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ABSTRACT

Long-range tertiary interactions determine the
three-dimensional structure of a number of
metabolite-binding riboswitch RNA elements and
were found to be important for their regulatory
function. For the guanine-sensing riboswitch of the
Bacillus subtilis xpt-pbuX operon, our previous
NMR-spectroscopic studies indicated pre-
formation of long-range tertiary contacts in the
ligand-free state of its aptamer domain. Loss of
the structural pre-organization in a mutant of this
RNA (G37A/C61U) resulted in the requirement of
Mg2+ for ligand binding. Here, we investigate struc-
tural and stability aspects of the wild-type aptamer
domain (Gsw) and the G37A/C61U-mutant (Gswloop)
of the guanine-sensing riboswitch and their Mg2+-
induced folding characteristics to dissect the role
of long-range tertiary interactions, the link
between pre-formation of structural elements and
ligand-binding properties and the functional stabil-
ity. Destabilization of the long-range interactions as
a result of the introduced mutations for Gswloop or
the increase in temperature for both Gsw and
Gswloop involves pronounced alterations of the
conformational ensemble characteristics of the
ligand-free state of the riboswitch. The increased
flexibility of the conformational ensemble can,
however, be compensated by Mg2+. We propose
that reduction of conformational dynamics in
remote regions of the riboswitch aptamer domain
is the minimal pre-requisite to pre-organize the
core region for specific ligand binding.

INTRODUCTION

The complex three-dimensional structures of RNAs
include a large variety of secondary and tertiary structural
motifs. Structural motifs defining tertiary folds contribute
to local RNA structure formation but can also connect
sequentially distant nucleotides and globally constrain
RNA conformation. Interestingly, it has been shown
that tertiary contacts of structural elements remote from
the active center influence the biological functions for a
number of different RNAs (1). In addition to the intrinsic
properties of an RNA, cofactors including proteins, ions
or small ligands mediate RNA structure formation and
alter or promote cellular function. Mg2+ ions play a par-
ticularly important role since they often enable the forma-
tion and functional stabilization of compact RNA
structures (2).
Riboswitches represent a class of recently identified

RNA regulatory elements. They are generally found in
the 50-untranslated regions of mRNAs. Transcriptional
or translational regulation or RNA processing is
modulated by binding of a small ligand to an
evolutionarily highly conserved ligand-binding domain
(aptamer domain). The conformational switch between
alternate RNA conformations is supposed to be the struc-
tural basis for the regulation of gene expression.
According to this model, ligand binding stabilizes one of
the alternative conformations of the aptamer domain that
further affects formation or destabilization of a
30-downstream structural element (3). Riboswitches sense
various small molecule metabolites, ranging from purine
nucleobases to amino acids (4). The high affinity and
specificity of riboswitch aptamer domains for their small
molecule effectors is coupled to complex tertiary architec-
tures, involving formation of intricate networks of intra-
and intermolecular interactions (5). To gain function, a
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remarkable variety of strategies for ligand recognition and
conformational adaptation of riboswitch elements has
been discovered. RNA–ligand complex formation can,
for example, be critically dependent on cations as e.g.
observed for FMN- (6) and TPP-sensing (7,8)
riboswitches. A single point mutation in the
ligand-binding region of the guanine-sensing riboswitch
element (C74U) converts the specificity of the aptamer
domain from the cognate ligand guanine to the originally
rejected ligand adenine (9). In the case of the metabolite S-
adenosylmethionine (SAM), even five structurally differ-
ent classes of riboswitches with different ligand recogni-
tion modes could be identified (10–16). In addition, not
only nucleotides that define the ligand-binding pocket but
also residues in remote regions are found to be important
for ligand binding and/or the regulatory function of
various riboswitch elements (17). These residues are
involved in the formation of a large number of different
long-range tertiary interactions and enable the formation
of compact RNA structures (18). Pre-formation of periph-
eral structural elements already in the ligand-free state
could be observed in some riboswitch RNAs; the extent
to which secondary and tertiary structure is formed and its
Mg2+ dependence are remarkable diverse and associated
with different functional implications (19–21).
For the adenine- and the guanine-sensing riboswitches,

the structure-function relationship is particularly
intriguing. The secondary structure of the two aptamer
domains (22,23) and the RNA fold of the RNA–ligand
complexes (24,25) are highly similar. The secondary struc-
tures contain three helical elements (P1, P2 and P3)
organized around a three-way junction (22,23)
(Figure 1a). Helices P2 and P3 possess capping loops
(L2 and L3), whereas one strand of P1 is supposed to be
involved in the conformational rearrangement underlying
the regulatory function of the riboswitch elements
(22,23,26). The RNA fold of the aptamer domains is
defined by two regions of complex tertiary interactions.
Residues within the central three-way junction are
mainly involved in the specific recognition of the
cognate ligand; recognition involves the formation of a
large number of tertiary interactions that define the
ligand-binding pocket (24,25). Specificity is accomplished
through formation of an intermolecular Watson–Crick
interaction with the complementary RNA residue (C or
U) at one specific sequence position (24,25,27). Several
mutational studies have identified contributions of RNA
residues to ligand-binding ability and affinity (9,22,23,28).
The X-ray structures of RNA–ligand complexes of the
adenine- and guanine-sensing riboswitch aptamer
domains (24,25) strongly indicate the significance of the
terminal loop regions (L2 and L3) in the organization of
the global RNA fold. Long-range tertiary interactions
connect these two loops and induce the compact arrange-
ment of the helical elements, P2 and P3. This inter-helical
linkage is mainly defined by the formation of two
inter-helical base-quadruples, involving various
nucleotides in the loop regions.
However, the purine-sensing riboswitch RNAs show

high specificity and affinity for the cognate ligand only,
and in addition, pursue different mechanisms to control

gene expression (22,23). Ligand binding in the xpt-pbuX
guanine-sensing riboswitch results in transcriptional deac-
tivation, in contrast to the adenine-sensing riboswitches
reported to date for which ligand binding activates gene
expression. Adenine-sensing riboswitch elements were
identified that operate either on the level of transcriptional
(pbuE) or translational (add) regulation.

In addition, the structural characteristics of the
ligand-free states of the aptamer domains and their
metal-ion induced structure formation strongly differ
(26,28–30). NMR (30) and biochemical (28) studies on
the ligand-free state of the adenine-sensing riboswitch
aptamer domain indicate conformational heterogeneity.
The addition of Mg2+ or small sequence variations in
helix P2 result in a homogenously folded RNA along
with stabilization of the loop–loop interaction (30).
These NMR results are in agreement with fluorescence
studies, for which Mg2+ was reported to pre-organize
the long-range tertiary interactions (26,28). In contrast,
NMR studies on the guanine-sensing riboswitch aptamer
domain indicated pre-formation of the long-range tertiary
structural element already in the ligand-free state of the
RNA (at a temperature of 10�C) irrespective of the
presence of Mg2+ ions (29). Despite the differences in
the extent of pre-formation of long-range tertiary interac-
tions, ligand binding can be detected for both
purine-sensing riboswitches in the absence of Mg2+ even
though the tertiary interaction is just partially pre-formed
under these conditions in the adenine-sensing riboswitch
(30). Thus, although the final RNA-purine complexes
show high structural similarity, the conformational
RNA ensemble characteristics in the absence of ligand
as well as their Mg2+ dependence strongly differ in the
adenine- and the guanine-sensing riboswitches. Hence,
for a comprehensive understanding of how riboswitches
function, it is important to characterize the ligand-free
states of the RNA elements, their Mg2+- and
temperature-dependent stabilities in solution and how
structural properties are coupled to their ligand-binding
characteristics.

To address these questions, we extend our previous
investigations (29), and present here detailed
NMR-spectroscopic studies investigating the influence of
RNA–Mg2+ interactions on RNA folding, ligand-binding
capability and functional stability of the guanine-sensing
riboswitch aptamer domain (Gsw) of the Bacillus subtilis
xpt-pbuX operon and its G37A/C61U-mutant (Gswloop)
(Figure 1). Applying solution NMR-spectroscopic tech-
niques offers the opportunity to probe potential RNA
conformational changes and formation of RNA–ligand
complexes at residue-specific resolution under a range of
different conditions. The mutations introduced in the loop
regions (G37A/C61U) of the riboswitch RNA were chosen
in a way that the base-pairing ability of the interacting
nucleotides in L2 and L3 is retained and might still
enable formation of potential long-range tertiary inter-
actions. The inter-helical tertiary structure, however, is
destabilized in the mutant RNA by the formal loss of
two hydrogen-bonding interactions. The initial
NMR-spectroscopic characterization of the mutant
Gswloop revealed that structure formation and
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ligand-binding characteristics strongly differ from the wild
type guanine-sensing riboswitch aptamer domain (29).
Most importantly, ligand binding becomes critically
dependent on the presence of Mg2+ for the mutant
Gswloop.

Here, we characterize the link between existing struc-
tural elements for potential formation of low-affinity or
specific RNA–ligand complexes and the
temperature-dependent functional stability of the mutant
Gswloop and the wild-type Gsw. NMR-spectroscopic
studies of Gswloop reveal that destabilizing the long-range
interactions by the introduced mutations results dramatic
alterations of the conformational RNA ensemble
characteristics. In the absence of Mg2+, neither
loop-loop interactions nor ligand binding can be
detected. In addition, a low-affinity encounter complex
of the ligand with the RNA as previously reported in
case of the wild type Gsw (31) cannot be observed for
Gswloop in the absence of Mg2+. However, the
ligand-binding characteristics for Gswloop resembling the
situation in the wild-type RNA can be recovered at high
Mg2+ concentrations. The conformational ensemble
defining the free state of Gswloop is biased towards con-
formations lacking long-range tertiary interactions. The
mutant enables us to fine-tune and dissect the formation
of the different tertiary structural elements independently
through variations of the Mg2+ concentration. Although
this mutation is artificial, the detailed analysis of the

Mg2+-dependent structure formation in the ligand-free
state and the link to its ligand-binding characteristics
yields insight into contributions to the function of the
wild type guanine-sensing riboswitch element.

MATERIALS AND METHODS

Sample preparation

Guanine-sensing riboswitch aptamer domains [Gsw of the
B. subtilis xpt-pbuX operon and Gswloop (G37A/
C61U-mutant)] were prepared by in vitro transcription
using T7 RNA polymerase (29). Unlabeled model
hairpin RNA constructs (helixII and helixIII) were
purchased from Dharmacon (Boulder, CO). 15N-labeled
rNTPs were purchased from Silantes (Munich). NMR
samples were prepared in H2O/D2O (9:1) using the follow-
ing NMR buffer conditions: 25mM potassium phosphate,
pH=6.2, 50mM potassium chloride.

Nuclear Magnetic Resonance (NMR) spectroscopy

NMR experiments were recorded on Bruker NMR spec-
trometers AV900, AV800, AV700 and AV600 MHz with
5-mm z-axis gradient TXI-HCN or TCI-HCN cryogenic
probes and a DRX600 MHz spectrometer equipped with a
5-mm x, y, z-axis gradient TXI-HCN-RT probe at 283K
(if not otherwise stated) using standard pulse sequences

Figure 1. (a) Secondary structure of the guanine-sensing riboswitch aptamer domain (Gsw) of the B. subtilis xpt-pbuX operon and the mutant
aptamer domain (G37A/C61U, Gswloop) following the nomenclature of Mandal et al. (22). Nucleotides in the loop regions L2 and L3 that differ in
the two constructs are highlighted in red [for further construct details, see refs (27,29)]; (b) X-ray structure of the Gsw-hypoxanthine complex (pdb:
1U8D) (24), loop regions (L2 and L3) are color coded in black, mutated residues at nucleotide positions 37 and 61 in the Gswloop-construct are color
coded in red, the ligand hypoxanthine is highlighted in blue; the base-quadruple including the mutation sites for Gswloop is enlarged next to the X-ray
structure; (c) 1H,15N-HSQC spectrum of Gswloop with annotated NMR imino proton resonance assignment ([RNA]:[Mg2+] ratio=1:7, T=283K).
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[1H,15N-HSQC (32), 2D-1H,1H-NOESY, HNN-COSY
(33) and 3D-1H,1H,15N-NOESY-HSQC (34)].

Characterization of Mg2+-dependent effects by NMR
spectroscopy

Chemical shift perturbations (CSP) �� [Hz] of imino
proton resonances were determined from 1H,15N-HSQC
spectra at various Mg2+ concentrations. Aliquots of a
MgCl2 solution were added increasing the
[RNA]:[Mg2+] ratio in steps of equivalents (eq) of Mg2+

compared with the RNA or the RNA–ligand complex
([RNA] = 0.15mM) ranging from 0 to 33 eq (correspond-
ing to absolute concentrations of [Mg2+] ranging from
0 to 5mM). CSPs were calculated according to

�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððð�HNÞ

2
þ ð�N=5Þ2Þ=2Þ

q
. Non-linear regression

of the correlation of CSP with the corresponding
[Mg2+]:[RNA] ratio results in estimation of apparent dis-
sociation constants (KD). The KD was analyzed for exem-
plary imino proton resonances according to the fitting

function: f ðxÞ ¼ b=2ððxþ 1þ aÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððxþ 1þ aÞ2 � 4xÞ

q
Þ,

with f (x) is the CSP at the respective x the
[Mg2+]:[RNA] ratio, a the ratio of the dissociation
constant to [RNA] and b the CSP for infinite Mg2+ con-
centrations (35).

NMR line width analysis

The NMR studies were performed using unlabeled
Gswloop-RNA and 13C,15N-labeled ligands (hypoxanthine
or adenine) with [RNA]:[ligand] ratios of �5:1 (31).
Experiments were performed on a Bruker DRX600
MHz spectrometer equipped with a 5-mm x, y, z-axis
gradient TXI-HCN-RT probe at 283K. The line width
values of the respective ligand signals (C2–H2 and
C8–H8) were extracted from appropriately zero-filled
1H,13C-HSQC spectra and analyzed by deconvolution
using Topspin 2.1.

Circular Dichroism (CD) spectroscopy

CD melting profiles were recorded on a Jasco J-810 instru-
ment within the temperature range of 4–94�C using a
quartz cuvette of 1mm path length. RNA samples were
measured in NMR-buffer with final RNA concentrations
of 10–15 mM. The melting profiles were followed at a wave
length of 264 nm and data were collected with heating
rates of 1�C/min. The unfolding transitions (�C) were
extracted from the temperature derivative of the fitted
CD profile. The heating and cooling profiles could be
superimposed indicating reversibility of the transitions.

RESULTS

NMR-spectroscopic characterization of the free
(G37A/C61U)-mutant of the guanine-sensing
riboswitch aptamer domain

The assignment of the NMR resonances of the solvent
exchangeable imino protons is reported for Gswloop as a
pre-requisite for its structural analysis. H,N-correlation

spectra [1H,15N-HSQC (32)] involving the imino sites of
the nucleobases of guanosine and uridine residues in RNA
provide two advantages: (i) NMR signals for imino sites
are only detectable when protected from exchange with
the solvent and give direct evidence for residues involved
in stabilizing secondary or tertiary structure. (ii) The
chemical shifts of these signals sensitively vary in
response to even subtle changes in local structure. They
reflect contributions of different potential interactions e.g.
with small ligands, proteins, Mg2+ or variations in inter-
or intramolecular interaction networks of RNA structural
elements (34).

The NMR imino proton resonances of the aptamer
domains of wild type and mutant guanine-sensing
riboswitches provide sensitive reporters to analyze the dif-
ferences in tertiary structure formation and ligand-binding
characteristics. The formation of long-range loop–loop
interactions in Gsw and Gswloop can be followed by four
different NMR reporter signals in the 1H,15N-HSQC
spectra, respectively. Signals can be monitored for
residues U34, G38 and G37 in Gsw and for residues
U34, G38 and U61 including the mutation sites (G37A/
C61U) in Gswloop. The imino sites of these nucleotides are
involved in the base-pairing interactions of the
inter-helical base-quadruples. In addition, an imino
proton signal is expected for residue G32 in both RNA
constructs. Interestingly, this signal is protected from
exchange by stacking interactions rather than by
hydrogen-bond formation and becomes exclusively detect-
able when the long-range tertiary interaction is present.

The bound ligand and nucleotides involved in forma-
tion of the ligand-binding pocket are locked in place by
numerous interactions. As a consequence, additional
imino proton signals appear and lead to considerable dif-
ferences in the NMR spectra (29).

The 1H,15N-HSQC spectrum of the uniformly
15N-labeled 73 nt-Gswloop in its free state indicates a
homogeneously folded RNA with conformational
dynamics that are fast on the NMR time scale. As typi-
cally expected for fast conformational averaging, these
dynamics can be detected by increased line widths that
are actually larger in the ligand-free conformation of the
RNA compared to the ligand-bound state. However, a
second set of RNA resonances identifying a second con-
formation in slow exchange cannot be detected.

In the free state, 20 resolved imino proton resonances
are observed (Figure 1). NMR-spectroscopic assignment
of the base-pairing patterns and the sequential correla-
tions could be obtained from an analysis of the
HNN-COSY experiment (33) and 2D- and 15N-edited
3D-NOESY spectra (Supplementary Figure S1). All
imino proton signals could be assigned to residues in the
three helical elements P1, P2 and P3. In cases where
sequential correlations could not be achieved due to
limited spectral dispersion we used model hairpin RNAs
representing structural fragments of the full-length RNA
construct. The chemical shifts and NOE-connectivities of
the model hairpin RNAs were found to be closely similar
to the NMR characteristics of the full-length RNA and
thus, further confirmed the resonance assignment of
Gswloop (Figure 1, Supplementary Figures S1 and S2).
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No additional imino proton signals besides those of
residues in the three helical elements could be observed
in the NMR spectra of Gswloop (in the absence of
Mg2+). All other imino sites are therefore not involved
in hydrogen-bonding interactions but rapidly exchange
with the solvent water. This behavior is also observed
for imino proton signals of residues that form the
closing base pairs of the helical elements (G12, G45,
U67, G72 and U75). Thus, our NMR-spectroscopic char-
acterization confirms the proposed secondary structure of
the free Gswloop (Figure 1). Additionally, the NMR
spectra reveal the absence of the long-range tertiary
loop–loop interactions for Gswloop in the absence of
Mg2+. This observation is in stark contrast to the wild
type guanine-sensing riboswitch aptamer domain
(Supplementary Figure S3) for which the loop–loop inter-
action is detectable in the NMR spectra of the ligand-free
state of the RNA even in the absence of Mg2+ (29). The
NMR spectra of Gswloop thus show that the mutation
destabilizes the long-range loop–loop interaction but
does not induce alternative tertiary interactions or
conformational heterogeneity indicative of misfolded con-
formations detectable on the NMR time scale.

Mg2+ dependence of conformational dynamics for Gswloop

in the ligand-free state

Mg2+ ions are essential cofactors for the structure and
function of various complex RNAs. In particular, forma-
tion of tertiary structure motifs often requires Mg2+ ions
(1,36).

Analysis of the 1H,15N-HSQC spectra of Gswloop upon
titration with Mg2+ revealed strong Mg2+-induced effects
on structure formation. We observed chemical shift per-
turbations (CSP) of various imino proton NMR reso-
nances. Such CSP might either arise when residues are
involved in or are in close proximity to Mg2+-binding
sites and thus, allow for their localization and the deter-
mination of affinities. In addition, CSP might be caused by
RNA conformational rearrangements. The Mg2+-induced
formation of additional secondary or tertiary structural
elements might result in the appearance or disappearance
of NMR resonances. These Mg2+-induced differences in
RNA structure might also be reflected by changes in
NOE-connectivities.

Mg2+-titration of Gswloop from its free state up to an
[RNA]:[Mg2+] ratio of �1:18 reveals no change in the
number of imino sites detectable in the 1H,15N-HSQC
spectra. The observable imino proton signals stem from
residues in the helical elements P1, P2 and P3. However,
significant Mg2+-dependent chemical shift perturbations
of a number of imino proton resonances were observed.
By analyzing the magnitude of the CSP as a function of
the [RNA]:[Mg2+] ratio, apparent KD(Mg2+)-values in
the low millimolar range could be derived (Figure 2).

A further increase in Mg2+ concentration leads to
drastic changes in the NMR spectra of Gswloop. A
number of additional imino proton signals were
observed in the 1H,15N-HSQC spectrum. Interestingly,
these signals correspond to residues involved in the
tertiary loop–loop interaction (U34, G32, G38, U61) or

to the closing base pairs in helical elements (G45, U67).
These signals are exclusively detected when the long-range
tertiary interaction is formed (Figure 2a). Our NMR
experiments thus indicate that high concentrations of
Mg2+ mediate the formation of the long-range tertiary
loop–loop element that is destabilized as a result of the
introduced mutations.
Second, at high [RNA]:[Mg2+] ratios the Mg2+-

induced formation of the tertiary loop–loop interaction
induces sizeable chemical shift changes for signals in the
helical elements P2 and P3 (Figure 2). These CSPs might
be associated with two effects. They could be caused by
local RNA conformational changes induced by interac-
tions with Mg2+ and, in addition, due to changes in
inter-helical packing as soon as the formation of the
tertiary long-range interaction induces the parallel
arrangement of helices P2 and P3. The changes in the
CSPs are rather abrupt. These abrupt changes likely
reflect a global conformational change taking place in a
coupled process of Mg2+ binding and RNA folding due to
formation of a stable, Mg2+-mediated long-range tertiary
interaction.
NMR spectra of Gswloop were recorded in the presence

of cobalt hexamine (37) in order to clarify whether direct
inner-sphere metal coordination or non-specific
electrostatic interactions and shielding of negative
charges are the minimal pre-requisites to mediate the for-
mation of the long-range tertiary RNA–RNA interac-
tions. Titration of Gswloop with this [Mg(H2O)6]

2+

analogue leads to cobalt hexamine association determined
by CSP on the imino proton resonances. In addition, not
only Mg2+ but also the addition of cobalt hexamine
induces the appearance of the imino proton reporter
signals in 1H,15N-HSQC spectra indicative of the
long-range tertiary loop–loop interaction (data not
shown). These results indicate that outer-shell metal–ion
coordination is already sufficient to facilitate the forma-
tion of the long-range tertiary structural element for
Gswloop.

Structural characteristics of the free RNA conformation
determine properties of Gswloop–ligand complex formation

The titration of Gswloop with Mg2+ in the presence of the
ligand hypoxanthine followed by NMR spectroscopy indi-
cates that ligand binding takes place and induces forma-
tion of an RNA–ligand complex that resembles the wild
type Gsw–hypoxanthine complex (Supplementary Figure
S4). The NMR spectra of the Gswloop–ligand complex in
the presence of Mg2+ show the expected additional imino
proton resonances resulting from signals of the bound
ligand and characteristic residues in the ligand-binding
core region of the RNA (29). As discussed in the
previous paragraphs, the conformation of Gswloop in the
ligand-free state is strongly dependent on the Mg2+ con-
centration. According to the structural characteristics of
these Mg2+-dependent ligand-free RNA conformations,
three different scenarios for ligand binding to Gswloop

were observed dependent on the [RNA]:[Mg2+] ratios.

(i) In the absence of Mg2+, the tertiary loop–loop
interaction is not pre-formed and the mutant
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Gswloop cannot bind hypoxanthine. The NMR
spectra show no RNA–ligand complex signals.
Also a 10-fold excess of ligand does not result in
complex formation suggesting that such missing
structural pre-formation may not be compensated
at high ligand concentrations.

(ii) For low Mg2+ concentrations with
[Gswloop]:[Mg2+] ratios up to �1:18, characteristic
RNA–ligand complex signals can be detected in the
NMR spectra. However, the tertiary loop–loop
interaction and the ligand-binding pocket are
exclusively formed upon simultaneous binding of
ligand and Mg2+.

(iii) In contrast, for high Mg2+ concentrations with
[Gswloop]:[Mg2+] ratios >1:18, the long-range
tertiary loop–loop interaction is already detectable
in the ligand-free state of the RNA. When
hypoxanthine is added, chemical shift changes can
be observed for resonances of the loop residues and
of residues in helices P2 and P3, in addition to the
appearance of the signals of the ligand-binding core
region of the RNA. These chemical shift changes
indicate that not only ligand binding, but an addi-
tional conformational rearrangement in these
remote regions is associated with the ligand-binding
process (Supplementary Figure S5).

However, comparison of the NMR spectra of the final
Gswloop–ligand complexes at (ii) low and (iii) high Mg2+

concentrations reveal CSPs for a number of imino proton
resonances (Figure 3). RNA signals that show a CSP of
>25Hz following a Mg2+-titration ([RNA]:[Mg2+] ratio
of (ii) �1:7 up to (iii) �1:33) of the Gswloop–ligand
complex are highlighted in Figure 3. At high Mg2+ con-
centrations ([Gswloop]:[Mg2+] ratio �1:33), two additional
imino proton signals arising from residues U34 and U67
are detectable. Both residues are located close to the

tertiary loop–loop interaction in the structure of the
RNA–ligand complex. The observed Mg2+-dependent
effects of imino proton resonances in the Gswloop–ligand
complex are in good agreement with the Mg2+-binding
sites obtained for the wild type Gsw–hypoxanthine
complex (29). Thus, although RNA–ligand complex for-
mation can already be detected in NMR spectra at low
[Gswloop]:[Mg2+] ratios, the RNA characteristics of the
RNA–ligand complexes vary with increasing Mg2+

concentrations.
Comparison of the NMR spectra of the final RNA–

ligand complexes of the wild type and the mutant
guanine-sensing riboswitch aptamer domains at elevated
Mg2+ concentrations illustrates a high degree of similarity
with the exception of imino proton resonances that differ
due to the RNA mutations (G37 and U61). As expected
for very similar complex structures, the only considerable
chemical shift differences in the 1H,15N-HSQC spectra of
these RNA–ligand complexes are observed for residues
situated in spatial vicinity to the mutation sites in the
loop regions of the two RNA constructs (Supplementary
Figure S4). In conclusion, the NMR conformational
analysis indicates that destabilizing effects of the muta-
tions in the formation of a long-range loop–loop interac-
tion for Gswloop are compensated by the addition of Mg2+

both, in the ligand-free Gswloop and in the RNA–ligand
complex; the local stability may, however, be different
compared to the wild-type Gsw.

Long-range tertiary interactions influence the RNA
conformational state capable of low-affinity ligand binding

For wild-type Gsw, we have previously established that
formation of an initial encounter complex between the
ligand and the aptamer domain precedes formation of
the high-affinity RNA–ligand complex. The encounter
complex is characterized by low-affinity and reduced
specificity ligand binding. It is detected by increased

Figure 2. Mg2+-induced effects on Gswloop structure formation; (a) Overlay of 1H,15N-HSQC spectra of Gswloop (T=283K) at [RNA]:[Mg2+]
ratios of 1:8 (black) and 1:33 (red). INSET: secondary structure of Gswloop. RNA imino proton resonances that are exclusively detectable at a high
[RNA]:[Mg2+] ratio (1:33) are annotated and color coded in red. Imino proton resonances with a chemical shift perturbation �� of >40Hz within
[RNA]:[Mg2+] ratios ranging from 1:8 to 1:33 are annotated in blue; (b) chemical shift perturbation (CSP) �� [Hz] of resolved imino proton
resonances upon Mg2+ titration, gray bar: titration of Gswloop to a final [RNA]:[Mg2+] ratio of 1:8, black bar: titration of Gswloop to a final
[RNA]:[Mg2+] ratio of 1:33; (c) CSP [Hz] of two exemplary imino proton resonances (G55 and G57) as a function of the [Mg2+]:[RNA] ratio; the
KD-values are determined from the correlation up to a [Mg2+]:[RNA] ratio of �18:1. The dashed gray line indicates the minimal [RNA]:[Mg2+] ratio
for which all signals of the tertiary loop–loop interaction can be detected in the NMR spectra of Gswloop.
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NMR line widths of the non-cognate ligand adenine in the
presence of the guanine-sensing riboswitch aptamer
domain and, reciprocally, of the non-cognate ligand
hypoxanthine in the presence of the adenine-sensing
riboswitch aptamer domain (31). The low-affinity
binding may indicate a partial pre-organization of the
ligand-binding core of the RNA enabling the transient
interaction with the ligand.

In an attempt to unravel the influence of the long-range
tertiary structural element on the properties of such an
initial encounter complex, we utilized an analogous exper-
imental set-up for Gswloop. The NMR line widths of the
non-exchangeable ligand signals (C2–H2 and C8–H8)
were determined using isotopically (13C,15N)-labeled
ligands, hypoxanthine and adenine, in the presence of
unlabeled Gswloop (Supplementary Table S1). For the
free ligands in solution, the NMR line widths were deter-
mined to be 6.9±0.1Hz and 7.5±1.0Hz for adenine and
hypoxanthine, respectively. As expected in the presence of
Gswloop and Mg2+, the line width of hypoxanthine
increases to 33.0±3.2Hz, reflecting the formation of a
specific RNA–ligand complex in slow exchange. A
low-affinity complex of Gswloop and adenine with an
increase in the ligand line width to 11.3±0.1Hz was
observed at a [Gswloop]:[Mg2+] ratio >1:18. These
results resemble the ligand-binding characteristics both,
of specific binding of the cognate ligand hypoxanthine
and of formation of an initial encounter complex of the
non-cognate ligand adenine also detected for the wild-type
Gsw (31). Interestingly, the RNA-induced line-broadening
effects of ligand NMR signals in the absence of Mg2+ are
only minor and equivalent to line widths previously
observed in the presence of a control RNA construct
lacking the ligand-binding site (31). As Gswloop in the
absence of Mg2+ is not capable of low-affinity ligand
binding, we conclude that the increased conformational

dynamics of the RNA ensemble in the absence of
long-range tertiary interactions prevent formation of
such an initial encounter complex.

RNA–Mg2+ interactions affect the
temperature-dependence of the functional stability for
guanine-sensing riboswitch aptamer domains

The ligand-free RNA conformations of Gsw and Gswloop

comprise very similar secondary structures but differ in the
extent of pre-formed long-range tertiary interactions as
well as the variable Mg2+ dependence of their formation.
To delineate the contributions of RNA–Mg2+ interac-
tions to RNA structure formation and functional stability
we analyzed the temperature-dependent unfolding profiles
of Gsw and Gswloop combining global information of CD
melting experiments (38) and residue-specific resolution of
temperature-dependent NMR studies (Table 1).
Comparison of thermal denaturation experiments of the

two RNA constructs, Gsw and Gswloop, supports the link
of RNA–Mg2+ interactions to tertiary RNA structure sta-
bility. For RNA constructs (Gsw with and without Mg2+,
Gswloop in the presence of high Mg2+ concentrations) or
RNA–ligand complexes for which the tertiary loop–loop
interaction is pre-formed according to the NMR data, the
melting profiles show two transitions (Figure 4c,
Supplementary Figure S6). Melting profiles of Gswloop

in the absence of Mg2+ or at low Mg2+ concentrations
where the long-range loop–loop interaction is not stable
formed reveal only a single unfolding transition at 67.4–
68.1�C. Accordingly, the first melting transition can be
tentatively assigned to unfolding of the tertiary loop–
loop structural element, while the second transition (or
in case of Gswloop in the absence of Mg2+ or at low
Mg2+ concentrations the only transition) can be
attributed to unfolding of secondary structures.

Figure 3. Mg2+-induced effects on Gswloop–hypoxanthine complexes; (a) overlay of 1H,15N-HSQC spectra of the Gswloop–hypoxanthine complex
with (ii) 7 eq (black) and (iii) 33 eq (red) of Mg2+. Residues that show a chemical shift perturbation �� of >25Hz or can exclusively be detected in
the presence of high Mg2+ concentrations are annotated; (b) residues depicted in (a) are highlighted as red spheres on the X-ray structure of the
Gsw–hypoxanthine complex [pdb: 1U8D (24)].
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Taking advantage of residue-specific resolution that can
be obtained by NMR spectroscopy we characterized the
first melting transition in temperature-dependent NMR
experiments to gain further evidence for the assignment
of this transition to the unfolding of specific structural
elements (Figure 4). The CD melting experiments reveal
a first transition for the Gsw–hypoxanthine complex at
21.9�C, while upon addition of Mg2+ a shift of this first
melting transition to 69.5�C could be observed (Figure
4c). Comparison of 1H,15N-HSQC spectra of the Gsw–
hypoxanthine complex at different temperatures indicates
that a number of imino proton NMR signals disappear at
30�C, while, in contrast, at this temperature all signals of
the RNA–ligand complex in the presence of Mg2+ can be
observed in the NMR spectrum. In detail, for the Gsw–
hypoxanthine complex the signal intensities of nucleotides
forming the base-quadruples of the tertiary loop–loop
interaction U34, G37 and G38 and of nucleotides G32,
G45 and U67 that can only be detected if the long-range
tertiary interaction is present, decrease at 30�C.
Concerning tertiary interactions constituting the
ligand-binding pocket, characteristic imino proton
signals broaden but the signal for G46 is the only
reporter that diminishes at 30�C. However, a further
increase in temperature (35–40�C) then results in NMR
spectra characterized by the absence of all other NMR

resonances of nucleotides involved in formation of the
ligand-binding pocket.

For the ligand-free state of Gsw, no imino proton
signals from nucleotides situated in the ligand-binding
core can be observed. However, NMR resonances from
nucleotides located in the loop regions of the RNA reveal
similar temperature-dependent effects upon addition of
Mg2+ ions (data not shown). Based on these NMR
results, the first temperature-dependent unfolding transi-
tions can reliably be assigned to unfolding of the respec-
tive existing tertiary interactions.

The effect of the two cofactors on the thermal stability
of the RNA complexes is different. While hypoxanthine
does not induce a significant shift of the unfolding transi-
tions neither for Gsw nor for Gswloop, a strong stabiliza-
tion of tertiary structure could be observed in the presence
of Mg2+ (Figure 4c, Table 1). However, while the two
unfolding transitions are well separated e.g. for the
Gsw–hypoxanthine complex in the absence of Mg2+, at
higher Mg2+ concentrations temperature-dependent
unfolding of tertiary and secondary structural elements
becomes less distinguishable. For Gsw in the ligand-free
and the ligand-bound state, the presence of Mg2+ induces
a shift of the first unfolding transition of �45.3–47.6�C,
while the secondary structure unfolding transitions are
similar in both states, respectively.

For Gswloop and Gswloop–hypoxanthine complexes at
[RNA]:[Mg2+] ratios for which the tertiary loop–loop
interaction is formed, two melting transitions are observ-
able. However, while for experimental conditions compa-
rable to Gsw in the presence of Mg2+ the second
transition shows a similar stabilization through associa-
tion of Mg2+ ions, the first unfolding transition can here
be determined to be 36.1–37�C.

Taken together, our temperature-dependent experi-
ments indicate that stabilization of the tertiary structure
is very sensitive to changes in Mg2+ concentration for
both RNA constructs. However, the Mg2+-induced
tertiary structure stabilization is more pronounced for
Gsw than for Gswloop, an effect that might be attributed
to the reduced number of tertiary contacts due to the
mutations in Gswloop.

Figure 4. Temperature-dependent characteristics of Gsw–hypoxanthine complexes; overlay of temperature-dependent 1H,15N-HSQC spectra (black:
10�C, blue: 20�C, red: 30�C) of (a) the Gsw–hypoxanthine complex, (b) the Gsw–hypoxanthine complex in the presence of Mg2+ (15N-labeled RNA,
unlabeled hypoxanthine). Imino proton signals not detectable at 30�C are annotated; (c) normalized CD melting profiles of the Gsw–hypoxanthine
complex in the presence and absence of Mg2+.

Table 1. Temperature-dependent unfolding transitions of

guanine-sensing riboswitch aptamer domains (Gsw and Gswloop)

RNA Cofactor First
transition
(�C)

Second
transition
(�C)

Gsw – 20.6 68.2
Gsw Mg2+ 65.9 78.9
Gsw Hypoxanthine 21.9 67.9
Gsw Mg2+ and hypoxanthine 69.5 80.0
Gswloop – – 67.4
Gswloop 6 eq Mg2+ – 68.1
Gswloop 33 eq Mg2+ 36.1 73.8
Gswloop 33 eq Mg2+ and hypoxanthine 37.0 73.5
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DISCUSSION

Riboswitches constitute evolutionary optimized RNA
elements that sense the concentration of small ligands
and thereby function as very sensitive regulators of gene
expression. However, not only nucleotides in the sensor
region were found to be essential for ligand-binding
efficiency, but also organization of global RNA architec-
ture involving structured regions remote from the
ligand-binding core plays an important role for regulatory
function (17,18). With the intricate network of obligatory
inter- and intramolecular interactions that sensitively
defines their function, riboswitch modules might consti-
tute interesting targets for RNA-targeted drug design
(39). A pre-requisite to design molecules to target
riboswitches is a detailed understanding of the RNA
architecture, the RNA functional stability and the role
of RNA–Mg2+ interactions as well as the correlation of
these properties with cellular function.

The long-range tertiary loop–loop interaction in RNA–
ligand complexes of the guanine-sensing riboswitch
aptamer domain is mainly stabilized by two inter-helical
base-quadruples and could already be observed in the
ligand-free state of the RNA (24,25,29). Within the
mutant riboswitch (G37A/C61U), the interactions
between the two loop regions can form. The double
mutation, however, induces dramatic changes in the
conformational ensemble characteristics of the free state
of the RNA and, in turn, influences its ligand-binding
capability. We observed that the mutations induce a
drastic Mg2+ dependence of RNA structural characteris-
tics that strongly differs from those of the wild-type Gsw.
The residue-specific resolution in the NMR spectra and
the fact that various imino proton reporter signals partic-
ipate in the formation of the different characteristic inter-
and intramolecular RNA tertiary interactions allows the
dissection of individual structural contributions to the
RNA characteristics.

Mg2+ ions induce different structural effects in the
ligand-free RNA conformation depending on the
[RNA]:[Mg2+] ratio: we find three different regimes that
in turn determine the capability of Gswloop for ligand
binding.

The free state of the riboswitch variant Gswloop

undergoes considerable dynamics. NMR spectra in the
absence of Mg2+ indicate the formation of the predicted
secondary structure, but there is no evidence of any
tertiary interaction. Neither imino proton signals indica-
tive for the long-range loop–loop interaction nor for
nucleotides in the ligand-binding pocket could be
detected. The observation that the mutant RNA cannot
bind the ligand in the absence of Mg2+ confirms the bio-
logical relevance of the long-range tertiary loop–loop
interaction for ligand binding in the guanine-sensing
riboswitch (22,24).

The presence of Mg2+ ions, however, restores the capa-
bility of ligand binding for the mutant Gswloop. This
observation raises the question to what extent the
destabilized structural pre-formation is compensated by
RNA–Mg2+ interactions to obtain a binding-competent
RNA conformation in turn.

Even before a stable long-range tertiary interaction is
formed, the guanine-sensing riboswitch is ligand-binding
competent as evidenced by the NMR-spectroscopic char-
acterization in [Gswloop]:[Mg2+] ratios up to �1:18. Here,
coupled binding of ligand and Mg2+ induces two struc-
tural effects, the formation of the long-range tertiary
element and organization of the characteristic
ligand-binding pocket. For this [Gswloop]:[Mg2+] concen-
tration regime, restriction of conformational dynamics
due to the addition of Mg2+ might induce an RNA
conformational ensemble for which loop–loop interac-
tions become dynamically accessible and thus enable
ligand binding.
Following a further increase in Mg2+ concentration

([RNA]:[Mg2+] ratios >1:18) the appearance of character-
istic imino proton reporter signals in the NMR spectra
indicate the stabilization of the tertiary long-range inter-
action already in the ligand-free state of the RNA. Under
these conditions, the dynamic ensemble of RNA confor-
mations is now skewed towards conformations with
potential loop–loop interactions. Thus, high concentra-
tions of Mg2+ are able to compensate for the RNA struc-
tural defects caused by the mutations. In addition,
significant chemical shift changes compared to the
previously reported concentration regimes are detected
for signals in the helices P2 and P3, indicating packing
of these helices. This observation might be associated
with the combined effects of Mg2+ binding and global
RNA folding. Besides formation of the ligand-binding
pocket, addition of ligand to Gswloop at high Mg2+ con-
centrations causes chemical shift changes for residues
located in the loop regions. Since the long-range tertiary
loop–loop interaction is already pre-formed in the absence
of ligand at high Mg2+ concentrations, these findings
indicate that upon addition of hypoxanthine not only
ligand binding but also a conformational rearrangement
takes place. A similar structural rearrangement in regions
remote from the core region of the RNA upon ligand
binding can also be detected for the wild-type Gsw
despite the fact that here, the tertiary interaction is
already pre-formed in the free RNA and in the absence
of Mg2+ (29,31).
Earlier, we showed that hypoxanthine forms a

low-affinity initial encounter complex with the
guanine-sensing riboswitch aptamer domain. By analyzing
the mutant RNA, for which we can fine-tune the degree of
formation of the tertiary interactions by variation of the
Mg2+ concentration, we could decipher pre-requisites for
formation of such an initial encounter complex. For
Gswloop in the presence of high concentrations of Mg2+,
both, specific binding of the cognate ligand hypoxanthine
and low-affinity ligand binding of the non-cognate ligand
adenine was detected. For this Mg2+ concentration
regime, not only structural characteristics in the
ligand-free state, namely pre-formation of the long-range
tertiary structural element but also the ligand-binding
characteristics resemble the situation observed for the
wild-type Gsw (31). These observations suggest that an
RNA conformational state capable of forming such an
initial encounter complex depends on the presence of a
partially organized ligand-binding core region. Such
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partial pre-organization of the core region might be
induced by restriction of RNA conformational dynamics
through stabilization of remote regions. This restriction
can be mediated either by the stable tertiary loop–loop
interaction in the wild-type Gsw or by Mg2+-stabilized
tertiary loop–loop interactions in the mutant Gswloop.
When no stable long-range loop–loop interaction is
present, as e.g. for Gswloop in the absence of Mg2+, a
low-affinity complex formation cannot be observed, sug-
gesting that the core region is not pre-organized to the
same extent. Based on fluorescence data, structural
pre-organization in the ligand-binding core region upon
addition of Mg2+ was proposed also for an
adenine-sensing riboswitch aptamer domain (26).
Our NMR-spectroscopic results indicate that for

Gswloop, restriction of conformational ensemble
dynamics can be compensated through RNA-Mg2+

interactions but is essential for ligand-binding activity.
However, the Mg2+-induced compaction of the RNA
seems to be specific, resulting in very similar
intramolecular long-range RNA tertiary interactions as
observed in the NMR spectra of the wild-type Gsw.
Additionally, no misfolded intermediates or non-native
conformations could be detected. The possibility for
inducing different structural events, namely the formation
of the long-range tertiary loop–loop interaction and the
ligand-binding pocket independently through variation of
the Mg2+ concentration might thus further enable the dis-
section of the conformational contributions to the kinetics
of ligand binding and RNA folding.
The stability of the long-range tertiary structural

element is linked to ligand-binding capability for the
guanine-sensing riboswitch. Functional stability is
significantly affected by RNA–Mg2+ interactions not
only for the mutant Gswloop but also for the wild-type
Gsw as evidenced by our thermal unfolding experiments.
Mg2+ induces the appearance of an additional unfolding
transition for Gswloop ([RNA]:[Mg2+] ratio >1:18) that is
attributed to the thus-stabilized tertiary structure and pro-
nounced shifts of the melting transition related to the
long-range tertiary interactions. For the wild-type Gsw,
our data support previous chemical-probing studies that
observed a temperature-dependent increase in reactivity
for nucleotides in the loop region elements, which was
found to be dependent on the presence of Mg2+ (40).
Our temperature-dependent results suggest that in the
case of a pre-formed loop–loop interaction, the ensemble
of RNA conformations becomes further restricted by
association of Mg2+ ions that might increase the forma-
tion of definite native contacts. When the specific
RNA–RNA interactions are absent, the degree of
compaction of the RNA ensemble in the ligand-free
state is decreased and the free energy barrier might be
determined by additional entropy changes.
Our studies strongly support the notion that even

nucleotides remote from the ligand-binding region can
be crucial for the regulatory capacity as also for the
guanine-sensing riboswitch element (22,24). A
destabilization in the long-range tertiary element dramat-
ically alters structural and functional characteristics of the
RNA conformational ensemble. The topology of the

long-range tertiary loop–loop interaction and its
conformational dynamics constitute crucial factors in the
folding of the riboswitch element. Our results indicate that
a stable long-range tertiary interaction reduces the RNA
conformational dynamics which might also be accom-
plished by Mg2+ ions. The possible compensation of
stable intramolecular RNA interactions by Mg2+ ions
illustrates the significance of RNA–Mg2+ interactions
for structure and function of the riboswitch aptamer
domains as also observed for other RNAs (2,36,41). For
the mutant RNA our results show that the dynamics of
the conformational ensemble strongly affect the ligand
binding capability of the guanine-sensing riboswitch
aptamer domain. We propose that reduction of the
conformational ensemble dynamics in the ligand-free
RNA that is accomplished by conformational constrain-
ing of the helical elements P2 and P3 is the minimal
pre-requisite to partially pre-organize and thus optimize
the core region of the RNA for ligand binding. Residues
involved in the tertiary long-range interaction may have
been evolutionarily optimized to increase the functionality
of this regulatory element to function even independently
of other cofactors abundant in the cell, as for example
Mg2+ ions. Our data indicate that the presence of Mg2+

not only compensates for a mutationally destabilized
long-range interaction but also for temperature-induced
increase of conformational dynamics for the
guanine-sensing riboswitch aptamer domain. Thus, an
RNA structural stabilization induced by Mg2+ ions
seems to be essentially required for riboswitch function
in temperature ranges of cellular processes.
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