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Abstract

The CRISPR/Cas9 system has proven to be an efficient gene-editing tool for genome modi-
fication of cells and organisms. However, the applicability and efficiency of this system in
pig embryos have not been studied in depth. Here, we aimed to remove porcine OCT4 func-
tion as a model case using the CRISPR/Cas9 system. Injection of Cas9 and single-guide
RNA (sgRNA) against OCT4 decreased the percentages of OCT4-positive embryos to
37-50% of total embryos, while ~100% of control embryos exhibited clear OCT4 immunos-
taining. We assessed the mutation status near the guide sequence using polymerase chain
reaction (PCR) and DNA sequencing, and a portion of blastocysts (20% in exon 2 and 50%
in exon 5) had insertions/deletions near protospacer-adjacent motifs (PAMs). Different tar-
get sites had frequent deletions, but different concentrations of sgRNA made no impact.
OCT4 mRNA levels dramatically decreased at the 8-cell stage, and they were barely detect-
able in blastocysts, while mRNA levels of other genes, including NANOG, and CDX2 were
not affected. In addition, the combination of two sgRNAs led to large-scale deletion (about
1.8 kb) in the same chromosome. Next, we injected an enhanced green fluorescent protein
(eGFP) vector targeting the OCT4 exon with Cas9 and sgRNA to create a knockin. We con-
firmed eGFP fluorescence in blastocysts in the inner cell mass, and also checked the muta-
tion status using PCR and DNA sequencing. A significant portion of blastocysts had eGFP
sequence insertions near PAM sites. The CRISPR/CAS9 system provides a good tool for
gene functional studies by deleting target genes in the pig.

Introduction

The introduction of mammalian genome sequences including those of humans [1], mice [2], and
domestic animals, including cows [3] and pigs [4], has increased the importance and necessity of
functional genomic tools to study the roles of genes in the genome. While functional genetic stud-
ies using genome targeting technologies, including knockouts and knockins, have been achieved
via homologous recombination using embryonic stem cells (ES cells) [5, 6]; however, the
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unavailability of ES cells in other animals, especially commercially important domestic animal
species like cows and pigs, hinders the advance of functional genomic studies in these animals.

To overcome these limitations of ES cell-mediated genome targeting, genome editing tech-
nologies using novel programmable DNA endonucleases, including zinc-finger nuclease (ZFN)
[7] and transcription activator-like effector nuclease (TALEN)[8], have emerged recently. Both
technologies rely on the DNA recognition domain derived from ZEN or transcription activa-
tor-like effector (TALE) to specifically recognize DNA elements longer than 15 bp, and they
both utilize the DNA cleavage domain from the restriction enzyme FokI for DNA cleavages
[9]. Both techniques have been successfully utilized to generate gene-specific knockout or
knockin in various animals, including mice [10, 11], pigs [12], and cows [13].

However, several limitations in both techniques have been reported. For example, both
techniques rely on the generation of a pair of DNA-recognition modules. For ZEN, generation
and selection of DNA-specific ZF modules are time-consuming processes [14]. For TALEN,
the modular nature of TALE eases the difficulties of design and selection of specific DNA-bind-
ing modules [15, 16], but the repetitive nature of TALE sequences demands a complicated gene
synthesis step. Therefore, the time and cost required for obtaining the proper TALEN gene is a
major bottleneck to utilize these technologies to generate knockout animals [17, 18]. Another
huge hurdle for both techniques is the efficiency of programmed nuclease cleavage. Because of
the low cleavage efficiency of both nucleases, genome modification of livestock animals must
be performed via somatic cell nuclear transfer (SCNT) [12, 13], which suffers from low efficien-
cy caused by developmental defects from partially reprogrammed embryos [19]. Recently, ge-
nome editing via direct injection of TALEN mRNA in porcine zygotes has been reported [20],
but the editing frequency in the embryo is as low as 7%.

Recently, the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)/
CRISPR-associated (Cas) system, which is known as the bacterial adaptive immune system that
confers resistance against bacteriophages, was demonstrated as an efficient gene-targeting tech-
nology with the potential for multiplexed genome editing [21-23]. In addition to mammalian cell
lines, the CRISPR/Cas9 system can be used to efficiently generate knockout or knockin organisms
via zygotic injections of Cas9 and single guide RNA (sgRNA) in many organisms, including the
mouse [24, 25], rat[26], zebrafish [27, 28], nematode [29], frog [30], pig [31], and monkey [32],
indicating the versatility and universality of the CRISPR/Cas9 system in genome editing.

In addition to generating knockout/knockin animals, CRISPR/Cas9-mediated gene knock-
out/knockin can be useful to functionally characterize embryogenesis-related genes[33]. Func-
tional characterization of genes involved in early embryogenesis using loss-of-function
approaches has relied on using knockdown or antisense oligonucleotide injections [34, 35] be-
cause knockout in early embryogenesis-related genes causes embryonic lethality, and therefore
maintenance of the mutant animal is impossible.

Porcine parthenogenetic preimplantation embryos have been utilized as model systems for
embryogenesis [36-39]. In the present study, we tested the feasibility of the CRISPR/Cas sys-
tem in studying embryogenesis-related genes in porcine parthenogenetic embryos. We chose
the OCT4/POUS5fI gene, encoding an essential transcription factor for stem cell maintenance
and pluripotency [40], for the knockout/knockin study using the CRISPR/Cas9 system in por-
cine parthenogenetic embryos.

Materials and Methods
Chemicals

Unless otherwise described, all of chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA).
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Generation of Cas9 mRNA and sgRNAs

A previously described plasmid (pCAG-T3-hCAS-pA)[41], which contains human codon-
optimized Cas9 plasmid cloned into a T3 promoter, was obtained from Addgene (Addgene
#41815) and used to generate Cas9 mRNA. Briefly, the plasmid was linearized with digestion
of Sphl and transcribed using an mMessage Machine T3 Kit (Life Technologies; Foster City,
CA, USA). After transcription, template DNA was removed by treatment with Turbo-DNase
(Life Technologies; Foster City, CA, USA). Resulting transcripts were purified by phenol-
chloroform extraction and isopropanol precipitation and stored at —80°C until used.

Guide sequences for sgRNAs corresponding to exons of OCT4 were selected using the CRISPR
Design Tool [42] (http://crisp.mit.edu) and are shown in S1 Table. Forward polymerase chain re-
action (PCR) primers containing the T7 promoter, guide sequences, and portions of the Cas9
handle were hybridized with a reverse PCR primer containing the Cas9 handle and Streptococcus
pyrogenes terminator sequences, and this was amplified by PCR using Phusion DNA polymerase
(Thermo Fisher Scientific; Waltham, MA, USA) T7 promoter primer and the terminator primers
are listed in S1 Table. Resulting PCR products (123 bp) were purified with gel extraction and used
as templates for in vitro transcription using T7 Mega-shortscript kits (Life Technologies; Foster
City, CA, USA) and purified with phenol/chloroform extraction, as done with the Cas9 mRNAs.

Generation of OCT4-green fluorescent protein (GFP) knockin constructs

To generate a C-terminal fusion of GFP in the porcine OCT4 locus via homology-dependent
repair (HDR), an OCT4-GFP fusion construct was generated using Gibson Assembly tech-
niques [43]). Briefly, a 2103-bp fragment containing exon 5 of porcine OCT4 (spanning
27,266,974-27,269,103 bp at chromosome 7) was amplified using PCR and cloned into the
pCRII Topo vector (Life Technology; Foster City, CA, USA).GFP fragments were amplified by
PCR with primers containing junction sequences of OCT4 and eGFP, and OCT4-pCRII Topo
vector was amplified by inverse-PCR using primers corresponding to the last codon of the
OCT4 coding sequence. The amplified OCT4 vector and eGFP fragments were assembled using
Gibson Assembly Master Mix (New England BioLabs; Beverly, MA, USA) and transformed in
Escherichia coli DH50.. The resulting construct, which contained the C-terminal eGFP fusion at
the end of OCT4 exon 5, was confirmed with DNA sequencing.

In vitro porcine oocyte maturation

Prepubertal porcine ovaries were obtained from a local slaughterhouse(Farm Story dodram
B&F, umOsung, chungbuk, Korea). Cumulus-oocyte complexes (COCs) were obtained from
follicles that were 3-6-mm in diameter using 18-gauge microneedles. Oocytes with evenly
granulated cytoplasm and a compact surrounding cumulus mass were collected and washed
three times with TL-HEPES-PVA medium (Tyrode’s lactate-HEPES medium supplemented
with 0.01% polyvinyl alcohol). After washing, 70-80 COCs were transferred into 500 mL of
IVM medium (TCM-199; Invitrogen, Carlsbad, CA) supplemented with 20 ng/mL epidermal
growth factor, 1 g/mL insulin, 75 g/mL kanamycin, 0.91 mM Na pyruvate, 0.57 mM L-cysteine,
and 10% (v/v) porcine follicular fluid. After 22 h of culture, the COCs were transferred into
IVM medium without hormones and cultured for an additional 22 h at 38.5°C in an atmo-
sphere containing 5% CO, and 100% humidity.

Parthenogenetic activation and in vitro culture (IVC)

After maturation (44 h), cumulus cells were removed by repeated pipetting in the presence of 1
mg/mL hyaluronidase for 2-3 min. Denuded oocytes were activated by an electric pulse (1.0
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kV/cm for 60 ms) in activation medium (280 mM mannitol, 0.01 mM CacCl,, and 0.05 mM
MgCl,), followed by 3 h of incubation in PZM3 medium containing 2 mM cytochalasin B.
About 70-80 post-activation oocytes were cultured in 4-well dishes containing 500 mL of
PZM3 for 168 h. Embryo culture conditions were maintained at 38.5°C in an atmosphere con-
taining 5% CO, and 100% humidity.

Cas9/sgRNA injections in porcine parthenogenetic zygotes

After 8 h of parthenogenetic activation, zygotes were microinjected with a mixture of Cas9
mRNA (100 ng/pL) and different concentrations of sgRNA (10, 50, or 100 ng/uL) under a
Nikon TE2000-U inverted microscope (Nikon Corporation; Tokyo, Japan) using a FemtoJet
microinjector (Eppendorf; Hamburg, Germany). For large-scale deletion of OCT4, embryos
were microinjected with mixtures of Cas9 mRNA (100 ng/uL) and different concentrations of
two sgRNAs (10 ng/uL sgRNA targeting exon 2 and 10 ng/uL or 100 ng/uL sgRNA targeting
exon 5). To generate OCT4-eGFP knockin embryos, embryos were microinjected with mixtures
of Cas9 mRNA (100 ng/pL), sgRNAs (10 ng/uL), and different concentrations of OCT4-eGFP
knockin construct DNA (20, 50, or 100 ng/uL). As a control, Cas9 mRNA (100 ng/uL) without
sgRNA was injected. After microinjections, zygotes were cultured in PZM3 medium for 168 h
at 38.5°C in an atmosphere containing 5% CO, and 100% humidity.

Preparation of genomic DNA from blastocysts and PCR amplification

To prepare genomic DNA, blastocysts were washed twice in phosphate-buffered saline (PBS)/
PVA, treated with proteinase K, and incubated at 50°C for 3 h. Portions of genomic DNA con-
taining guide sequences for sgRNAs (exon 2 or exon 5 of porcine OCT4) were amplified by
PCR using the PCR primers listed in Table 1 and Pfu-x DNA polymerase (Solgent; Daejun,
Korea). Resulting PCR products (~300 bp) were purified by gel purification, and PCR products
were cloned into the pCR-II-Topo vector (Life Technologies; Foster City, CA, USA) or se-
quenced directly using the PCR primers used for amplification.

Real-time reverse transcription-PCR

Porcine OCT4, CDX2, or NANOG gene expression levels were analyzed by real-time quantita-
tive (q)PCR using the AACT method[28]. Total RNA was extracted from 50 oocytes using a
Dynabead mRNA DIRECT Kit (Life Technologies; Foster City, CA, USA). First-strand cDNA
synthesis was completed using a cDNA Synthesis Kit (Takara; Kyoto, Japan) and oligo(dT) 12-

Table 1. Developmental competence and targeting efficiency of CRISPR/Cas9 mediated Porcine OCT4 locus. Cas9 mRNA and sgRNAs were
injected in combinations of different concentrations, and cleavage and blastocyst formation rates of each groups are presented.

Gene Cas9/sgRNA ng/ul) Cleavage/injected zygotes Blastocyst/injected zygotes OCT4 targeting fficiency
Immunostaning Sequencing
OCT4 (Exon 2) 100/0 206/264(78.03%) 83/264(31.44%) 0/15(0%) 0/10(0%)
100/10 333/445(74.83%) 138/445(31.01%) 3/8(37.5%) 2/10(20.0%)
100/50 310/391(79.28%) 123/391(31.46%) 7/15(46.6%) 5/25(20.0%)
OCT4 (Exon 5) 100/0 91/120(75.83%) 43/120(35.83%) 0/12(0%) 0/13(0%)
100/10 149/196(76.02%) 65/196(33.16%) 13/25(52.0%) 12/24(50.0%)

OCT4 targeting efficiency was measured using the presence of OCT4 immunostaining signal in nucleus or PCR amplification and sequencing of single
blastocysts. Statistical significance was tested using chi-square test.

doi:10.1371/journal.pone.0120501.t001
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18 primers. The PCR primers used to amplify OCT4, CDX2, and NANOG genes are listed in
S1 Table. Real-time PCR was performed with SYBR Green in a final reaction volume of 20 uL
(qPCR kit, Finnzymes; Vantaa, Finland). PCR conditions were as follows: 95°C for 3 min, fol-
lowed by 39 cycles of 95°C for 15 s, 57°C for 15 s, 72°C for 45 s, and a final extension of 72°C
for 5 min. Finally, relative gene expression levels were quantified by normalizing to the respec-
tive GAPDH mRNA level. Experiments were conducted in triplicate.

Immunofluorescence staining and confocal microscopy

For immunostaining of OCT4 or CDX2, blastocysts were fixed in 4% paraformaldehyde dis-
solved in PBS and then transferred to a membrane permeabilization solution (0.5% Triton
X-100) for 1 h. After 1 h in blocking buffer (PBS containing 1% bovine serum albumin), blasto-
cysts were incubated overnight at 4°C with anti-OCT3/4 antibody (sc-8628, Santa Cruz Bio-
technology; Santa Cruz, CA, USA) diluted 1:200, or CDX2 antibody (MU392A-UC, BioGenex
Laboratories Inc.; San Ramon, CA, USA) diluted 1:200. The blastocysts were washed three
times in PBS containing 0.1% Tween 20 and 0.01% Triton X-100 for 2 min, and then the sam-
ples were co-stained with Hoechst 33342 (10 mg/mL in PBS) for 15 min and washed three
times in washing buffer. Samples were mounted onto glass slides and examined using a confo-
cal laser-scanning microscope (Zeiss LSM 710 META; Jena, Germany). At least 30 blastocysts
were examined per group.

Data analysis

For each treatment, at least three replicates were perfomed. Statistical analyses were conducted
using pearson’s chi-square test or an analysis of variance(ANOVA) followed by Tukey’s multi-
ple comparisons of means by R (R Development Core Team, Vienna, Austria). Data are ex-
pressed as mean =+ standard error of the mean and p < 0.05 was considered significant.

Results
CRISPR/Cas9-mediated targeting of the OCT4 gene in porcine zygotes

To investigate the usefulness of the CRISPR/Cas9 system in functional characterization of
genes involved in mammalian preimplantation development, we chose to use porcine parthe-
nogenetic zygotes and OCT4 as a model system and gene, respectively. In previous studies
using mouse embryos, knockout or of OCT4 itself did not impair early blastocyst formation
[40, 44] although formation of the inner cell mass and its pluripotency were impaired [25]. To
test targeting efficiency of the porcine OCT4 gene, we chose exons 2 and 5 and selected two tar-
get regions to introduce indels via non-homologous end repair(NHE]), as shown in Fig. 1a and
Table 2. We injected 100 ng/uL Cas9 and 10, 50, or 100 ng/uL sgRNA for exon 2 and exon 5 of
OCT4 into porcine parthenogenetic zygotes, or we injected the Cas9 alone as a control. As
shown in Table 1, all groups displayed similar levels of developmental competency. We
checked the mutation status using pooled genomic DNA from embryos near the guide se-
quence by PCR and DNA sequencing. As shown in Table 1, a portion of clones (20% for exon
2 and 50% for exon 5) had an insertion/deletion near the PAM. As shown in Fig. 1b, most
clones had 1-12-bp deletions near PAM regions. In some cases, single base insertions were ob-
served (Fig. 1b). To assess OCT4 knockout, we checked OCT4 protein levels in the inner cell
mass (ICM) of blastocysts by immunostaining with an anti-OCT4 antibody. As shown in

Table 1 and Fig. 1e, while control embryos (Cas9 injection only) had a clear OCT4 signal in
ICM regions, injection of Cas9 and sgRNAs decreased OCT4 positivity in embryos to 37-50%
of control embryos. These results indicate that injection of Cas9 and sgRNAs designed to target
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Fig 1. CRISPR/Cas9 mediated OCT4 targeting in porcine embryos. (A) Design of sgRNAs for targeting exon 2 or exon 5. Guide sequences correspond to

sgRNAs are marked as underlined and the protospacer adjacent motif(PAM) sites for each guide sequences are marked. (B) Sequencing of PCR

amplification product confirmed the introduction of indel in exon 2 or exon 5. Locations of guide sequences are marked as blue and bases deleted in Cas9/
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sgRNAs injected embryos are marked in red box. (C-D) Various deletion/insertions induced by Cas9/sgRNA injections in exon 2 (C) or exon 5(D). Positions
of PAM sites are marked as underlined and deleted base was marked as red. Note that insertion can be induced in some case(marked in blue). (E-F)
Detections of OCT4 and CDX2 protein using immunostaining in targeted porcine embryos. Embryos were injected with 5—10pl of 100ng/pl of Cas9 mRNA
mixed with 0, 10, 100ng/ul of sgRNA1 or sgRNA2, respectively. Location of nucleus was stained with Hoechst 33342 (blue). OCT4(left panel) and CDX2(right
panel) are presented as green. (G) mRNA expression levels of OCT4, CDX2, and NANOG measured by qRT-PCR. Expression levels are presented as
relative expression levels to those in control embryo at 1 cell stages. Control: Cas9 mRNA injection only; CRISPR: Cas9 mRNA and sgRNA 2 injected. In
each developmental stages, 20 embryos were collected for RNA extraction.

doi:10.1371/journal.pone.0120501.g001

Table 2. Developmental competence and targeting efficiency of CRISPR/Cas9 mediated large-scale deletions in Porcine OCT4 locus.

Gene Cas9/Exon 2 sgRNA/Exon 5 Cleavage/injected Blastocyst/injected Efficiency
sgRNA(ng/pl) zygotes zygotes
Immunostaning Sequencing
OCT4 (Exon 2 and 100/0 103/140(73.57%) 37/140(26.43%) 0/15(0%) 0/10(0%)
Exons) 100/10/10 213/280(76.07%) 77/280(27.50%) 11/23(47.82%) 6/50(12.0%)

sgRNA pair corresponds to exon 2 or exon 5 were coinjected with Cas9 mRNA. Cleavage and blastocyst formation rates of each groups are presented.
OCT4 targeting efficiency was measured using the presence of OCT4 immunostaining signal in nucleus or PCR amplification and sequencing of single
blastocysts. Statistical significance was tested using chi-square test.

doi:10.1371/journal.pone.0120501.t002

porcine OCT4 successfully targeted the OCT4 locus and depleted OCT4 protein at 30-50% effi-
ciency in embryos.

Next, we checked the mRNA levels of OCT4 and other pluripotency related genes, including
NANOG, and CDX2 in Cas9/sgRNAs-injected and control embryos. As shown in Fig. 1g,
OCT4 mRNA levels in control embryos decreased until the 4-cell stage and increased in the 8-
cell and blastocyst stages, presumably by zygotic genomic activation [45]. For embryos injected
with Cas9 and sgRNA, maternal OCT4 mRNA was sustained until the 4-cell stage, but mRNA
levels dramatically decreased at the morula stage and were barely detectable in the blastocyst
stage, while mRNA levels of other genes, including NANOG, and CDX2 were not affected.
These results suggest that OCT4 knockout in embryos abolished OCT4 expression in embryon-
ic genome activation, and its effects were specific for OCT4.

Large-scale genomic region deletion in the OCT4 gene using two
sgRNA pairs

In addition to introduction of small indels or point mutations, CRISPR/Cas9 has been used to
introduce large structural variations, including ~10-kb deletions [41] and chromosomal trans-
locations [46, 47]. We tested the induction of large-scale deletions in the porcine genome using
two sgRNAs targeting regions located in the same chromosome. As shown in Fig. 2a, the dis-
tance between the guide sequences of sgRNA 1 (targeting exon 2) and sgRNA 2 (targeting exon
5) was about 1.8 kb, and using these two sgRNA pairs, we attempted to delete 1.8-kb regions
between exon 2 and exon 5 in the porcine OCT4 gene. We injected two sgRNAs (10 ng each)
with Cas9 RNA (100 ng/pL) in porcine zygotes and checked the mutation status after sgRNA/
Cas9 injection. As shown in Table 2, developmental competency of embryos injected with
sgRNAs and Cas9 was not significantly different from that of the control. When genomic DNA
from embryos injected with both sgRNAs and Cas9 was screened for large-scale deletions, 12%
(6/50) of embryos showed the expected 1.8-kb deletion, as shown in Fig. 2b. In immunostain-
ing results shows that OCT-4 signal in blastocysts was not detected as shown in Fig. 2c. These
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Fig 2. Targeted deletion of region between exon 2 and exon 5 of porcine OCT4 locus using sgRNA
pairs. (A) Location of sgRNA pairin OCT4 locus and scheme for resulting deletion (B) Sequencing of PCR
amplification product confimed the deletion of 1.8kb region between exon 2 and exon 5 of OCT4 locus.
Locations of guide sequences in exon 2 and exon 5 are marked as blue(exon 2) or red (exon 5) respectively,
and resulting exon 2—exon 5 fusions are shown. (C, D) Deletion of OCT4 and CDX2 protein using
immunostaining in targeted porcine embryos. Embryos were injected with 5—10pl of 100ng/pl of Cas9 mRNA
mixed with 0, 10, 100ng/pl of sgRNA 1 and sgRNA 2, respectively. Location of nucleus was stained with
Hoechst 33342 (blue). OCT4(C) and CDX2 (D) are presented as green.

doi:10.1371/journal.pone.0120501.g002

results showed that large-scale structural variation, including exon deletions or chromosomal
rearrangements, could be introduced in the porcine genome.

Generation of OCT4-GFP knockins using homology-dependent repair

In addition to generating knockouts in the genomic locus, CRISPR/Cas9 systems have been
employed to introduce precise genomic DNA knockins, including site-specific mutations, in-
corporation of loxP sequences, or generation of specific marker gene fusions like those with
GFP [24, 25, 48]. We evaluated the possibility that the CRISPR/Cas9 system could be used to
introduce exogenous DNA sequences in a targeted manner. We designed an OCT4-GFP target-
ing vector with a GFP fusion in the 3"-end of the OCT4-coding region, creating an in-frame fu-
sion (Fig. 3a). Then, we injected the targeting vector as well as sgRNA/Cas9 to introduce
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Fig 3. Generation of in-frame fusion of eGFP locus in Porcine OCT4 using CRISPR/Cas9 mediated
homology dependent repair (HDR). (A) Scheme for the HDR-mediated integration of eGFP into OCT4
locus. Donor vector for HDR was consisted with the left homology arm (1kb) spanning exon 3—exon 5, eGFP
fused after exon 5 as in-frame fusion and the right homology arm (1kb). Guide sequence for sgRNA was
designed near stop codon of OCT4 located at exon 5. Location of PAM are underlined and stop codon of
OCT4 is marked. Note that eGFP was inserted between stop codon and last codon of OCT4 and PAM of
sgRNA was located just after stop codon. Therefore donor vector cannot recognize and digested with Cas9/
sgRNA. (B) Confirmation of insertion of eGFP locus in genomic DNA of porcine embryo. PCR amplification
spanning exon 5 confirmed the presence of in-frame fusion of eGFP at the end of OCT4 coding region. (C)
Expression of eGFP fused Oct4 in HDR mediated eGFP knockin porcine embryos. eGFP expression was
detected byConfocal microscopy. Control (Cas9 injected) and Targeted (Cas9/sgRNA/Donor Plasmid) have
been compared. Note that localization of eGFP signal in nucleus.

doi:10.1371/journal.pone.0120501.g003

cleavage near the 3"-end of OCT4. When a high concentration of targeting vector (100 ng/pL)
was used, the developmental competency of injected embryos decreased (Table 3). When lower
concentrations of targeting vector (20 or 50 ng/uL) were used, the developmental competencies
of embryos were similar to those of the control group. We assessed the localization of GFP
using a confocal microscope. As shown in Fig. 3¢, the GFP signal appeared in Blastocyst-stage
embryos and the GFP signal was detected in the ICM, indicating that the OCT4-GFP fusion
protein was expressed in the ICM. Next, we assessed the presence of the GFP sequence in em-
bryonic genomic DNA. As shown in Fig. 3b, the eGFP sequence was precisely integrated after
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Table 3. Developmental competence and eGFP knockin efficiency in Porcine OCT4 locus.

Cas9/Exon 2 sgRNA/ donor plasmid (ng/pl)
100/0

100/10/20

100/10/50

Cleavage/injected zygotes Blastocyst/injected zygotes Efficiency
121/169 (71.60%) 37/140(26.43%) 0/8 (0%)
149/203(73.39%) 53/203(26.11%) 1/41(2.44%)
153/202(75.74%) 46/202(22.77%) 2/24(8.33%)

Different combination of Cas9, sgRNA and donor plasmid were injected as shown. Cleavage and blastocyst formation rates of each groups are presented.
OCT4 targeting efficiency was measured by PCR amplification and sequencing of single blastocysts. Statistical significance was tested using chi-

square test.

doi:10.1371/journal.pone.0120501.t003

the GFP sequence. Knockin efficiency was 2.44% (1/41) (Table 3), which is comparable with
that in previous studies using mouse zygotes [25].

Discussion

Recent advances in genome editing technologies, including ZEN, TALEN, and CRISPR/Cas9,
enable precise gene targeting techniques including genetic knockout and knockin in many or-
ganisms, including domestic animals like cows [48] or pigs [49, 50].

In addition to the generation of knockout or knockin animals, CRISPR-mediated genome
editing technology could be useful for functional characterization of genes involved in develop-
ment [48], including pre-implantation development of mammals. However, no report has de-
scribed the use of the CRISPR/Cas9 system for this purpose. To test the possibility of utilizing
the CRISPR/Cas9 system in studying mammalian development, we chose porcine parthenoge-
netic embryos and the OCT4 gene as models, because in vitro fertilization of porcine embryo is
technically demanding[51], therefore parthenogenetic porcine embryo would be ideal model
systems to test efficiency of sgRNA/Cas9 pairs before generation of knockout animal.

Our results showed that introduction of a single sgRNA/Cas9 pair yielded robust efficiency
(20-50%, depending on the guide sequence) in modification. As previously reported [52, 53],
cleavage and mutation efficiency were affected by the guide sequences. Specifically, Doench
et al. [52] suggested that nucleotides near PAM (NGQG) sites, especially at the -1 and +1 base
within the NGG, were the most important elements affecting cleavage efficiency, and A/G was
a favorable base for cleavage at the -1 position, and G was unfavorable at the +1 position. For
sgRNA 1, which targets exon 2 of OCT4, the guide sequence was 5" ~AGAGAAGAGGATCAC
CCTGGGCCC-3 . The NGG, GGG, is underlined. There was a T at the -1 position and an A at
the +1 position. For sgRNA 2, which targets exon 5 of OCT4, there was an A at the -1 position
and a C at the +1 position. It is noteworthy that sgRNA 2 yielded a much higher mutation fre-
quency (50%) compared to sgRNA 1 (20%), and sgRNA 1 had the unfavorable base T at the -1
position, while sgRNA 2 had an A at that position. We do not know that these difference solely
caused the difference in mutation efficiency between the two sgRNAs, but recent results con-
cerning active sgRNA design suggest that careful choices at sgRNA sites are crucial for effi-
cient cleavage, mutation, and achievement of high knockout efficiency, especially for
functional studies of genes involved in embryogenesis.

Previous functional studies of genes involved in early embryogenesis have been performed
using RNA interference or morpholino antisense oligonucleotides. A drawback of these tech-
niques is that they ablate expression of both maternal and zygotic genes. However, as shown in
Fig. 1g, knockout of OCT4 by CRISPR/Cas9 did not affect maternal OCT4 mRNA levels, while
OCT4 knockout only ablated embryonic gene expression. These characteristics of the CRISPR/
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Cas9 system would be useful to study genes involved in embryogenesis, especially those in-
volved in zygotic genome activation.

In addition to simple knockout of a single locus, we showed that more sophisticated genome
engineering, including large-scale genome deletion or knockin of eGFP at the OCT4 locus to
generate an OCT4-EGFP fusion protein, would be possible with the CRISPR/Cas9 system. Fluo-
rescence marker proteins for visualization of biological molecules and live cell imaging are now
essential tools to elucidate protein function, especially those involved in development [54, 55].
However, generation of knockin embryos with fluorescence proteins has been cumbersome and
time-consuming, and use of transient fluorescent protein fusion construct expression may lead
to artifacts caused from overexpression of the fluorescence protein [33]. Considering these dis-
advantages, fluorescent tagging of endogenous genes by CRISPR-mediated knockin and imag-
ing of tagged endogenous protein would facilitate imaging of embryogenesis-related genes
during embryogenesis. But HDR-mediated integration efficiency of GFP locus in OCT4 gene is
far lower than that of NHE]J-mediated knockout, as previously reported in mouse[25]. En-
hancement of HDR-mediated knockin efficiency in mammalian would be essential for the gen-
eration of more sophisticated transgenesis. Recently reported techniques including NHEJ-
mediated transgene integeration[56, 57] in zebrafish may be applicable in mammalian system.

In summary, we established a knockout and knockin system in porcine parthenogenetic em-
bryos using the CRISPR/Cas9 system, and demonstrated that this system could facilitate inves-
tigation of genes involved in pre-implantation development or generation of knockin or
knockout pigs.

Supporting Information

S1 Table. Primer sequences for sgRNAs, PCR sequencing, and qQRT-PCR. sgRNAs: OCT4
exon 2 and exon 5 targeting sgRNA primer; PCR sequencing: Target site mutation check prim-
er; QRT-PCR: mRNA expression check primer.

(PDF)
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