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The aim of this study is to elucidate molecular mechanism by which E1A-like inhibitor of differentiation 3 (EID3) promotes
cancer stem cell-like phenotypes in osteosarcoma. Overexpression of EID3 in osteosarcoma cells generated more spherical
clones, enhanced the expression of stemness-associated genes, and promoted chemoresistance, invasion, and metastasis.
Furthermore, osteosarcoma cells overexpressing EID3 had increased ability to grow in suspension as osteospheres with high
expression of Sox2 and stem cell marker CD133. In addition, knockdown of EID3 reduced sphere formation and inhibited
osteosarcoma cell migration and invasion. RNA sequencing and bioinformatics analysis revealed that PI3K-Akt signaling
pathway and MAPK pathway‐related genes were enriched in osteosarcoma cells with high expression of EID3. Taken together,
EID3 promotes osteosarcoma, and EID3–PI3K-Akt axis is a potential therapeutic target for osteosarcoma treatment.

1. Introduction

Osteosarcoma is the main cause of tumor death in children
and adolescents [1]. With the development of modern med-
ical technology, radical surgery and neoadjuvant chemother-
apy has significantly increased the 5-year survival rate to
60% [2, 3]. However, due to the resistance of tumor cells
to chemotherapeutic drugs, the survival rate has reached a
plateau [4]. The submachine system of chemotherapy resis-
tance of osteosarcoma is not yet clear, and the existence of
osteosarcoma stem cells (OSCs) is considered to be a major
reason for chemotherapy resistance of osteosarcoma [5, 6].
Although the role of osteosarcoma stem cells in chemother-
apy resistance has not been fully elucidated, evidence shows
that tumor stem cells can inhibit apoptosis through a variety
of mechanisms, such as high expression of special drug
transporters and effective DNA repair in osteosarcoma cells,

which is related to the ability of tumor stem cells to maintain
tumorigenicity through self-renewal and differentiation
[5–7]. Therefore, to find the molecular mechanism related
to the osteosarcoma stem cells and develop new targets to
enhance drug sensitivity of osteosarcoma is an urgent prob-
lem to improve the treatment of osteosarcoma [8].

Molecular genetic analysis showed that the inactivation of
tumor suppressor Rb and p53 played an important role in the
occurrence and development of human osteosarcoma [9]. In
vivo studies have also shown that osteosarcoma can be
induced by mutations of genes such as (MSC) and/or bone
progenitor cells such as p53 and RB or abnormal signal trans-
duction of Hedgehog and NOTCH inmesenchymal stem cells
[9, 10]. Recent studies have shown that osteosarcoma contains
OSCs responsible for tumorigenesis, growth, recurrence, and
chemoresistance [11]. OSCs can maintain their stemness
through self-renewal and differentiation [12]. The molecular
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mechanism of chemoresistance of osteosarcoma is not clear,
but the existence of OSCs is considered to be a major reason
for chemoresistance of osteosarcoma.

Based on the self-renewal characteristics of stem cells,
several methods have been developed to identify and isolate
OSCs [13]. Functional in vitro tests for the formation of
tumor spheres under nonadhesive and serum-free condi-
tions are usually used as an initial step in the enrichment
of OSC-like cell populations. The in vivo verification of
OSCs is to evaluate the tumorigenicity of low cell count by
continuously transplanting isolated hypothetical OSC into
immunocompromised mice [14]. At present, proteins that
can be used as surface markers of osteosarcoma stem cells
are CD133, CD117, and Stro1; especially, CD133 is widely
used [15, 16].

E1A-like inhibitor of differentiation 3 (EID3) is the
third member of the EID family [17]. EID3 is homologous
to a region of EID1, binds to p300/CBP, and acts as an
inhibitor of p300/CBP-dependent transcription by direct
interaction with nuclear receptors SHP and SRC1 [17].
EID is associated with a variety of tumors, and tumors
expressing EID have strong invasiveness and poor progno-
sis. As a member of EID family, EID3 can inhibit histone
acetyl transfer of CBP/p300 enzyme activity, and different
from EID1, EID3 is specifically highly expressed in the tes-
tis [18]. In general, EID3 degrades rapidly through
ubiquitin-dependent protein degradation pathway at the
end of the cell cycle [19, 20], but the inactivated pRb pro-
tein mutation will lead to the stability of EID3 protein,
resulting in the inhibition of cell differentiation [17, 21].
In fact, it has been reported that colon cancer cells with
high expression of EID3 are more resistant to radiotherapy
and chemotherapy and promote the formation of tumor
stem cells [22]. In human umbilical cord blood mesenchy-
mal stem cells, EID3 is highly expressed, and EID3 expres-
sion decreases during induced differentiation into neural
stem cells [23]. However, the role of EID3 in osteosarcoma
has not been reported.

In this study, we investigated the expression and biolog-
ical function of EID3 in osteosarcoma cells. We demon-

strated that the mRNA and protein levels of EID3
significantly increased in osteosarcoma cells. We found that
osteosarcoma cells overexpressing EID3 generated more
osteospheres and promoted cell invasion and had high
expression of Sox2 and the stem cell marker CD133. Fur-
thermore, RNA sequencing and bioinformatics analysis
revealed that EID3 regulated stemness by interacting with
PI3K-Akt signaling pathway.

2. Materials and Methods

2.1. Cell Culture. The human fetal osteoblast cell line hFOB
and the human osteosarcoma cell lines MG-63 and U-2 OS
were purchased from the American Type Cell Culture Col-
lection (ATCC, USA) and cultured in DMEM-F12 (Gibco,
USA), DMEM (Gibco, USA), and McCoy’s 5a MeMo
(Gibco, USA) plus 100 units/mL penicillin, 100mg/mL
streptomycin, and 10% fetal bovine serum (FBS), respec-
tively. The human osteosarcoma cell line MNNG/HOS cells
were purchased from the Cell Bank of the China Science
Academy (Shanghai, China) and cultured in RPMI 1640
plus 100 units/mL penicillin, 100mg/mL streptomycin, and
10% FBS. The hMSCs were kindly provided by Dr. Caixia
Wang (Guangzhou First People’s Hospital, Guangzhou,
China) and cultured in conditioned medium composed of
DMEM, 1mmol/L L-glutamine (Gibco Laboratories, USA),
1% penicillin-streptomycin (Invitrogen, USA), and 10%
FBS. All cells were maintained at 37°C with 5% CO2 and
100% humidity except that the hFOB cells were maintained
at 34°C.

2.2. Sphere Formation Assay. Cells were plated in serum-free
medium DMEM/F12 supplemented with B27 (Thermo
Fisher Scientific, USA), 10 ng/mL epithelial growth factor
(EGF), and 10ng/mL basic fibroblast growth factor (bFGF)
(Peprotech, USA) in ultralow attachment 6-well plates
(Corning, USA) at a concentration of 1:0 × 103 cells/well.
Cells were incubated for 10-14 days, and spheres were
counted under microscope (Olympus, Japan).

Table 1

Gene Forward primer Reverse primer

EID3 CGGTTTCTTGTTATGGCTTCTGATTTG CAGGATGTTGCTTCCTTTTCTATTGC

POU5F1 ATGTGGTCCGAGTGTGGTTC GGACAGGGGGAAAGGCTTC

ABCG2 CATCAACTTTCCGGGGGTGA CACTGGTTGGTCGTCAGGAA

NANOG ATGGTGTGACGCAGGGATG TGCACCAGGTCTGAGTGTTC

GRB2 AAAGCTACTGCAGACGACGA GCCTTGGCTCTGGGGATTTT

VEGFA TCTGCTTTTAAGGCCCCTGTG CTCAATTCCTTCCCCCAGCA

VEGFC GCAGTTACGGTCTGTGTCCA CGACTCCAAACTCCTTCCCC

PDGFRA TAAAACCCACGGCCAGATCC AGCTCCGTGTGCTTTCATCA

MYC TCGGAAGGACTATCCTGCTG GTGTGTTCGCCTCTTGACATT

GAPDH CATGGGTGTGAACCATGAGAAGTA CAGTAGAGGCAGGGATGATGTTCT

Gene expression levels were calculated using the 2-ΔΔCt method and normalized to the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase
(GAPDH).
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Figure 1: Continued.
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2.3. Lentivirus Transduction. The EID3-expressing lentivirus
vector LV5-EID3 was constructed by the insertion of a full-
length EID3 cDNA into LV5 vector (GenePharma, Shanghai,
China). The LV5-EID3 and LV5 control (LV5-NC) vectors
were transfected into 293FT cells for packaging. Viral superna-
tants were collected after 48h as previously described [24].

2.4. Quantitative Real-Time PCR. Total RNA was extracted
using the RNeasy Plus Mini Kit, and the concentration and
purity was determined using an ND-1000 spectrophotome-
ter as previously reported [24]. Total RNA was prepared
and detected. The primers are shown in Table 1.

2.5. Western Blotting. Total cellular proteins were extracted
with protein lysis buffer. Lysates were centrifuged at
10,000g at 4°C for 10min, and supernatants were collected.
The concentrations of proteins were detected by BCA Pro-
tein Assay Reagent Kit (Thermo, USA). Cell lysates con-
taining 40μg protein were separated on a 12% SDS-
PAGE gel (Bio-rad, USA) and then transferred on polyvi-
nylidene difluoride (PVDF) membranes (Millipore, USA).
The membranes were blocked with 5% bovine serum albu-
min (BSA) for 1 h; incubated with primary antibodies for
EID3, SOX2, and GAPDH; and then washed and incu-
bated with horseradish peroxidase-conjugated secondary
antibodies for 1 h at room temperature. Finally, mem-
branes were developed using an enhanced chemilumines-
cent (ECL) kit. Quantification of bands was performed
using ImageJ Software.

2.6. Cell Viability Assay. Cells were seeded in 96-well micro-
plates at a density of 4,000 cells per well. Cells were treated
with different concentrations of doxorubicin (DOX) for the
indicated hours. Next, Cell Count Kit-8 (CCK-8) solution
(10μL) was added to each well. Finally, cell viability was
measured with a microtiter plate reader (Bio-Tek).

2.7. Transwell Assay. Cell invasion was evaluated by the
Matrigel invasion assay with a Corning Invasion Chamber
(8μm pore size) (Corning, USA) according to the manufac-
turer’s instructions. 1 × 104 cells were seeded into the upper
chamber of each well in serum-free medium, and the bottom
chambers were filled with DMEM containing 10% FBS as
chemoattractant. Cells were seeded in 10mm diameter
transwell plates with polycarbonate filters. After incubation
for 24 h, the noninvading cells were gently removed with a
cotton swab. Invasive cells were fixed for 30min in 4% form-
aldehyde and stained for 15min with crystal violet, air dried,
and photographed. The number of invading cells was
counted in five evenly spaced fields using an inverted
phase-contrast microscope.

2.8. Wound Healing Assay. Cell migration was assessed by
wound healing assay. In brief, cells were seeded in six-well
plates in DMEM supplemented with 10% FBS. A scratch
was created using a 200μL tip and washed twice with
serum-free medium. The migration was measured at 0 h
and 24h. Three images were taken per well, and data were
analyzed using ImageJ software.
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Figure 1: EID3 is highly expressed in osteosarcoma cell lines. (a) Western blot analysis of EID3 expression in osteosarcoma cells and
osteoblast cell line. (b) Analysis of EID3 mRNA expression in different osteosarcoma cells. (c) Western blot analysis of EID3 expression
in adhere cultured or sphere-cultured osteosarcoma cell lines. (d) Western blot analysis of EID3 expression in hMSC and osteosarcoma
cell lines. All data are presented as mean ± SE (n = 3). ∗, p < 0:05; ∗∗, p < 0:01; ∗∗∗, p < 0:001.
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Figure 2: Continued.
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2.9. FACS Analysis. Osteosarcoma cells were collected and
washed with 0.5mL of phosphate-buffered saline (PBS).
Cells were incubated with PE-conjugated anti-human
CD133 antibody (Miltenyi Biotec) or respective isotype con-
trols at 4°C for 30 minutes in the dark. After washing, the
labelled cells were analyzed on flow cytometer (BD Biosci-
ence, USA), and data were analyzed using FlowJo 10.2 soft-
ware (FlowJo, USA).

2.10. EID3 Silencing by shRNA. MG-63 osteosarcoma cells
were transfected with human EID3 shRNA (YSH-
LV001-EID3 [shRNA1/2/3]; Ubigene, Guangdong, China).
The shRNA2 sequence targeting EID3 corresponded to
coding regions (5′-CTCGTACTGTGGAGAATATAT-3′,
antisense 5′-GAGCATGACACCTCTTATATA-3′) of the
EID3 gene. The EID3 knockdown stable cell lines were
established by adding 5.0μg/mL puromycin in the com-
plete medium for 48 h. Surviving cells were EID3 knock-
down stable cells.

2.11. RNA Sequencing and Bioinformatics Analysis. Total
RNA was extracted by RNeasy mini kit (Tianmo) for quality
inspection using Agilent Bioanalyzer 2100 (Agilent tech-
nologies, Santa Clara, CA, US). The library was con-
structed on the cBOT of Illumina NovaSeq 6000
sequencer in accordance with the standard process and
hybridization of the first sequencing primer. The RNA
reads were then aligned to the reference sequences using
the 2-pass mode of STAR_2.4.0b (default parameters) 55,
and relative gene expression was quantified as transcript
per million (TPM) using RSEM v1.2.17 (default parame-
ters) 56. Isoform expression levels for each gene were
summed to derive the TPM values. To remove genes with
low expression values, the following steps were applied.

First, TPM values < 1 were considered unreliable and
substituted with zero. Second, TPM values were log2-
transformed after adding a value of one. Third, genes
expressed in <10% of all tumor groups were removed.
There were a total of 118,949 genes. DEseq (version
1.14.0) was used to call differentially expressed genes
(DEGs) in our samples. To define DEGs, we set up a
stringent statistic cutoff of fold change (FC) of ≥2 and
the false discovery rate (FDR) of <0.05. A total of 487
DEGs was identified between MG-63-EID3 and MG-63-
Vector. H-cluster analysis was used to analyze the expres-
sion of DEGs, and functional enrichment was analyzed.

2.12. Statistical Analysis. The data are presented as the mean
and the error bars. All analyses were performed using
GraphPad Prism software (GraphPad Software, Inc.). Statis-
tical significance was determined by an unpaired Student’s t
-test. p values of < 0.05 were considered statistically
significant.

3. Results

3.1. EID3 Is Highly Expressed in Osteosarcoma Cells. We
examined EID3 expression in three human osteosarcoma
cell lines and found that EID3 protein was overexpressed
in all three osteosarcoma cell lines compared to primary
human osteoblasts cell line hFOB. As shown in Figure 1(a),
we observed that the expression levels of EID3 in osteosar-
coma MG-63 cells was higher than that of other osteosar-
coma cells, including U2OS and HOS cells. We further
determined the expression levels of EID3 in sphere-
cultured and monolayer-cultured MG-63 cells [25, 26]. We
found that EID3 expression was higher in the sarcospheres
than in adherent cells (Figures 1(b) and 1(c)). In addition,
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Figure 2: EID3 overexpression promotes stem-like properties of MG-63 cells. (a and b) EID3 protein and mRNA expression levels in MG-
63 cells after transduction with LV5-EID3 or LV5 vector. (c) The spheroid-forming abilities of MG-63-EID3 and MG-63-Vector cells in
tumorsphere culture. (d) Quantitation of the sphere-forming assay. (e) The diameter of data are shown as mean ± SD, n = 3. ∗∗, p < 0:01.
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EID3 expression was higher in bone mesenchymal stem cells
(BMSCs) than in other osteosarcoma cells (Figure 1(d)).

3.2. EID3 Overexpression Enhances Stemness of Osteosarcoma
Cells. EID3 plays an important role in tumor stem cells. To
determine whether EID3 can enhances stemness of osteosar-
coma cells, we generated EID3-overexpressing MG-63 cell
line (MG-63-EID3) and control cell line (MG-63-Vector)
(Figures 2(a) and 2(b)). Overexpression of EID3 increased
osteosphere formation and dimension (Figures 2(c)–2(e)).
Next, we assessed the proportion of CD133+ cells in MG-
63-Vector and MG-63-EID3 cells. The results showed that
overexpression of EID3 significantly increased the ration of

CD133+ cells in MG-63 cells (Figure 3(a)). Three CSC-
related genes including OCT3/4, ABCG2, and NANOG were
overexpressed at mRNA and protein levels in MG-63-EID3
cell lines (Figures 3(b) and 3(c)). Moreover, SOX2 expres-
sion significantly increased in MG-63-EID3 cells compared
to MG-63-Vector cells (Figure 3(d)). These data suggest that
EID3 may facilitate the enrichment of stem cell-like osteo-
sarcoma cells.

3.3. EID3 Promotes the Migration and Chemoresistance of
Osteosarcoma Cells. Transwell assay showed that the number
of invasive cells increased approximately 72% after infec-
tion with LV5-EID3 (MG-63-EID3) compared with MG-
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Figure 3: EID3 overexpression promotes stemness of MG-63 cells. (a) Cytometry analysis of CD133+ cells in MG-63-EID3 and MG-63-Vector
cells. (b) Overexpression of EID3 upregulated mRNA levels of osteosarcoma stem cell markers OCT3/4, ABCG2, and NANOG. (c)
Overexpression of EID3 upregulated protein levels of osteosarcoma stem cell markers OCT3/4, ABCG2, and NANOG. (d) Western blot
analysis of protein levels of stem cell marker SOX2. All data are presented as mean ± SE (n = 3). ∗, p < 0:05; ∗∗, p < 0:01; ∗∗∗, p < 0:001.
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63 cells infected with the LV5 vector (MG-63-Vector)
(p < 0:001) (Figure 4(a)). Wound healing assay showed
that EID3 overexpression enhanced cell migration capabil-
ity (Figure 4(b)). In addition, CCK-8 assay showed that
osteosarcoma cancer-derived cells with EID3 overexpres-
sion exhibited higher viability after treatment with DOX
than control cells (Figure 4(c)).

3.4. Knockdown of EID3 Attenuates Stemness, Invasion, and
Chemoresistance of Osteosarcoma Cells. To further explore
the function of EID3 in OSCs, we employed EID3-specific
shRNA to knockdown EID3 in MG-63 cells (Figure 5(a)).
Sphere-forming assay showed that EID3 shRNA-
transduced MG-63 cells had reduced osteosphere formation
(Figure 5(b)). Transwell assay showed that EID3 shRNA
attenuated the invasion of MG-63 cells (Figure 5(c)). In
addition, CCK-8 assay showed that EID3 shRNA decreased
the viability of MG-63 cells after treatment with DOX
(Figure 5(d)).

3.5. PI3K-Akt Signaling Is Required for EID3-Mediated
Osteosarcoma Stemness. To shed light on the mechanism

of EID3-induced osteosarcoma cancer stemness, tran-
scriptome sequencing was performed to examine the effector
genes. Genes that showed log 2jfold changej ≥ 1:5 upregu-
lation or downregulation in all the six paired samples
was defined as DEGs or effector genes. A total of 111
DEGs were identified, 58 were upregulated, and 53 were
downregulated (Figure 6(a)). Gene Ontology analysis
showed that the biological processes of DEGs focused pri-
marily on the regulation of cellular processes, multicellular
organism development, and cellular response to stimulus.
The Kyoto Encyclopedia of Genes and Genomes pathway
analysis showed that DEGs were mainly involved in
PI3K-Akt signaling pathway, MAPK signaling pathway,
cytokine-cytokine receptor interaction, focal adhesion,
and regulation of actin cytoskeleton (Figure 6(b)). Notably,
our data revealed that EID3 overexpression could activate
several signaling pathways that maintain self-renewal
capacity, including PI3K-Akt, MAPK, cytokine, and Jak-
Stat pathways (Figures 6(c) and 6(d)). Microarray analysis
demonstrated that overexpression of EID3 upregulated the
genes involved in PI3K-Akt signaling pathway, including
GRB2, PDGFRA, VEGFC, IL4R, FN1, THBS2, ITGA7,
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Figure 4: Overexpression of EID3 enhances invasion, migration, and chemoresistance of osteosarcoma cells. (a) Transwell assay of the
invasion of MG-63-EID3 and MG-63-Vector cells. (b) Wound healing assay of the migration of MG-63-EID3 and MG-63-Vector cells.
(c) Cells were treated with various concentrations of DOX for 48 h. Cell proliferation was measured by CCK-8 assay. Data are shown as
mean ± SD, n = 3. ∗, p < 0:05; ∗∗, p < 0:01; ∗∗∗, p < 0:001.
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Figure 5: Knockdown of EID3 regulated spheroid forming, invasion, and chemoresistance of osteosarcoma cells. (a) Western blot analysis
of EID3 in MG-63 cells transfected with EID3 shRNA or control shRNA for 48 h. (b) The spheroid-forming abilities of MG-63-shRNA and
MG-63-shEID3 cells in tumorsphere culture. (c) Transwell assay of the invasion of MG-63-shRNA and MG-63-shEID3 cells. (d) Cells were
treated with EID3 shRNA or control shRNA and DOX for 48 h. Cell proliferation was measured by CCK-8 assay. All data are presented as
mean ± SE (n = 3). ∗, p < 0:05; ∗∗, p < 0:01; ∗∗∗, p < 0:001.
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ITGA8, and COL1A2 (Figure 6(e)). The upregulation of
GRB2, PDGFRA, MYC, VEGFA, and VEGFC was further
confirmed by PCR (Figure 6(f)).

Next, we inhibited Akt by using Akt-specific siRNA or
Akt special inhibitor in MG-63-EID3 cells (Figure 7(a)).
The knockdown of AKT significantly inhibited the viabil-
ity of MG-63-EID3 cells (Figure 7(b)). Moreover, Akt-
specific siRNA decreased the number of spheres induced
by EID3 overexpression (Figures 7(c) and 7(d)). Further-
more, Akt inhibitor (AZD5363) and PI3K inhibitor
(LY294002) significantly decreased the number of spheres
induced by EID3 overexpression (Figure 7(e)). Taken
together, these findings indicate that PI3K-Akt signaling
pathway contributes to EID3-induced osteosarcoma cancer
stemness.

4. Discussion

Osteosarcoma is the most commonly diagnosed primary
malignant bone tumor, with a peak in incidence occurring
in the second decade of life. OSCs play important role in
osteosarcoma. It is well recognized that EID3 represses tran-
scription and inhibits cell differentiation [1]. In human
umbilical cord blood mesenchymal stem cells, EID3 is highly
expressed, and EID3 expression decreases during the
induced differentiation into neural stem cells [23]. Recent
studies have focused on the role of EID3 in tumorigenesis.
It has been reported that colon cancer cells with high expres-
sion of EID3 participate in the inhibition of differentiation of
colon cancer cells and the formation of tumor stem cells
[22]. Our results showed that EID3 was highly expressed
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Figure 6: RNA sequencing and bioinformatics analysis. (a) The volcano plot showing mRNAs with differential expression between the two
groups. Red and blue plots represent up- and downregulated genes, respectively. (b) The enriched GO annotation for DEGs between MG-
63-EID3 cells and MG-63-Vector cells. (c) KEGG pathway enrichment analysis for DEGs between MG-63-EID3 cells and MG-63-Vector
cells. (d) Profiling of differentially expressed PI3K-AKT and MAPK signaling pathway-related genes. (e) The overlapping genes
differentially expressed between the two groups of cells. (f) PCR analysis of the genes of PI3K-AKT and MAPK pathways from the
overlapping genes described in (e).
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in MG-63, U2OS, and HOS osteosarcoma cell lines, espe-
cially in MG-63 cells. Furthermore, the stem cells in osteo-
sarcoma cells were enriched by sphere culture, and the

expression of EID3 was increased in these osteosphere cells.
Tirino et al. showed that CD133, a membrane glycoprotein,
may be a marker of CSCs in osteosarcoma [27]. CD133+
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Figure 7: Involvement of PI3K-Akt pathway in EID3-mediated stemness of osteosarcoma cells. (a) Western blot analysis of Akt, p-Akt, and
EID3 in MG-63-EID3 cells transfected with siRNA-Akt or Akt inhibitor AZD. (b) Cell proliferation was measured by CCK-8 assay. (c)
Representative images of the spheres in MG-63-EID3 cells transfected with siRNA-Akt or control siRNA. Scale bar, 100 μm. (d)
Quantitation of sphere forming in MG-63-EID3 cells transfected with siRNA-Akt or control siRNA. (e) Quantitation of sphere forming
in MG-63-EID3 cells treated with Akt inhibitor and PI3K inhibitor. AZD5363: AKT inhibitor. LY 294002: PI3K inhibitor. Data are
shown as mean ± SD, n = 3. ∗∗, p < 0:01.
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cells were identified in three osteosarcoma cell lines (Saos2,
MG63, and U2OS). These results suggest that EID3 may be
related to the stemness of osteosarcoma cells. Further
in vivo studies based on animal models are needed to con-
firm the role of EID3 in the maintenance of the stemness
of osteosarcoma cells.

To explore the role of EID3 in osteosarcoma, we over-
expressed or deleted the expression of EID3 in osteosar-
coma cells and proved that EID3 played an important
role in maintaining the stemness of osteosarcoma cells
based on sphere-forming assay, chemoresistance, and cell
migration and invasion assay. EID3 overexpression not
only improved stem cell phenotype but also enhanced
the enrichment of CD133+ cells and the expression of
stem cell-related markers OCT3/4, ABCG2, and NANOG
in osteosarcoma cells [14].

Next, we used transcriptome sequencing to explore the
mechanism by which EID3 regulates the stemness of oste-
osarcoma cells. The results showed that DEGs were mainly
involved in PI3K-Akt signaling pathway, MAPK signaling
pathway, cytokine-cytokine receptor interaction, and focal
adhesion. Moreover, we found that overexpression of
EID3 can lead to high expression of GRB2, PDGFRA,
MYC, VEGFA, and VEGFC gene. EID3 interacts with
CBP and p300 to inhibit gene transcription and cell differ-
entiation in part via the inhibition of histone acetyltrans-
ferase (HAT) activity of p300. Whether EID3 maintains
the stemness of osteosarcoma cells by upregulating the
expression of GRB2 and activating PI3K-AKT pathway
remains to be further explored.

5. Conclusions

In conclusion, our study demonstrates high expression of
EID3 in osteosarcoma cells, especially in sphere-cultured
osteosarcoma cells. EID3-overexpressing MG-63 cells exhib-
ited significantly higher sphere-forming activity and higher
levels of GRB2, PDGFRA, MYC, and VEGFA. These find-
ings reveal the mechanism by which EID3 promotes the
stemness of osteosarcoma cells and chemoresistance and
provides new approach for targeted therapy for osteosar-
coma patients.
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