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ABSTRACT

Genome sequencing and transcriptomic profiling
are two widely used approaches for the identifica-
tion of human disease pathways. However, each
approach typically provides a limited view of
disease pathways: Genome sequencing can
identify disease-related mutations but rarely
reveals their mode-of-action, while transcriptomic
assays do not reveal the series of events that lead
to the transcriptomic change. ResponseNet is an in-
tegrative network-optimization approach that we
developed to fill these gaps by highlighting major
signaling and regulatory molecular interaction
paths that connect disease-related mutations and
genes. The ResponseNet web-server provides
a user-friendly interface to ResponseNet.
Specifically, users can upload weighted lists of
proteins and genes and obtain a sparse, weighted,
molecular interaction subnetwork connecting them,
that is biased toward regulatory and signaling
pathways. ResponseNet2.0 enhances the function-
ality of the ResponseNet web-server in two import-
ant ways. First, it supports analysis of human data
by offering a human interactome composed of
proteins, genes and micro-RNAs. Second, it offers
a new informative view of the output, including a
randomization analysis, to help users assess the
biological relevance of the output subnetwork.
ResponseNet2.0 is available at http://netbio.bgu.
ac.il/respnet.

INTRODUCTION

Massive efforts are being invested worldwide in
cataloguing the mutations and transcriptomic changes
characterizing a large variety of human diseases to

identify the cellular pathways involved in each disease
(1-4). These wealth of data provide a promising starting
point for unraveling disease pathways. However, the func-
tions of many of the identified mutations and the signaling
pathways that lead to altered transcriptional regulation
often remain elusive.

Molecular interaction networks (interactomes), where
nodes represent molecules such as genes and proteins
and edges represent their various inter-relationships,
offer a powerful framework for enhancing our under-
standing of protein functions and the cellular processes
underlying diseases (5). First, molecular interactions
govern biological processes. Being the union of these inter-
actions, an interactome provides a skeleton from which
the functions of proteins and the organization of
pathways can be inferred (6-9). Second, because edges
represent molecular relationships, the road from an
interactome-based hypothesis to experimental testing is
short (10-14). These observations motivated a wide
variety of interactome-based approaches for shedding
light on disease genes and pathways (15-19).

ResponseNet is an integrative interactome-based
approach that uses known molecular interactions to
bridge the gap between condition-specific mutations and
transcriptomic changes, revealing a broader view of the
underlying cellular processes (12). Specifically, given
weighted lists of proteins and genes related to a specific
condition, ResponseNet identifies a sparse high-probabil-
ity molecular interaction subnetwork by which the
input proteins may lead to the altered transcription of
input target genes. This is achieved by formulating a
minimum-cost flow optimization problem that is solved
by linear programming. By applying ResponseNet to
data of large-scale genetic and transcriptomic screens of
a yeast disease model, we successfully mapped recognized
disease pathways and exposed previously hidden pathways
that we validated experimentally (12).

The ResponseNet web-server that we reported previ-
ously enabled users to meaningfully integrate their data
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and to substantially expand their understanding of the
cellular conditions they study (20). Specifically, users
could upload weighted lists of proteins and genes and
obtain the connecting output subnetwork. Here we
present ResponseNet2.0, a new version of the
ResponseNet web-server that features enhanced function-
ality. We first describe the extension of ResponseNet
toward the analysis of human pathways, including evalu-
ation of its performance over manually curated human
pathways. We then describe new features of
ResponseNet2.0 that help users assess the biological rele-
vance of ResponseNet results.

ResponseNet2.0: ANALYSIS OF HUMAN
PATHWAYS

ResponseNet was originally developed to analyze data
gathered from budding yeast (12). The ResponseNet
web-server supported analysis of yeast data by providing
a weighted model of the yeast interactome, which con-
sisted of physical and regulatory interactions among
yeast proteins and genes. Analysis of data from other or-
ganisms was also supported, given that users upload their
corresponding interactomes. ResponseNet2.0 extends
ResponseNet by offering, in addition, a weighted model
of the human interactome. Similarly to the interactome of
budding yeast, the human interactome contains physical
and regulatory interactions among human proteins and
genes. Yet unlike yeast, it also contains interactions
involving micro-RNAs (miRs), in accordance with their
significant roles in regulating a large variety of cellular
processes in health and disease (21).

Construction of a weighted model of the human
interactome

We gathered experimentally identified interactions from
several databases. Protein—protein interactions (PPIs)
were gathered from BioGRID (22), DIP (23), MINT
(24) and IntAct (25) using the PSICQUIC interface (26).
These interactions were then weighted using a weighting
scheme that works in two steps, as previously described
(12). First, given a specific subset of biological processes,
in this case signaling pathways, the scheme calculates a
score for each interaction-detection method, which
reflects the ability of the method to identify process-
related interactions (see Methods). Second, the scheme
assigns a weight for every interaction according to the
interaction-detection methods that identified it, using a
Bayesian computation. The scheme therefore assigns
higher weights to interactions identified by multiple inter-
action-detection methods with a bias toward certain
methods, and is not limited to known pathways. A histo-
gram describing the distribution of PPI weights is
provided in Supplementary Figure S1. In addition to
PPI, transcription regulation interactions between tran-
scription factors and their target genes were gathered
from TRANSFAC (27). Lastly, miR interactions were
gathered from TarBase (28), miRecords (29) and
TransmiR (30). All regulatory interactions were associated
with uniform weights. The resulting weighted human
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interactome contained 88016 experimentally identified
interactions among 11347 proteins, 426 miRs and 10014
target genes.

ResponseNet2.0 evaluation over human cellular pathways

To assess the validity and performance of Response-
Net2.0, we applied it to data from manually curated
human pathways. To this end, we used the SPIKE
database, which contained 24 maps of human cellular
pathways (31). The analysis was performed as follows:
From each pathway map, we extracted an input source
set consisting of upstream pathway proteins and an input
target set consisting of downstream pathway genes. We
applied ResponseNet2.0 to these inputs and then
compared between the output subnetwork predicted by
ResponseNet2.0 and the original pathway map. In
addition to this ‘full’ map analysis, we repeated the
analysis for different path lengths per map. For every
length k= 1,...,12, the input target set was left intact
and the input source set consisted of proteins with a
shortest distance of k& from the target set. The median input
and output sizes per analysis are presented in Table 1.
Figure 1 shows the performance of ResponseNet2.0 as
measured by its sensitivity and precision over nodes and
interactions (specificity was always 0.99 owing to the large
number of true negatives relative to false positives). In
general, ResponseNet’s performance was highest for
shortest paths and decreased with path length. The sensi-
tivity and precision were much higher for nodes than for
interactions, implying that ResponseNet often revealed the
relevant proteins but not necessarily their pathway con-
nectivity. Evaluation of ResponseNet analysis per map
and upon using different values of gamma and capping
are presented in Supplementary Tables S1-S3. Notably,
ResponseNet can be applied to source and target sets of
various sizes and to networks containing >10* nodes and
>10” edges. A typical run of ResponseNet2.0 over source
and target sets containing 20 protein and 500 genes took
about 3 minutes when executed locally.

An example of ResponseNet2.0 output is shown in
Figure 2. In this case, we used ResponseNet to identify
the regulatory subnetwork connecting the melanoma-
related protein ‘BRCA1 associated protein-1 (BAPI1),
which when mutated leads to uveal melanoma, to 693
target genes that were found to be down-regulated in
melanoma cell lines (32). ResponseNet2.0 correctly pre-
dicted the main interactor of BAP1, the HCFCI protein,
and highlighted two connecting transcription factors,
GABPA and SPI, the latter previously linked to
melanoma (33).

ResponseNet 2.0: NEW FEATURES

ResponseNet2.0 contains several features that we
added to help users assess the biological relevance of
ResponseNet results.

Informative presentation of ResponseNet results

The main output of ResponseNet is a subnetwork that
is presented graphically using Cytoscape-web (34).
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Table 1. The scope of ResponseNet analysis of known human pathways by using SPIKE maps

Paths Number of Input size® Map size® ResponseNet output Overlap between map and
length maps tested (source, target) (nodes, edges) size® (nodes, edges) output® (nodes, edges)
Full 24 6, 13 73.5, 127.5 31, 51.5 23,19

2 24 9.5, 13 27.5, 22 31.5, 64.5 27.5, 19

3 22 9, 17.5 27, 33 43.5, 98 27, 27

4 20 12.5, 17.5 41, 64 54, 134.50 31, 19

5 17 19, 22 62, 97 61, 128 31, 40

6 14 23,13 69, 124 47, 104.50 40, 15

7 14 13, 13 64.5, 88.5 57.5, 117 39.5, 21.5

8 11 12, 13 70, 99 74, 150 45, 30

9 11 16, 13 66, 93 68, 169 37, 27

10 9 10, 22 52, 116 68, 130 35, 20

11 6 4, 27.5 45.5, 83.5 57.5, 127 14, 8.5

12 5 6, 33 38, 70 52, 107 18, 11

13 4 8, 48.5 53.5, 108.5 46.5, 99 13, 4.5

14 3 4, 33 39,73 14, 18 7, 1

15 2 3, 17.5 33, 52 27.5, 44.5 7.5, 2.5

“Median values are shown.

ResponseNet was executed with gamma of 2.5 and capping of 0.8.

The sensitivity and precision for each type of run are shown in

Figure 1.
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Figure 1. ResponseNet sensitivity and precision upon analysis of known human pathways. Results are shown for full maps (denoted ‘Full’) and for
different path lengths (lengths >12 involved <5 maps and were therefore ignored). Each box-plot diagram shows the quartile values (25, 50 and
75%). (A) Nodes sensitivity. (B) Nodes precision. (C) Interactions sensitivity. (D) Interactions precision. Specificity was 99% in every case and is
therefore not shown.
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Figure 2. An example of ResponseNet2.0 output. The human protein BAPI is a deubiquitinating enzyme that acts as a regulator of cell growth by
mediating deubiquitination of HCFC1, and is frequently mutated in uveal melanomas. We used ResponseNet2.0 to identify a regulatory subnetwork
that connects BAP1 to human genes that were found to be down-regulated in melanoma cell lines. ResponseNet correctly predicted the BAPI-
interacting protein HCFCI, and connected HCFC1 to two transcription factors, GABPA and SP1, that regulate the transcription of 16 target genes.
Notably, SP1 was previously linked to melanoma (33). S and T are auxiliary nodes that are part of ResponseNet formulation.

ResponseNet2.0 enhances this output by providing a new
tabs menu, where each tab provides additional informa-
tion regarding the output (Figure 2): The ‘Gene Ontology’
(GO) tab provides the GO annotations and evidence codes
of subnetwork proteins and transcripts (35). The
‘Chemicals’ tab provides data of small molecules known
to bind subnetwork proteins, which may be used in the
design of future experiments (36). The ‘Properties’ tab
provides information regarding subnetwork interactions,
including the method(s) by which they were detected and
the database that reported them. Other tabs enable users
to download data, remove subnetwork nodes, change the
network layout, and more.

Randomization analysis

This novel feature in ResponseNet2.0 enables users to
estimate the probability of observing subnetwork compo-
nents by chance. Upon executing ResponseNet, users
can choose whether to randomize the source set, the
target set or both. In each randomization run, an input
set of size equal to the original input set is selected
randomly from the interactome, and ResponseNet is
executed with all other data and parameters as in the
original run. The results of the randomized runs are pre-
sented as a table in the ‘Properties’ tab. The table lists for
each node in the original output the number of times that
this node was predicted in the randomized runs. A lower
number of appearances thus indicates higher statistical
significance. Owing to the computational complexity of

ResponseNet, we currently support up to 10 randomized
runs per input set.

Session maintenance and subnetwork comparisons

ResponseNet users typically execute ResponseNet
analyses anonymously. In ResponseNet2.0, we also
provide users with an option to login to ResponseNet,
store their sessions and load previous sessions. Notably,
users can analyze and compare between their sessions
using a layers tabs. A new layer can be created by upload-
ing another network in GraphML format, or by creating a
new layer from the existing network. Once a layer was
created, the layers tab allows users to unite layers,
intersect them to identify common components, or hide
common components and show network differences. The
layers interface can be used to evaluate runs with different
parameters, and to identify common versus unique
subnetwork components.

SUMMARY

The post-genomic era is marked by massive mapping of
the genome, transcriptome, methylome, microbiome and
other ‘omes’ of healthy and sick individuals (19). Owing to
initiatives such as The Cancer Genome Atlas and the 1000
Genomes Project, these data are accumulating at a high
pace (37). However, the next important step in the
analysis, namely deciphering these large-scale data, often
becomes the limiting step. This calls for the development
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of web-servers that offer users meaningful analysis of
large-scale data. By taking into account known molecular
interactions, tools such as ResponseNet (20) and
SteinerNet (38) shed light on the roles of mutations and
uncover additional components of the underlying
pathways.

ResponseNet2.0 is a new version of the ResponseNet
web-server that features richer user interface and offers
analysis of human pathways. ResponseNet users can
now upload lists of human proteins, genes and miRs,
and obtain a high-probability subnetwork of the human
interactome that connects them (Figure 2). Our evaluation
of ResponseNet using manually curated human pathways
revealed that ResponseNet recovered pathway nodes at a
median sensitivity, specificity and precision of 54%, 99%
and 75%, respectively. Notably, these results are almost as
high as ResponseNet performance over yeast pathways
(12). As interactions data improve, we anticipate that
tools such as ResponseNet will become standard in the
analysis of the accumulating state-of-the-art disease
data, and provide the much needed views into the cur-
rently hidden mechanisms underlying human diseases.

METHODS
PPI weighting scheme

The first step in the scheme is the scoring of interaction-
detection methods based on their ability to detect inter-
actions within signaling and response pathways. To this
end, we created positive and negative sets of PPIs as
follows. The positive set included PPIs among members
of a common signaling and regulatory process, where
processes were extracted from Gene Ontology (35). The
negative set included PPIs between proteins that were not
annotated to any of these processes. The score of each
interaction-detection method was then computed based
on the ratio of positive to negative interactions that the
detection method identified. In the second step of the
scheme, the weight of each PPI was calculated according
to the interaction-detection methods that identified it
using a Bayesian computation. More details about the
scheme can be found elsewhere (12).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-3 and Supplementary Figure 1.
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