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Design of a Porous Cathode for 
Ultrahigh Performance of a Li-
ion Battery: An Overlooked Pore 
Distribution
Jihwan Song1, Junhyung Kim1, Taewook Kang2 & Dongchoul Kim1

Typical cathode materials of Li-ion battery suffer from a severe loss in specific capacity, and this problem 
is regarded as a major obstacle in the expansion of newer applications. To overcome this, porous 
cathodes are being extensively utilized. However, although it seems that the porosity in the cathode 
would be a panacea for high performance of LIBs, there is a blind point in the cathode consisting of 
porous structures, which makes the porous design to be a redundant. Here, we report the importance 
of designing the porosity of a cathode in obtaining ultrahigh performance with the porous design or a 
degraded performance even with increase of porosity. Numerical simulations show that the cathode 
with 40% porosity has 98% reduction in the loss of specific capacity when compared to the simple 
spherical cathode when the C-rate increases from 2.5 to 80 C. In addition, the loss over total cycles 
decreases from 30% to only about 1% for the cathode with 40% porosity under 40 C. Interestingly, 
however, the specific capacity could be decreased even with the increase in porosity unless the pores 
were evenly distributed in the cathode. The present analysis provides an important insight into the 
design of ultrahigh performance cathodes.

Typical cathode materials of Li-ion batteries (LIBs) suffer from a huge loss in specific capacity. Since this problem 
becomes increasingly severe as the C-rate and number of cycles increase when the batteries are operated (i.e., low 
rate capability and low cycle stability)1,2, it is regarded as the main obstacle in the expansion of newer applica-
tions of such batteries, such as portable electronic devices, medical devices, hybrid electric vehicles (HEVs), and 
renewable energy storage.

Previous studies have revealed that the loss in specific capacity arises from the inherent material property, such 
as an unusually low diffusivity of Li-ion at the specific phase in the cathode material3,4. To overcome this inher-
ently low diffusivity of Li-ion in the cathode, researchers have investigated ways with respect to the morphological 
design of the cathode, which can ensure improved insertion and extraction of Li-ion with a reduced diffusion 
pathway3–15. Initial efforts in this direction have focused on the design of one (1D) or two-dimensional (2D) cath-
ode structures that provide a reduced diffusion pathway, for instance nanorods, nanowires, and nanosheets16–22. 
These studies have reported a considerably improved specific capacity, rate capability, and cycle stability in com-
parison with existing bulk structures. Although such structures have resulted in improved performances, they 
still have some problems. The low dimensional structures have trouble with effective interconnection as a cathode 
due to their low dimension, and this causes high electrical resistance and low mechanical stability23. In order to 
resolve this problem, three-dimensional (3D) structures that can provide the effect of a reduced diffusion pathway 
have been proposed. For example, a 3D porous structure or hollow structure has been suggested as the cathode 
structure. These structures have shown improved electrochemical performances as well as improved mechanical 
stability based on their effective interconnection7–9,11–13,15,23–28. Porous structures have been extensively utilized 
as cathodes to achieve improved performances because they can be relatively easily fabricated even in a 1D or 2D 
structure29–33. On the face of it, it seems that a porous cathode would be the best way to obtain high-performance 
LIBs. However, there is a blind point in the design of porous cathodes, which limits their usefulness.
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Here, we report the importance of designing the porosity of a cathode such that the effect of porosity is ampli-
fied to achieve ultrahigh performance. The specific capacity and its loss are systematically evaluated with varying 
porosity, pore distribution, C-rate, and cycle number. Numerical simulations show that the specific capacity and 
its loss can be improved with increasing porosity of the cathode. Furthermore, the effect of porosity becomes sig-
nificant as the C-rate and number of cycles increase. Interestingly, however, the porous cathode does not always 
guarantee an improved specific capacity with increased porosity. In other words, the specific capacity could 
decrease unless the pores are evenly distributed even though the porosity of the cathode increases.

Results and Discussion
In order to evaluate the performance of a porous cathode, a 3D dynamic model based on previous studies related 
to the evolution of nano- and microstructures was developed34–37. Recently, a few studies based on phase field 
simulation have been reported, which describe the phase segregation of Li-ion battery electrodes38–44. However, 
importantly, the materials that they considered were limited to only two- or three-phase materials, namely 
FePO4 or Mn2O4. Furthermore, some of them have defined their total free energy with insufficient experimental 
evidence. Therefore, we employed a Fick’s law-based model to efficiently investigate our cathode that has the 
five phases rather than the construction of free energy for the phase field simulation that should include many 
unknown coefficients to describe the five different phases.

The schematic illustration of our cathode is shown in Fig. 1. The cathode comprises microsphere structures, 
Li-ion, and an electrolyte (Fig. 1A). During the operation of an LIB, the insertion and extraction of Li-ion occur 
in the microstructure of the cathode, and the performances of the LIB (e.g., specific capacity, rate capability, 
and cycle stability) can be determined by the Li-ion concentration in the cathode. When Li-ions are inserted or 
extracted in the cathode, the phases of the cathode material are transformed depending on the concentration of 
the Li-ion. Since the diffusivity of the Li-ion in some phases could be considerably low, it would reduce the total 
amount of Li-ions in the cathode during the utilization of the cathode and would induce a loss in performance. 
For instance, as the concentration (c) of the Li-ion increases, the cathode made with vanadium pentoxide (V2O5), 
which is considered in this study, exhibits the following phase transformations: α (0.0 <  c <  0.35), ε (0.1 <  c <  1.0), 
δ (0.7 <  c <  2.0), γ (1.0 <  c <  3.0), and ω (2.0 <  c <  3.0)1 (see Supplementary Information Fig. S1). As shown in 
Fig. S1, each phase shows considerable difference in the diffusivity of the Li-ion for example, the α, δ, and γ phases 
have a value of about 10−12 cm2/s, while the ε and ω phases have values of about 10−14~10−13 cm2/s. Commonly, 
LIBs stop operating when the ω phase is generated to avoid further increase in the amount of the ω phase, whose 
formation is irreversible. Therefore, the diffusion of Li-ion into the cathode is interrupted by the formation of 
the ε phase during the discharging process owing to its significantly low diffusivity of Li-ion, which is about 10 
times lower than that of the other phases (i.e., α, δ, and γ). The presence of porosity in the cathode could reduce 
the region of the cathode where Li-ion cannot reach due to the ε phase and result in full utilization of the cathode 
(Fig. 1B). As shown in Fig. 1C, the distribution of pores can be an important parameter in designing the micro-
structure of the cathode in addition to the porosity.

Effect of porosity on specific capacity and rate capability of cathode. First, we validated the feasi-
bility of our model used to investigate the specific capacity of the cathode by comparison with the experimental 
results. As with experiments, the simple spherical and hollow spherical V2O5 cathodes were considered (see 
Supplementary Information Fig. S2 and Section 2.3 “Validation of model”). As shown by the inset (i.e., blue 
box) in Fig. S2, at a cut-off potential of 2.2 V, the simple spherical and hollow spherical cathode show only 4.0% 
(i.e., 8.7 mAh/g) and 0.6% (i.e., 1.5 mAh/g) of difference with the experimental value, respectively. The specific 

Figure 1. Design of the porous structure in the cathode for ultrahigh performance. (A) Illustration of the 
cathode in a Li-ion battery consisting of a microsphere structure, Li-ion, and an electrolyte. Scale bar: 500 nm. 
(B) Li-ion concentration and the ε phase fraction of a simple spherical structure and a porous structure in the 
cathode. (C) Design of a porous cathode with respect to porosity and the distribution of pores.
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capacities from the numerical model are in good agreement with the experimental observations45. To analyze 
the performance of the porous cathode, the difference in the porosity of the cathode is systematically inves-
tigated. The numerical simulations are performed using the developed 3D dynamic model (see Methods and 
Supplementary Information). Figure 2A shows the time-dependent Li-ion concentrations and the fraction of the 
ε phase during the discharging process for a simple spherical cathode with a porosity of 20%. The C-rate is set to 
be 10 C. In the simple spherical cathode, the Li-ion is accumulated outside of the ε phase because the diffusivity 
of the Li-ion shows an almost tenfold decrease when the phase is transformed from α to ε (see Supplementary Inf
ormation Fig. S1). The ε phase remains until the discharging process is completed. As a result, the cathode has an 
unutilized part, which leads to the loss in specific capacity. On the other hand, since the 20% porosity provides a 
significantly increased surface area of the cathode and reduced diffusion pathway of the Li-ion into the cathode, 
the cathode with porosity is less affected by the low diffusivity of the ε phase. Indeed, the ε phase is transformed 
to the next phase (i.e., δ phase), which has about ten times higher diffusivity of the Li-ion, before the discharging 
process is finished and ε phase is not observed at the final stage (Fig. 2B). Thus, the porosity in the cathode allows 
its full utilization.

Additionally, the effect of porosity on the specific capacity was investigated with respect to the C-rates, by 
varying the C-rate from 2.5 to 80 (Fig. 2C and D). As shown in Fig. 2C, at low C-rates (i.e., 2.5 C and 5 C ), Li-ion 
can diffuse into the cathode even in the absence of porosity. Since Li-ions are slowly supplied to the cathode under 
low C-rates (e.g., 2.5 C or 5 C), in comparison with high C-rates (e.g., 10 C to 80 C), it allows the transformation of 
the ε phase to the next phase before the discharging process is finished (see Supplementary Information Fig. S2 
to S7). As a result, even the simple spherical cathode can be fully utilized without the interruption of the ε phase 
on the diffusion of Li-ion into the cathode. When Li-ions are more rapidly supplied under a high C-rate such as 
10 C, 20 C, 40 C, and 80 C, Li-ions are rapidly accumulated outside the ε phase. In this case, the ε phase remains 
until the discharge is finished and it results in the insufficient utilization of the cathode. In contrast, Fig. 2D shows 
that Li-ion can diffuse more effectively into the cathode with 20% porosity. Due to the significantly increased 
surface area and reduced pathway of diffusion, the impact of the ε phase on Li-ion diffusion is lower in the porous 
cathode when compared to the simple spherical cathode under the same C-rate. When the discharge is complete, 

Figure 2. Ultrahigh specific capacity and rate capability of a cathode with porosity. Time-dependent image 
of Li-ion concentration and the ε phase fraction (A) in the simple spherical cathode and (B) in the cathode 
with 20% porosity under 10 C. Cross-sectional image of the Li-ion concentration and the ε phase fraction at 
the completion of discharge with increasing C-rate from 2.5 C to 80 C (C) in the simple spherical cathode and 
(D) in the cathode with 20% porosity. (E) Specific capacity with different porosities in the cathode according 
to different C-rates. (F) Loss in specific capacity with different porosities in the cathode as the C-rate increases 
from 2.5 C to 80 C.
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the cathode with 20% porosity has the ε phase only at a C-rate of 80 C. As a result, the cathode with porosity can 
be fully utilized even under a high C-rate condition.

A quantitative analysis of the specific capacity with different cathode porosities is presented in Fig. 2E. The spe-
cific capacity mostly increases as the porosity in the cathode increases, and the effect of porosity becomes significant 
as the C-rate increases. The cathode with 40% porosity shows an improvement of 350% in the specific capacity over 
the simple spherical cathode at 80 C. Figure 2F shows the loss in specific capacity as the C-rate increases from 2.5 C 
to 80 C. Simulation results also show the high rate capability of the cathode with porosity. For example, the specific 
capacity of the simple spherical cathode decreases from 270 to 90 mAh/g as the C-rate increases from 2.5 to 80 C. On 
the other hand, that of the cathode with 40% porosity is only changed from 295 to 290 mAh/g for the same change 
in C-rate. The loss in specific capacity is dramatically reduced to be only about 5 mAh/g when the porosity of the 
cathode is 40%, while the simple spherical cathode exhibits a loss of about 180 mAh/g. The loss in specific capacity 
can be reduced by as much as 98% by introducing porosity in the cathode. Therefore, the problem of severe loss in 
specific capacity with increasing C-rate can be resolved by the design of porous cathodes.

Effect of porosity on cycle stability of cathode. Next, in order to investigate the cycle stability of the 
cathode, its specific capacity was studied with respect to the charging-discharging cycle (Fig. 3). Figure 3A to C 
represents the Li-ion concentration in the cathode over repeated charge and discharge cycles. The C-rate was set 
at 40 C, and the porosities of the cathode were 0%, 20%, and 40%. As shown in Fig. 3A and B, there is a consid-
erable amount of Li-ions in the simple spherical cathode and the 20% porosity cathode even after the charging 
process is complete (i.e., the region indicated in green after charging 1 and 2). In contrast, there is a relatively 
small amount of Li-ions in the 40% porosity cathode after the charging process (Fig. 3C). The cathode with 40% 
porosity provides easy transformation of the ε phase to the next phase due to its increased surface area and the 
reduced diffusion pathway. Li-ion can diffuse out of the cathode more easily than the others (i.e., Fig. 3A and B) 
during the charging process.

The remaining Li-ions in the cathode after the charging process leads to a loss in specific capacity by reduc-
ing the amount of Li-ions that will be newly intercalated during the next discharge. The loss in specific capacity 
with cycle nuber is decreased by almost 90% as the porosity in the cathode increases; this is due to the increased 
surface area and the reduced diffusion pathway of the porous cathode. Quantitatively, the loss in specific capacity 
over all the cycles is only about 1% when the porosity of the cathode is 40%, while the simple spherical cathode 
shows about 30% loss in specific capacity (Fig. 3D).

Effect of pore distribution on specific capacity of cathode. Next, the performance according to the 
distribution of pores in the cathode was investigated under 5, 10, 40, and 80 C-rate conditions. Porous cathodes 
that have an even and uneven distribution of pores were designed for each porosity. The specific capacities of each 
porous cathode with evenly distributed pores (i.e., red line) and unevenly distributed pores (i.e., blue line) are 
presented in Fig. 4A–D. Figure 4A to D presents the specific capacities at the 5, 10, 40, and 80 C-rates, respectively. 
The simulation reveals that the porous cathodes have up to 55% variation in the specific capacity according to 
the distribution of pores. Interestingly, the porosity of cathode could be a superfluous unless the pores are evenly 
distributed. Qualitatively, the cathode with well-distributed pores has a higher Li-ion concentration than the 
cathode with an uneven distribution of pores (Fig. 4E). This result can be explained by the pore-concentrated 
region that results in the restrictive use of cathode material. In other words, Li-ion is primarily intercalated at the 
pore-concentrated region due to the excessively shortened pathway of diffusion into the cathode and the much 
earlier onset of the ε phase than the other regions. Li-ions are increasingly accumulated in the region where 
the ε phase is generated due to the significantly lower diffusivity of Li-ion, and thus the discharging process is 

Figure 3. Ultrahigh cycle stability of the cathode with porosity. (A–C) Cross-sectional image of the Li-ion 
concentration at the completion of each discharging and charging process in the simple spherical cathode, 
cathode with 20% porosity, and cathode with 50% porosity, respectively. The C-rate is 40 C. (D) Specific capacity 
with different porosities of cathode during cycles.
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terminated without full utilization of the cathode. Additionally, the effect of the diameter of pores on the spe-
cific capacity was investigated (Fig. 4F and G). The porosity and C-rate were set at 40% and 80 C, respectively. 
Five different pore diameters, namely 60, 80, 100, 120, and 140 nm, were considered. As the diameter of the 
pore decreases, the specific capacity of the evenly designed porous cathode can be improved because the surface 
area increases with the decrease in pore diameter, while that of the unevenly designed porous cathode deteriorates 
(Fig. 4F). This deterioration originates from the pore-concentrated region and is due to the excessively shortened 
pathway of Li-ion diffusion as the pore diameter decreases, which results in early termination of the discharging 
process without full utilization of the cathode. The cathode with a pore diameter of 60 nm shows more restrictive uti-
lization than that observed with a pore diameter of 120 or 140 nm (Fig. 4G), as the region where Li-ion cannot reach 
(i.e., the blue region) for the cathode with 60 nm pores increases in comparison to that with 120 nm or 140 nm pores.

Figure 4. Effect of pore distribution on the specific capacity of the cathode. Specific capacities of the porous 
cathode with evenly distributed pores (red) and unevenly distributed pores (blue) at (A) 5 C, (B) 10 C, (C) 
40 C, and (D) 80 C. (E) Cross-sectional image of the Li-ion concentration in the cathode with 40% porosity 
with an even distribution (left) and an uneven distribution (right). (F) Specific capacities of the cathode with 
evenly distributed pores (red) and unevenly distributed pores (blue) according to the diameter of the pore. 
The porosity is 40% and the C-rate is 80 C. (G) Cross-sectional image of the Li-ion concentration in the 40% 
porosity cathode according to the pore diameter variation: with even distribution (top) and uneven distribution 
of pores (bottom).
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Consequently, designing porous cathodes by considering the distribution of pores may become important in 
achieving ultrahigh performance LIBs, as the distribution of pores determines whether the porous cathode will 
actually ensure ultrahigh performance or be redundant.

Conclusion
In summary, we have reported the importance of designing the porosity of a cathode so as to obtain ultrahigh 
performance. A porous cathode can have a higher specific capacity than a simple spherical cathode, and the effect 
of porosity on the specific capacity becomes more prominent as the C-rate and number of cycles increase. The rate 
capability and the cycle stability are improved with increasing porosity in a cathode. As the C-rate increased from 
2.5 C to 80 C, the loss in specific capacity was reduced to be only about 2% for the cathode with 40% porosity; in 
contrast, the simple spherical cathode showed about 70% loss in specific capacity. In addition, the loss in specific 
capacity over three cycles under 40 C was only about 1% when the porosity in the cathode was 40%, while the sim-
ple spherical cathode showed about 30% loss in specific capacity. Interestingly, the simulation revealed that the 
presence of porosity may become redundant unless the pores were evenly distributed. We expect that the analysis 
presented on the structural design of a cathode can provide an efficient way to achieve ultrahigh performance 
LIBs as an advanced power source.

Methods
The diffusion flux of Li-ion into the cathode is represented by Jd =  − D∇ c, where D and c denote the diffusivity 
and the concentration of Li-ion, respectively. Since we assume that V2O5 is a cathode material, the diffusivity 
of Li-ion in the cathode depends on the internal phases (e.g., α, ε, δ, γ, and ω) and the phases are determined 
by the Li-ion concentration in the cathode (see Supplementary Information Fig. S1)46. As shown in Fig. S1, the 
diffusivity of Li-ion in the cathode is not a constant and it is considered to be a function of the Li-ion. The phase 
and diffusivity of Li-ion at a given location in the cathode are determined according to the Li-ion concentration 
at that location, during the discharging and the charging processes. Further, when the Li-ion is inserted or is 
extracted through the cathode surface, it can be defined with the charging/discharging current density, in only at 
the surface boundary of cathode as Ji · n =  (in/F)47,48, where n and F represent the surface normal vector and the 
Faraday constant.

Consequently, the total flux (J =  Jd +  Ji) combined with the conservation equation, ∂ ∂ − ∇⋅c t/  J =  0 gives the 
governing equation as follows:

∂
∂
= ∇ ⋅ ∇ + .

c
t

D c c S[ ( ) ] (1)

where S =  ∇  · Ji. The value of i F/n  in the source term, = ∇ ⋅S i F( / )n n is determined with the given C-rate condi-
tion only at the surface boundary of cathode. (see Supplementary Information Section 2.1 “Model”). Then, the 
governing equation is normalized with the characteristic time tc, length lc, and diffusivity =D l t/c c c

2  for compu-
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Fourier spectral method is employed for high space resolution and fast computation49. In addition, the extrapo-
lated gear (SBDF) scheme is combined for time integration50. In the Fourier space, the periodic boundary condi-
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where the caret and subscript K stand for the Fourier transform. Subscript r denotes the inverse Fourier trans-
form. The new concentration, +ĉn 1 is obtained from the inverse Fourier transform. The specific capacity of the 
cathode is calculated with the average Li-ion concentration in the cathode, based on the theoretical specific 
capacity of Li2V2O5 (i.e., 294.78 mAh/g)51. More details about the computational simulation can be found in the 
Supplementary Information.

The cathode is constructed from microspheres with a diameter of 500 nm. The porosity of the cathode is 
designed by controlling the distribution of spherical pores. Each spherical pore has a diameter of 60 nm and the 
porosity varies depending on the total number of pores in the cathode. The simulations are performed until the 
completion of discharge. The fully discharged state is recognized when the fraction of the ω phase in the cathode 
becomes 1% of the total volume of the cathode. This is because an LIB commonly stops operation when the ω 
phase is generated to avoid the increase in the fraction of the irreversible ω phase51. The fully charged state is 
assumed when the Li-ion concentration at the cathode surface becomes zero since the chemical reaction for the 
charging process is terminated when Li-ion do not exit at the cathode surface.
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