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1  | INTRODUC TION

Skin‐wound healing is critical for successful outcomes of surgical and 
emergency medical procedures.1‐6 Skin wounds can be created by 
surgery, scalds, burns, physical trauma or animal bites.7‐10 Recent re‐
search related to skin‐wound healing has focused mainly on four as‐
pects: (a) post‐injury hemostasis and promotion of coagulation;11 (b) 
infection prevention during skin repair;12 (c) fibroblast differentiation 
and neovascularization;13,14 (d) granulation tissue regeneration.15,16 

The first two aspects, coagulation and infection prevention, apply to 
early skin‐wound healing.17 Growth factors promote subsequent ger‐
minal layer cell division and neovascularization,18‐20 and various types 
of nano‐material such as gold and silver nanoparticles have been used 
to promote granulation tissue differentiation.21‐25 However, several is‐
sues around skin‐wound healing are not fully resolved: (a) hemostatic 
and anti‐infective materials are often ineffective at promoting wound 
healing;26 (b) growth factors can induce hyperblastosis or tumorigen‐
esis;27,28 (c) although remarkable effects of nano‐materials have been 
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Abstract
Background: Recent research into skin injury and wound healing has focused mainly 
on post‐trauma hemostasis, infection prevention, dermal regeneration and angiogen‐
esis. However, less attention has been paid to air permeability and moisture loss pre‐
vention which also play important roles in injury healing.
Methods: In	the	present	work,	we	prepared	a	hyaluronic	acid-poloxamer	(HA-POL)	
hydrogel and tested the therapeutic effect of the hydrogel on skin‐wound healing.
Results: The	HA-POL	hydrogel	transformed	from	sol	to	gel	at	30°C,	close	to	body	
temperature,	 and	 had	 stable	moisturizing	 properties.	HA-POL	 hydrogel	 promoted	
skin-wound	healing	and	increased	protein	accumulation	in	the	wound	area.	HA-POL	
hydrogel allowed greater air permeability than Band‐aid, a typical wound covering. 
Results	from	transwell	assays	showed	that	the	HA-POL	hydrogel	effectively	isolated	
skin‐wounds from bacterial invasion.
Conclusion: This	work	demonstrates	the	advantages	of	using	HA-POL	gel	materials	
in the treatment of cutaneous wounds.
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reported, gold or silver nanoparticles may remain in scar tissue for a 
long time.29,30 Therefore, there is an urgent need to explore safer and 
more effective treatment strategies.

Hyaluronic	acid	(HA)	is	a	nitrogen-containing	mucopolysaccharide	
composed of disaccharide units of D‐glucuronic acid‐N‐acetylglucos‐
amine and is a major component of the extra‐cellular matrix.31,32 It is 
an important industrial material and medical/pharmaceutical excipient, 
and has been widely used in skin care products and tissue engineer‐
ing.33‐35	However,	as	an	aid	to	skin	healing	HA	has	several	defects:	(a)	
it has been characterized as a moisturizer with low viscosity;36 (b) a sin‐
gle	application	of	HA	does	not	make	the	wound	breathable.37 The aim 
of	this	study	was	to	improve	the	effect	of	HA	on	wound	healing.	We	
prepared	and	 tested	a	HA-poloxamer	 (HA-POL)	hydrogel	and	 found	
that this new material can effectively promote skin‐wound healing by 
enhancing protein accumulation in the wound area, increasing air per‐
meability and preventing bacterial invasion.

2  | METHODS

2.1 | Agents and animals

Hyaluronic	acid	(HA)	and	Poloxamer	407	(POL)	were	purchased	from	
Furuida	 Corporation,	 Shandong	 Province,	 China.	 Sprague-Dawley	
(SD) rats were purchased from Sibeifu Corporation, Beijing, China. 
Isoflurane	 (inhalation	 anesthetic)	 was	 purchased	 from	 RWD	 Life	
Science Co., Shenzhen, Guangdong Province, China. Basic fibroblast 
growth	 factor	 (bFGF)	 was	 purchased	 from	 ProTeck	 Corporation,	
USA.	Pathology	test	kits	(HE	or	Sirius	Red	staining)	were	purchased	
from Zhongshan JInqiao Corporation, Beijing, China. Transwell 
plates (Costar 3422®) were purchased from Corning Coporation, 
USA.	Escherichia coli DH5α was cultured in our lab. Use of the ex‐
perimental mice and all protocols were approved by the Institutional 
Animal	Care	and	Use	Committee	of	Fifth	Medical	Center,	General	
Hospital	of	Chinese	PLA.	The	project	ethics	review	approval	number	
is	IACUC-2017-008.

2.2 | Preparation of HA‐POL hydrogel

To	prepare	the	hydrogel,	1	g	of	1.2	million	Da	molecular	weight	HA,	
4	g	of	0.12	million	Da	molecular	weight	HA	and	5	g	of	poloxamer	
407	(POL)	were	weighed	and	dissolved	by	stirring	in	an	ice	bath,	and	
the volume was made up to 100 ml with double‐distilled H2O. The 
resulting	HA-POL	gel	was	maintained	at	4°C.	The	apparent	viscosity	
(η) of the hydrogel was determined using a coaxial cylindrical rheom‐
eter (Cat#	 TC-502,	 Brookfield	 Corporation,	 USA)	 with	 the	 data	
processed by a workstation (Cat# Rheocale V3.0 Bld46, Brookfield 
Corporation,	USA).

2.3 | Full‐thickness wound healing experiments 
in rats

Adult	male	SD	rats,	with	body	weights	of	180-220	g,	were	fed	and	
housed	 in	 clean	cages	maintained	at	22-25°C.	At	 the	 start	of	 the	

experiment, twenty rats were anesthetized by intraperitoneal injec‐
tion of 10% (w/v) chloral hydrate (0.5 ml per animal). The dorsal skin 
was shaved and cleaned with an iodophor (0.2% w/v). The dorsal 
skin was then surgically operated to excise two full‐thickness skin 
patches (diameter 2 cm2) on each side of the upper backs of each 
animal. The left‐side wound was chosen as the control and treated 
with an injection of physiological saline. The right‐side wound was 
treated with drugs. The rats were randomly divided into two ther‐
apeutic groups (n = 10 in each group): one group of animals was 
treated	 with	 HA-POL	 hydrogel	 and	 the	 other	 group	 was	 treated	
with	bFGF	 (100	AU/cm2), which was chosen as a positive control. 
Both agents were applied directly by smearing on the skin wounds 
once per day. Photographs of skin wounds were taken at the indi‐
cated time points.

At	the	different	time	points,	the	two	rats	were	sacrificed	and	full-
thickness skin samples including intact skin adjacent to the wound, 
the wound margin and epithelialized wounds were collected and 
prepared as tissue slices. Slices were then examined using HE (he‐
matoxylin and eosin)38 and Sirius Red staining.39

2.4 | Biochemical analysis

At	 the	 time	 of	 sacrifice,	 granulation	 tissue	 from	 rat	 skin	
wounds was collected. The collected tissue was washed with 
physiological saline, and the protein and hydroxyproline (Hyp) 
concentrations in the granulation tissue were quantified ac‐
cording	 to	 the	method	 of	 Li	 et	 al	 (2015),	 using,	 respectively,	
a Coomassie brilliant blue protein determination kit and a hy‐
droxyproline kit.23

2.5 | Gas barrier test

Hydrogel films were prepared and the thickness of films was 
examined. Band‐aid adhesive bandages of different thicknesses 
were	 used	 as	 controls.	 A	 moisture	 permeability	 analyzer	 (Cat# 
Permatran-W3/61,	 Mocon	 Corporation,	 Illinois,	 USA)	 was	 used	
to examine the water vapor transmission rate (WVTR, g/m2/
day) of hydrogel.40	An	oxygen	permeability	analyzer	(Cat# 8001, 
Mocon	Corporation,	Illinois,	USA)	was	used	to	examine	the	oxy‐
gen transmission rate (OTR, ccm/m2/day) of hydrogel.41 Test tem‐
perature (T ) and relative humidity (RH) conditions were T = 25°C,	
RH = 0 for OTR measurement and T	=	25°C,	RH	=	50%	for	WVTR	
measurement.

2.6 | Transwell assays

Transwell assays were performed to test bacterial migration across a 
solvent	control,	HA	gel	or	HA-POL	gel,	which	were	added	to	the	un‐
dersides of the upper chambers of the assay vessels.42,43 E. coli was 
cultured	to	1	O.D./ml	and	diluted	with	LB	medium	(1:1000).	Diluted	
E. coli (100 μl)	was	added	to	the	upper	chambers.	The	LB	medium	in	
the lower wells was cultured to analyze the migration of E. coli from 
the	chambers	to	the	wells.	Migrated	E. coli were quantified using a 
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multifunctional	microplate	reader	set	for	O.D.	600	nm.	Figure	1	is	a	
schematic diagram of the transwell experiments.

3  | RESULTS

3.1 | HA‐POL hydrogel temperature sensitivity

As	shown	 in	Figure	2,	 the	apparent	viscosities	of	HA-POL	or	POL	
hydrogels	increased	with	temperature.	The	HA-POL	hydrogel	trans‐
formed	 from	sol	 to	gel	 at	30°C,	whereas	 the	POL	hydrogel	 trans‐
formed	from	sol	to	gel	at	37°C.	The	results	indicated	that	HA-POL	
hydrogel forms films at a temperature close to body temperature.

3.2 | HA‐POL hydrogel promotes skin‐
wound healing

First,	we	examined	the	overall	effect	of	HA-POL	hydrogel	on	skin-
wound	healing.	Figure	3A	shows	the	skin-wound	healing	process	in	
rats	receiving	control	(saline),	bFGF	(basic	fibroblast	growth	factor)	
or	HA-POL	hydrogel	treatments	at	different	time	points.	By	day	14,	
the	 skin	wounds	 of	 the	 rats	 in	 the	HA-POL	 hydrogel	 group	were	
almost completely healed whereas the wounds of the control and 
bFGF	groups	were	still	visible.

Next, we examined the protein and hydroxyproline (Hyp) con‐
tent of the wounds to reveal the extent of protein accumulation 
during	the	healing	process.	As	shown	in	Figure	3B	and	C,	the	total	
protein	and	Hyp	content	 in	 the	HA-POL-treated	group	was	higher	
than	in	the	control	or	bFGF	groups.

We next performed pathological staining assays, using HE 
and Sirius Red staining, to further investigate the effect of the 
hydrogel.	As	shown	in	Figure	4,	granulation	tissue	formation	and	
angiogenesis	were	identified	by	HE	staining	(Figure	4A),	whereas	
fibroblast accumulation and collagen deposition were examined 
by	Sirius	Red	 staining	 assays	 (Figure	4B).	HA-POL	hydrogel	pro‐
moted fibroblast accumulation, granulation tissue formation, 

angiogenesis and collagen deposition more effectively than con‐
trol	and	bFGF	groups.

3.3 | HA‐POL hydrogel effectively protects skin 
wounds from E. coli

Next, transwell experiments were performed to examine the migra‐
tion of bacteria across the gel. E. coli was added to the upper cham‐
bers, the undersurfaces of which were coated with control saline 
solution,	HA	hydrogel	or	HA-POL	hydrogel.	As	shown	in	Figures	1	
and 5, E. coli migrated from the chambers to the wells below when 
the chambers were coated with saline and this migration was attenu‐
ated	by	HA	hydrogel	for	2-3	days	and	by	HA-POL	gel	for	over	5	days.	
These	data	 show	 that	HA-POL	hydrogel	 effectively	 protected	 the	
wounds from bacterial infection.

F I G U R E  1   The schema chart of 
transwell experiments. Chambers of 
transwell plates were coated by control, 
HA	or	HA-POL	hydrogel.	The	migration	
of E. coli	could	be	prevented	by	HA	gel	or	
HA-POL	gel

F I G U R E  2  Temperature-viscosity	Curve	of	hydrogel.	Apparent	
viscosity (η)	of	HA-POL	hydrogel	or	POL	407	was	examined	at	
different temperatures (t)
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F I G U R E  3   Effect of agents on the 
healing of full‐thickness skin‐wounds 
in	rats’	model.	A,	Rats	were	surgically	
operated to form full‐thickness 
wounds. Skin‐wounds were treated 
by	control,	bFGF	or	HA-POL	hydrogel.	
Representative photographs during 
wound‐healing process at indicated time 
points were shown. B, The contents of 
total‐protein in granulation tissues or Hyp 
of skin‐wounds was shown as mean±SD. 
*P < 0.05

F I G U R E  4   Effect of agents on the 
healing of full‐thickness skin‐wounds 
in	rats’	model.	A,	Rats	were	surgically	
operated to form full‐thickness wounds. 
Skin‐wounds were treated by control, 
bFGF	or	HA-POL	hydrogel.	Tissues	
specimens were analyzed by pathological 
assays. Representative photographs from 
HE	staining	(A)	or	Sirius	Red	staining	(B)	
was shown. Scale bar =100 μm
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3.4 | HA‐POL hydrogel has good moisture 
absorbing and air permeability capacities

The	moisture	 absorption	 and	 air	 permeability	 of	HA-POL	 hydro‐
gel	was	examined.	As	shown	in	Figure	6,	unlike	Band-Aid	adhesive	
bandages, which can completely block oxygen and water vapor 
transmission,	HA-POL	hydrogel	showed	good	moisture	absorbing	
and	air	permeability	capacities.	This	finding	indicated	that	HA-POL	
hydrogel may be a promising material for promoting wound healing.

4  | DISCUSSION

Skin‐wound healing is a complex process involving multiple 
steps: stratum corneum cells proliferate to form a scab and then 

fibroblasts generate new granulation tissue to fill the wound 
scars and wrap necrosis tissues.44,45	 Final	 differentiation	 of	
the hair follicles and hair structure are essential for wound re‐
pair.46,47	 Among	 current	 treatments,	 Band-aid	 adhesive	 band‐
ages are used to prevent hemostasis, ointments containing 
antibiotics are used to prevented infections, and growth fac‐
tors,	eg	bFGF,	are	used	to	promote	fibroblasts	proliferation.48,49 
Recently, nanoparticles have been used as novel treatments in 
skin‐wound healing: silver nanoparticles are used as anti‐infec‐
tion agents, while gold nanoparticles are used to stimulate fi‐
broblast proliferation and collagen secretion.50 However, gold 
and silver nanoparticles may deposit sub‐dermally for long pe‐
riods of time and be difficult to excrete,51 and the cost of these 
promising materials may be a major obstacle to wide clinical and 
out‐patient use.

F I G U R E  5   Effect of agents on 
preventing infection of E. coli in a 
transwell model. Chambers of transwell 
plates	were	coated	by	control,	HA	or	
HA-POL	hydrogel.	E. coli was added in 
chambers and the migration of E. coli was 
identified by examining the E. coli in wells. 
Medium	in	wells	was	shaking	culture	in	
LB	for	5-6	hours.	The	photograph	(A)	and	
O.D. 600nm (B) was shown. *P < 0.05 
versus	control	with	HA;	#P < 0.05 versus 
HA	with	HA-POL

F I G U R E  6  WVTR	and	OTR	curve	of	films	formed	by	HA-POL	gel	with	different	thickness.	A,	HA-POL	hydrogel	was	used	to	form	a	film.	
The	WVTR	and	OTR	of	films	formed	by	HA-POL	hydrogel	with	different	thickness	was	examined.	B,	The	WVTR	and	OTR	of	three	kinds	of	
Band-Aid	with	different	thickness	(Band-Aid	1:	1.5mm;	Band-Aid	2:	0.8mm;	and	Band-Aid	3:	1.0mm)	was	examined	as	control.	*P < 0.05
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HA	has	 been	widely	 used	 in	 cosmetic	R	&	D,	 plastic	 surgery	
and other surgical procedures due to its good moisturizing ca‐
pacity.	However,	HA	hydrogel	does	not	form	a	film,	which	may	be	
critical for infection protection. We prepared a gel by combining 
HA	with	Poloxamer	407,	a	poloxamer	that	 is	safe	to	use,	and	ex‐
amined its properties in skin‐wound healing. In our experiments, 
we	found	that	HA-POL	hydrogel	has	better	 film-forming	proper‐
ties.	 HA-POL	 hydrogel	 is	much	 better	 at	 promoting	 skin-wound	
healing	 than	 growth	 factor	 bFGF,	 and	may	 protect	 skin-wounds	
from bacterial infection. The water vapor and oxygen transmission 
capacities	of	HA-POL	hydrogel	are	better	than	Band-aid;	oxygen	
transmission	measurements	 indicated	that	HA-POL	hydrogel	has	
good air permeability capacity and could be a promising material 
for wound healing.

Our	results	suggest	that	HA-POL	hydrogel	offers	a	number	of	
potential	improvements	in	skin-wound	healing:	(a)	HA-POL	is	bio‐
degradable and thus avoids problems associated with non‐degrad‐
able treatments; (b) its effective moisturizing and air permeability 
capacities help to prevent infection and protect wounds, poten‐
tially	 avoiding	 the	 use	of	 antibiotics;	 (c)	HA-POL	hydrogel	 treat‐
ment of skin trauma enhances tissue repair, potentially avoiding 
the need for growth factor treatment. Taken together, our find‐
ings	 demonstrate	 that	HA-POL	 hydrogel	 is	 a	 promising	material	
for wound healing.
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