to remove the excess antibody from the solution, and the bacte-
ria were concentrated into 50ll of motility buffer. Streptavidin-coated
carboxylate polystyrene nanoparticles (109 nm diameter and 390nm
diameter, Bangs laboratories, Fishers, IN) were agitated with biotiny-
lated antibody-coated bacteria at various ratios for 30min. Thus,
NanoBEADS were constructed through the formation of streptavidin-
biotin bonds between the streptavidin-coated nanoparticles and
biotin-conjugated antibody-labeled bacteria. The antibody used in this
work was raised against the “O” antigens present only on the outer
membrane of the bacteria, restricting the attachment of the antibody
(and thus streptavidin coated nanoparticles) to the cell surface. To
acquire data tracked and used for the motility model, assembled
NanoBEADS were suspended in a thin film between two #1 coverslips.
Microscopy images and time-lapse videos of the NanoBEADS were
captured using a Zeiss AxioObserver Z1 inverted microscope equipped
with an AxioCammRM camera and a 63� oil objective.

For microfluidic chemotaxis experiments, devices were fabricated
according to the methods in Sec. IVE1. Only 390nm nanoparticles
were used for these experiments, and particles and bacteria were com-
bined at a 100:1 ratio. A 5.0� 10�4 gmL�1mm�1 gradient of casa-
mino acids was established spanning a 500lm-wide microfluidic
channel to induce chemotactic migration.

F. Ethics approval

No ethics approval was required for this work.

SUPPLEMENTARY MATERIAL

See the supplementary material for the results of simulations
using rates of orientation change and speeds sampled randomly rather
than in the sequence in which they occurred. Figure S1 shows plots of
persistence vs time [similar to those shown in Figs. 2(d)–2(i)] for these
randomly sampled data.
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