
Med Res Rev. 2020;40:2089–2113. wileyonlinelibrary.com/journal/med | 2089

Received: 28 September 2019 | Revised: 21 April 2020 | Accepted: 16 May 2020

DOI: 10.1002/med.21695

M IN I R E V I EW

The role of FOXOs and autophagy in cancer and
metastasis—Implications in therapeutic
development

Mohd Farhan1 | Marta Silva1 | Shuai Li1 | Fengxia Yan2 |

Jiankang Fang1 | Tangming Peng1 | Jim Hu3 | Ming‐Sound Tsao3 |

Peter Little4 | Wenhua Zheng1

1Faculty of Health Sciences, Centre of Reproduction, Development and Aging, Institute of Translational Medicine, University of

Macau, Taipa, Macau SAR, China

2Department of Medicine, Jinan University, Guangzhou, China

3Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

4School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland,

Australia

Correspondence

Wenhua Zheng, Faculty of Health Sciences,

University of Macau, Room 3057, Building E12,

Taipa, Macau 999078, China.

Email: wenhuazheng@umac.mo

Funding information

Universidade de Macau, Grant/Award Number:

MYRG2018‐00134‐FHS; Fundo para o

Desenvolvimento das Ciências e da Tecnologia,

Grant/Award Numbers: 0044/2019/AGJ,

0113/2018/A3, 0127/2019/A3; National

Natural Science Foundation of China,

Grant/Award Number: 31771128

Abstract

Autophagy is a highly conserved intracellular degradation

process that plays a crucial role in cell survival and stress

reactions as well as in cancer development and metastasis.

Autophagy process involves several steps including se-

questration, fusion of autophagosomes with lysosomes and

degradation. Forkhead box O (FOXO) transcription factors

regulate the expression of genes involved in cellular meta-

bolic activity and signaling pathways of cancer growth and
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metastasis. Recent evidence suggests that FOXO proteins

are also involved in autophagy regulation. The relationship

among FOXOs, autophagy, and cancer has been drawing

attention of many who work in the field. This study sum-

marizes the role of FOXO proteins and autophagy in cancer

growth and metastasis and analyzes their potential roles in

cancer disease management.
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1 | INTRODUCTION

Cancer is generally characterized by a set of features that includes sustained chronic proliferation, insensitivity to

growth suppressors, unlimited replicative potential, resistance to apoptosis, induction and sustained angiogenesis,

tissue invasion, and metastatic formation.1 Metastases are accountable for ~90% of all cancer deaths.2 Their

formation is quite complex requiring primary tumor cells to detach and enter the blood circulatory system to reach

distant tissue sites, where they adapt to survive and thrive forming secondary tumors.3‐5 Despite accumulating

evidence for the occurrence of genetic and epigenetic alterations, mechanisms underlying cancer progression and

metastatic formation are still poorly understood.4

Forkhead box O (FOXO) transcription factors have been reported to influence the cellular responses to external

energy changes, growth factors stimulation, and nutritional status. Evidence also suggest their involvement in several

cellular processes and their dysfunction has been implicated in aging, diabetes, and cancer.6‐10 In fact, FOXOs expression

and transcriptional activity have been reported to be altered in many cancers. Due to their antiproliferative and

proapoptotic functions, FOXOs are generally viewed as tumor suppressors.11 They have also been implicated in au-

tophagy modulation in different cancer cells.12‐14 Autophagy or macroautophagy is a biologically ancient and highly

conserved process present in all cells.15 It involves the intracellular formation of specialized membranous vesicles, which

engulf target proteins and organelles for transport to lysosomes for degradation.16 Many genes involved in autophagy

have been identified and the basic process of autophagy is only partially understood.17,18 There is still a significant gap

between our understanding of the signaling pathways that control autophagy and the impact of these pathways in cancer

cell biology.19,20 Emerging evidence support a connection between FOXO proteins and autophagy in cancer suggesting

their potential as leading targets for the development of new therapeutic approaches. This review summarizes the role of

FOXO proteins and autophagy in cancer growth and metastasis and analyzes the most recent findings regarding the

potential therapeutic opportunities related to FOXO's‐autophagy regulation.

2 | FOXO TRANSCRIPTION FACTORS

From FOXA to FOXS, forkhead genes encode proteins that contain a conserved DNA‐binding domain (the forkhead box),

often referred as a “winged‐helix” due to its butterfly‐like appearance.21‐23 Mammalian FOXOs including FOXO1,

FOXO3, FOXO4, and FOXO6 gene products are evolutionarily conserved and function as transcription factors by binding

to target DNA through the forkhead domain leading to either inhibition or activation of downstream target genes.24

Accordingly, FOXO proteins participate in several crucial processes that range from cell proliferation to cell apoptosis

including the regulation of autophagy, metabolism, inflammation, and differentiation (Table 1).
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FOXOs transcriptional regulation is controlled by a variety of posttranslational modifications (PTMs), such as

phosphorylation, ubiquitination, acetylation, methylation, glycosylation, and poly(ADP‐ribosyl)ation (PARylation)

that dictate FOXOs subcellular localization.46‐50

FOXOs regulation by insulin or insulin‐like growth factor‐1 occurs via the ubiquitous phosphatidylinositol

3‐kinase‐protein kinase B (PI3K‐AKT) pathway.51‐53 AKT phosphorylates nuclear FOXOs at three conserved

serine/threonine residues (Thr32, Ser253, and Ser315 in FOXO3) leading to the binding of 14‐3‐3 proteins.54 With

the exception of FOXO6, all FOXOs have these three evolutionarily conserved phosphorylation sites and binding of

14‐3‐3 promotes the translocation of FOXO proteins to the cytoplasm blocking their transcriptional activity.55,56

While phosphorylation of Thr32, FOXO3 residue is involved in binding of 14‐3‐3 chaperone proteins, phosphor-

ylation of Ser253, which is a part of the nuclear localization sequence, causes signal disruption and prevents the

reentry of FOXOs into the nucleus due to the negatively charged phosphor group attached to the basic sequence.56

FOXOs phosphorylation induced by other kinases such as serum/glucocorticoid regulated kinase 1, casein kinase 1

alpha 1 (CK1), dual‐specificity tyrosine phosphorylation‐regulated kinase 1A, extracellular signal‐regulated kinase

(ERK), and I kappa B kinase also inhibits FOXOs transcriptional activity.57 Conversely, FOXOs phosphorylation by

upstream c‐Jun N‐terminal kinase (JNK), mammalian sterile 20‐like kinase (MST1), and AMP‐activated protein

kinase (AMPK) promotes FOXOs transcriptional activity.11,24 Under oxidative stress conditions, JNK phosphor-

ylates FOXO4 at Thr447 and Thr451 residues promoting its translocation from the cytoplasm to the nucleus.58

JNK can also phosphorylate FOXO3 at Ser574, counteracting AKT signaling, and thereby promoting FOXO3

nuclear translocation and transcriptional activity.59 JNK‐mediated activation of FOXOs transcriptional activity also

involves JNK phosphorylation of 14‐3‐3 chaperone proteins, thereby promoting their dissociation from FOXO3,

TABLE 1 FOXOs family members

Gene name

Human
chromosomal

location

Subcellular

localization

Total
amino

acids Expression pattern Cellular Function References

FOXO1 13 Nucleus/

cytoplasm

655 Ubiquitous with

higher expression

in adipose tissue

Proliferation (↓/↑) 25‐31

Metabolism (↑)

Apoptosis (↑)

Inflammation (↑)

Autophagy (↑)

FOXO3 6 Nucleus/

cytoplasm

673 Ubiquitous with

higher expression

in brain, heart,

kidney and

spleen

Proliferation (↓/↑) 30‐40

Metabolism (↑)

Apoptosis (↑)

Inflammation (↑)

Differentiation

(↓/↑)

Autophagy (↓/↑)

FOXO4 X Nucleus/

cytoplasm

505 Ubiquitous with

higher expression

in skeletal muscle

Proliferation (↑) 31,41‐43

Apoptosis (↑)

Inflammation (↑)

FOXO6 1 Nucleus 492 Brain Proliferation (↑) 31,44,45

Metabolism (↑)

Abbreviation: FOXO, forkhead box O.
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counteracting AKT signaling.60 Oxidative stress also promotes MST1‐induced phosphorylation of FOXO3 at Ser207

leading to the disruption of 14‐3‐3 binding and to FOXOs nuclear relocalization.61 Similarly, under conditions of

nutrient stress, AMPK was shown to phosphorylates FOXO3 at six residues (Thr179, Ser399, Ser413, Ser555,

Ser588, and Ser626), triggering its transcriptional activity without interfering with its subcellular localization.62

FOXOs ubiquitination may involve mono‐ and polyubiquitination, both having different roles on their tran-

scriptional activity regulation. Oxidative stress conditions induce the monoubiquitination of FOXO4 at K199 and

K211 residues, triggering its relocalization into the cell nucleus and increasing its transcriptional activity.63 Ac-

cumulated FOXOs in the cytosol, as a result of AKT‐mediated phosphorylation, are degraded by polyubiquitination

through the ubiquitin‐proteosome pathway.64

FOXO proteins function is also regulated by several acetylases and deacetylases.65 In response to oxidative

stress, CREB‐binding protein (CBP) and its paralog p300 (CBP/p300), acetylate FOXO proteins inhibiting their

activity. CBP‐induced acetylation of FOXO1 and FOXO4 leads to the reduction of their transcriptional activity.66,67

Silent information regulator 2 (SIRT2)‐induced deacetylation of FOXO1 reverses the acetylation effect increasing

FOXO1 transcriptional activity.67 FOXOs activity regulation may also result from the interplay of their PTMs.

For example, acetylation decreases FOXO1 DNA‐binding activity and consequently enhances its availability to

AKT‐mediated phosphorylation.68

Other PTMs such as methylation by protein arginine methyltransferase 1 (PRMT1), N‐ and O‐linked glyco-

sylation and PARylation by poly(ADP‐ribose) polymerase 1 (PARP1), also regulate FOXOs transcriptional activity.

Specifically, PRMT1 methylates FOXO1 inhibiting AKT‐induced phosphorylation and thereby preventing its nuclear

translocation.47 Regarding FOXO1 glycosylation, in spite of not influencing its subcellular localization, it also

enhances its transcriptional activity.48 Concerning PARP1‐induced modifications, these have been shown to

negatively regulate FOXOs transcriptional activity. Specifically, phosphorylation of FOXO3 by PARP1 prompts its

nuclear export impairing its transcriptional activity.49,50

3 | FOXOs IN CANCER AND METASTASIS

FOXO1, FOXO3, and FOXO4 were initially discovered because chromosomal translocations were detected in some

forms of leukemia supporting their association with cancer development. While FOXO1 was found in alveolar

rhabdomyosarcoma as a fusion protein involving DNA‐binding domain of PAX3 or PAX7,69‐71 FOXO3 and FOXO4

were discovered in acute myeloid leukemias (AMLs) as fusion proteins with mixed‐lineage leukemia (MLL)

gene.72,73 Nonetheless, the underlying mechanisms tying these genetic alterations with FOXOs role in carcino-

genesis are still unclear.

The increased metabolic demands associated with cancer progression causes tumor cells to reprogram their

metabolism to grow and proliferate. Some of the metabolic alterations promoted by cancer cells affect both glucose

and lipid metabolisms, which regulation has also been shown to be modulated by FOXOs transcriptional activity.74

To generate ATP, cancer cells resort to glycolysis, a mechanism promoted by the proto‐oncogene Myc that is only

used by healthy cells in hypoxic conditions.75,76 Several studies have reported that FOXOs antagonize Myc

function, which is reported to be upregulated in many cancers, thus inhibiting glycolysis and, therefore, impairing

glucose uptake.74 In fact, acetylated FOXOs were shown to promote the increase of Myc levels in glioblastoma and,

upon energy stress conditions, FOXOs were shown to induce the upregulation of FOXO‐induced long noncoding

RNA 1 promoting the decrease of Myc protein levels in renal cancer cells.77,78 In contrast, FOXOs were shown to

have a key role in the regulation of hepatic gluconeogenesis enhancing the glucose output via the activation of

phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose‐6‐phosphatase (G6Pase), thereby upregulating phos-

phoenolpyruvate carboxykinase 2 (PEPCK) levels.79,80 FOXO1 nuclear exclusion mediated by the tumor suppressor

p53 was shown to impair the expression of both PCK1 and G6Pase and, therefore, to compromise gluconeogenesis

in different cancer cell lines.81 Congruently, a different study reported that AKT loss mediated by the mammalian
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target of rapamycin (mTOR) inhibition promoted FOXO1 nuclear retention and the upregulation of PEPCK levels,

thus increasing the glucose output by cancer cells.82 Despite these evidence, FOXOs involvement in the regulation

of gluconeogenesis in cancer cells is still unclear. Lipid metabolism rewiring by tumor cells is usually achieved by

enhancing fatty acid synthesis, a process regulated by sterol regulatory element‐binding proteins (SREBPs).83,84

Evidence suggest that FOXO1 is able to impair lipogenesis by reducing the transcriptional activity of SREBPs and

thereby downregulating the expression of the enzyme fatty acid synthase.85 In contrast, FOXOs were shown to

induce the expression of the enzyme adipose triacylglycerol lipase, consequently upregulating lipolysis in adipo-

cytes.86 As the influence of FOXO proteins in cells metabolism has been extensively reported, more studies are still

necessary to unravel their regulatory role in cancer cells metabolism.

3.1 | FOXOs as tumor suppressors

FOXOs are generally considered to suppress cancer. This view is sustained by the tumor‐prone phenotype of

FOXOs knockout mice. Studies from knockout mice with up to five deleted FOXO alleles resulted in a mild tumor

phenotype.87 Nonetheless, the simultaneous deletion of all alleles lead to the development of thymic lymphomas

and hemangiomas, indicating a redundant tumor suppressive function for these transcription factors in cancer.87

FOXOs suppressive role is further reinforced by studies reporting their inactivation in multiple human cancers by

the PI3‐AKT signaling pathway, which is commonly hyperactivated during cancer due to the occurrence of mu-

tations in RAS, suppressor proteins PTEN or PI3K.88 FOXOs inactivation promotes the downregulation of genes

implicated in cell cycle arrest, such as retinoblastoma‐related protein p130 and cell cycle kinase inhibitor p27kip1,

and enhances cell survival decreasing the expression of the proapoptotic tumor necrosis factor‐related apoptosis‐
inducing ligand.89 Downregulation of FOXO1 and increased levels of FOXO1 phosphorylation is reported to be

correlated with poor prognosis in patients with soft tissue sarcoma,90 AML,91 prostate,92 and breast cancers.93

Likewise, the downregulation of FOXO3 correlated with poor survival in patients with neuroblastoma,94

breast,95‐97 ovarian,98 and colorectal cancers.99 Similarly, the upregulation of FOXO3 phosphorylation levels were

identified as adverse prognostic biomarkers in ovarian cancer100 and AML.101 FOXOs influence in metastasis

formation and progression has also been reported. Specifically, the downregulation of FOXO3 was shown to be

important for tumor metastasis progression in colorectal cancer99 and renal cell carcinoma.102 Moreover, FOXO3

nuclear localization was correlated with better prognosis and less frequent metastasis formation in estrogen

receptor‐positive breast cancer.97 Downregulation of FOXO4 in patients with prostate cancer was also correlated

with earlier metastatic formation.103

3.2 | FOXOs as tumor promoters

Despite being considered tumor suppressors by most studies, new evidence regarding FOXOs role in the promotion

of cancer progression and in the resistance to cancer therapy in certain contexts has come to light. In fact,

occurrences of FOXO1 single‐nucleotide somatic mutations that promote its nuclear localization were correlated

to a poor prognosis in large B‐cell lymphomas.104 Likewise, increased levels of FOXO3 were associated with poor

outcomes in hepatocellular carcinoma (HCC) and glioblastoma.105,106 Evidence also suggests the involvement of

FOXO proteins in the regulation of leukemia‐initiating cells (LIC) maintenance in chronic myelogenous leukemia

(CML) and AML.107 Specifically, LICs were shown to present an increased nuclear localization of FOXO3 due to a

decrease of AKT activation and these cells' ability to cause CML was significantly reduced by FOXO3a

deficiency.108 Likewise, active FOXOs were found in patients with AML and, either activation of AKT or FOXOs

deletion, impaired leukemic cell growth and LIC function promoting the survival of an AML mice model.109 In line

with these findings, high levels of FOXO3 correlated to a lower overall survival and recurrence free survival of
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patients with AML.110 Similar roles for FOXO proteins in other cancer stem‐like cells have also been

reported.32,96,111 Despite the abovementioned evidence, linking FOXOs increased levels to reduced metastasis

formation, several studies also suggest that FOXO proteins can facilitate metastasis. In fact, the nuclear localization

of both FOXO3 and elevated β‐catenin contents correlated with the formation of metastases and with a shorter

survival in colorectal cancer.112 Likewise, FOXO3 overexpression correlated with lymph node metastasis formation

and with a poor disease free survival of patients with triple‐negative breast cancer.113 FOXOs' facilitating role in

metastasis has also been observed in breast cancer cell lines. Specifically, nuclear retention and activation of

FOXO3, due to serum deprivation resultant from increased mass tumor, were shown to upregulate matrix

metalloproteinase‐9 (MMP‐9) and MMP‐13 levels which further promote invasive cellular migration.114 Likewise,

FOXO1 was reported to directly regulate MMP‐1 expression enhancing metastasis formation in breast cancer

cells.115 FOXO3 knockdown was also reported to significantly suppress tumor formation and metastasis in pan-

creatic ductal adenocarcinoma.116 In summary, FOXOs present a paradoxical role in cancer and metastasis in which

they are able to act as tumor suppressors, by inducing apoptosis and cell‐cycle arrest but may also promote cancer

progression (Figure 1).

4 | AUTOPHAGY

Autophagy is a highly conserved cellular process that involves the intracellular degradation and removal of da-

maged proteins and organelles supporting cellular renovation and homeostasis.117,118 This process may be induced

by starvation or nuclear stress, initiating with the formation of autophagosomes that engulf the intracellular cargo

and carry them to lysosomes for degradation and recycling.117,118 Autophagy initiation is controlled by the serine/

F IGURE 1 The role of FOXOs in cancer and its related pathways. FOXOs are generally considered as tumor
suppressors but they can also promote the progression of cancer. Modulating FOXOs could be a promising
therapeutic approach for the treatment of cancer. AKT, protein kinase B; CBP, CREB binding protein;

FOXO, forkhead box O; JNK, c‐Jun N‐terminal kinase; LIC, leukemia‐initiating cells; MMP, matrix metalloproteinase;
MST1, mammalian Ste20‐like kinase; PI3K, phosphatidylinositol 3‐kinase; SGK1, serum/glucocorticoid‐regulated
kinase 1; SIRT2, silent information regulator 2 [Color figure can be viewed at wileyonlinelibrary.com]
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threonine kinase ULK1 complex, which is a direct target of mTOR pathway and AMP‐activated kinase (AMPK).119

The mTOR pathway constitutes a major negative regulator of autophagy120 being activated downstream of

PI3K‐AKT signaling pathway which is frequently deregulated in cancer.121,122 Autophagy can also be initiated by

AMPK activation, which inhibits mTOR.123,124 Once mTORC1 kinase activity is inhibited, autophagy initiates the

formation of autophagosomes by activating ULK1 complex.119,123 This step is followed by the expansion of the

autophagosomal membrane promoted by the activation of a second protein complex composed of vacuolar sorting

protein 34 (VPS34), a class III PI3K, and beclin 1 (BECN1).119,125 Continued expansion of the autophagosomal

membrane is regulated by the conjugation of essential autophagy genes Atg5 to Atg12 and of microtubule‐associated
protein 1 light chain 3 alpha (LC3) to phosphatylethanolamine (PE), forming LC3‐PE conjugate (also known as

LC3‐II).119,123,126 The engulfment of the cytoplasmatic constituents then occurs both in a selectively, through the

action of scaffolding proteins such as the adaptor protein p62/sequestosome 1, and nonselectively manner.119,127,128

This is followed by sealing of the two ends of the membrane to form a completed autophagosome which then fuses

with lysosomes through a mechanism mediated by small GTPases such as RAB7 and SNARE‐like proteins.119,129‐131

This process is finalized by the degradation and recycling of autophagosome contents.119

Multiple pieces of evidence suggest that autophagy is involved in tumor initiation and development, cancer

progression, and metastasis. However, the precise role of autophagy in cancer is not clear due to the fact that it can

either inhibit tumor cell initiation or promote tumor cell survival (Figure 2) depending on cancer type, stage of

progression, and genetic context.118,132,133

4.1 | Autophagy as tumor suppressor

The suppressive role of autophagy in cancer progression was initially suggested by studies showing that one

allele of Atg6/BECN1 was depleted in 40% to 75% of human ovarian, breast and prostate cancers, that BECN1

upregulation inhibited the growth of human breast cancer cell lines and that BECN1 heterozygous mutant mice

F IGURE 2 The role of autophagy in cancer. Autophagy plays a dual role in cancer since it can either inhibit
tumor cell initiation and early metastasis or promote tumor cell survival and invasion. ECM, extracellular matrix;
ROS, reactive oxygen species [Color figure can be viewed at wileyonlinelibrary.com]
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suffered from a high incidence of spontaneous tumor formation.134‐138 BECN1, an important protein involved in the

autophagosome formation step is regulated by UV radiation resistance‐associated gene and Bax‐interacting factor‐
1 whose impairment has been shown to promote tumor cell proliferation in several cancers.139‐141 In addition, the

deletion of vital autophagy genes Atg5 and Atg7 in mice induced the development of benign liver tumors.142

Possible mechanisms behind the autophagy tumor suppressive role have been already identified.132,143 The

PI3K/AKT/mTOR signaling pathway has been shown to be commonly deregulated during cancer. Specifically, the

constitutive activation of PI3K/AKT, which may be due to the occurrence to PI3K mutations, loss of PTEN or even

overexpression of AKT, and subsequent stimulation of mTOR, inhibits the autophagic activity supporting its sup-

pressive role in cancer progression.144‐146 Failure in the control of damaged proteins and organelles due to au-

tophagy inhibition leads to the accumulation of reactive oxygen species, increased DNA damage, and mitochondrial

defects increasing the susceptibility for tumor development.143 Oxidative stress upregulation promotes the tran-

scription of genes involved in the antioxidant defense by nuclear factor erythroid 2‐related factor 2 (NRF2) which is

activated by p62.143,147,148 In fact, defective autophagy was shown to increase p62 levels which promotes NRF2

activation to fight against oxidative stress and therefore enabling cell survival.143,149 Conversely, p62 ablation was

shown to suppress tumorigenesis in mouse models with defective autophagy.147 Since p62 was also shown to

regulate other oncogenic pathways involving nuclear factor‐κB and mTOR as a signaling adaptor,150 it would be of

great interest to ascertain its involvement in autophagy impairment and tumor promotion. Autophagy cancer

suppressive function has also been associated to its aptitude to control early infiltration of regulatory T cells.151 In

addition, in later stages of cancer, autophagy may have a protective role in tumor cells immunity, as its inhibition

was shown to restrict cancer progression.151

4.2 | Autophagy as tumor promoter

Despite being generally considered as a tumor suppressor in the initial stage of tumor development, in more‐
established cancers, autophagy promotes tumorigenesis since it tries to fulfill the increased biosynthetic and

metabolic needs of tumor cells.135,152 Autophagy has been shown to be essential in the promotion of tumor cell

survival undergoing hypoxia and that are under pressure from therapeutic interventions.135,153 In fact, hypoxic

conditions promote hypoxia‐inducible factor 1α‐dependent and independent (via AMPK activation and mTOR

inhibition) autophagy induction, thus enabling cell survival.154,155 Likewise, hypoxic activation of autophagy was

shown to induce p62 downregulation which further promoted an increased Ras/ERK activity that contributed to

cell survival and proliferation.156 Autophagy tumor promoter role was further established by studies performed in

conditional autophagy gene FIP200 knockout mice showing that lack of FIP200 reduced the development of

mammary tumors.157 Moreover, in cells transformed with oncogenic RAS, autophagy was shown to have an

essential role in promoting tumor cells survival, growth, invasion, and metastasis.158‐161 Therefore, by conferring

tumor cells a survival advantage, autophagy may also be seen as a mechanism that facilitates cancer progression.

4.3 | Autophagy in cancer metastasis

As autophagy activation shares many of the environmental triggers known to promote metastatic formation, its

activity was shown to be upregulated during metastasis. In fact, increased staining of the autophagy‐associated
protein LC3 was associated with lymph node metastasis and decreased survival rate in human breast cancer patient

samples.162,163 Moreover, studies performed in melanoma metastasis samples revealed an increased expression of

LC3 and BECN1.164 Increased LC3 expression also correlated with metastasis in HCC.165,166 As with primary

cancer cells, autophagy has demonstrated both anti‐ and prometastatic effects.167,168 By supporting the survival of

tumor cell under hypoxic and metabolic stress conditions, which results in the reduction of tumor cell necrosis and
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subsequent infiltration of inflammatory cells, autophagy inhibits early ‐stage metastasis.153,167‐169 Moreover, by

directly mediating the secretion of immunomodulatory factors by the dying tumor cells, such as high‐mobility group

box 1 (HMGB1), autophagy is able to directly regulate the cancer‐triggered inflammatory responses.170 In fact,

released HMGB1 was reported to bind to dendritic cells Toll‐like receptor 4 (TLR4) thereby triggering an antitumor

immune response that restricts metastasis.171 In a mouse model of melanoma metastasis, the prophylactic treat-

ment with TLR4/TLR9 agonist complex promoted antimetastatic immunity by inducing autophagy‐associated cell

death via interferon‐γ/signal transducer and activator of transcription 1 activation and impairing tumor metas-

tasis.172 In another study, AKT was actively phosphorylated by CXCL12 and several cytokines, and inhibition of the

CXCR4/mTOR pathway induced autophagic cell death and inhibited metastasis of peritoneally disseminated gastric

cancer cells.173 Loss of PTEN and subsequent activation of the AKT pathway in prostate cancer have also been

pointed as an early prognostic marker for metastasis. The upregulation of PI3K/AKT/mTOR signaling pathway

decreases the autophagic flux, thus promoting cancer progression.174 Accordingly, the inhibition of AKT pathway

was shown to promote a decrease in metastasis incidence.175

During advanced stages of metastasis progression, autophagy may promote metastasis by helping the tumor

cells that detach from the extracellular matrix (ECM) to avoid anoikis thereby enhancing their survival and colo-

nization in secondary sites.168,176,177 In spite of the precise mechanisms of autophagy protection towards anoikis

remain unclear, recent evidence suggests that protein kinase R‐like endoplasmic reticulum kinase promotes the

survival of ECM‐detached cells by inducing the autophagic activity and a proper antioxidant response.178 Autop-

hagy inhibition in an animal model of HCC lung metastasis resulted in the decrease of metastasis formation by

promoting anoikis resistance.165 Since tumor cells detachment is associated with a loss of extrinsic signaling that

support proper nutrient and energy uptake, autophagy may work as a compensatory mechanism, as suggested by a

study showing that autophagy is induced by either ECM detachment or β1 integrin inhibition.179 Thus, autophagy

might postpone anoikis initiation by giving cells more time to connect with a suitable ECM.168 Disseminated cells

that are unable to reconnect with ECM in the secondary sites may enter a dormant state promoted by autop-

hagy.180 Understanding the contexts that dictate autophagy role in cancer progression and metastasis will be

pivotal to the development of more effective therapies.

5 | FOXOs ‐AUTOPHAGY REGULATION IN CANCER

Several lines of evidence support a connection between FOXO proteins and autophagy. FOXOs have been shown

to regulate autophagy by both transcriptional‐dependent and transcriptional‐independent mechanisms. While lo-

cated in the nucleus, FOXOs are able to promote the transcription of several autophagy genes involved in the

different steps of the autophagic process, but when translocated to the cytosol, FOXOs also regulate autophagy by

interacting directly with cytosolic autophagy proteins.181 During muscle atrophy, FOXO3 was reported to upre-

gulate several autophagy‐associated genes, like LC3, BNIP3, Gabarapl1, VPS34, ULK2, and Atg12.33,182 Moreover,

FOXO1 deacetylation was shown to occur in mouse cardiomyocytes with the assistance of NAD‐dependent dea-
cetylase SIRT1 (sirtuins) which induces the expression of RAB7A, GTP‐binding protein. This protein aids in the

fusion of lysosomes and mature autophagic vesicles.183 Study of PI3K‐AKT‐FOXO pathway revealed that FOXOs

upregulation of glutamine synthetase results in mTOR inhibition and consequently promotes autophagy. This is

indicative that autophagy induction by FOXOs‐mediated increase of glutamine metabolism might allow cellular

survival during starvation by protecting cells from damage accumulation.184 FOXOs induction of Sestrin3 and

RICTOR was also reported to enhance the autophagic flux by inhibiting mTOR1.185 In addition, studies performed

in mouse embryonic fibroblast and embryonic kidney (HEK293T) cell lines showed that FOXO3 coordinately

regulates FOXO1 to induce transcription‐dependent autophagy.34 FOXO proteins were also shown to control the

autophagic flux by epigenetic mechanisms and more recently autophagy was reported as being able to degrade

FOXO proteins (reviewed in detail by Cheng181).
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The exact role of FOXOs regulation of autophagy in tumor biology is still unclear. The hyperactivation of

PI3K/AKT signaling pathway in cancers promotes FOXOs phosphorylation thereby promoting their nuclear

exclusion. Upon stress conditions, cytosolic FOXO1 was shown to induce autophagy in human colon cancer cells by

interacting with Atg7. In this study, FOXO1‐mediated autophagy induction resulted in an increase of cell apoptosis,

which is associated with FOXO1 antineoplastic effect.13 Epigenetic modulation of FOXO proteins by histone

deacetylase inhibition was reported to induce autophagy and apoptosis through FOXO1‐mTOR signaling and

FOXO1 transactivation of autophagy genes in human cancer cells.25 Conversely, FOXO3 was shown to inhibit the

cytosolic accumulation and expression of FOXO1 in multiple cancer cell lines, resulting in autophagy suppression.35

FOXO3 was also reported to trigger autophagy in neuroblastoma cells by upregulating the decidual protein induced

by progesterone (C10ORF10/DEPP) expression.14 In this study, FOXO3‐induced autophagy partly protected

neuroblastoma cells from apoptosis, and pharmacological inhibition of autophagy enhanced chemotherapeutic

intervention outcomes.14 Some studies have also been reporting that autophagy deregulation in cancer may

promote FOXO proteins turnover mediated by AKT induced phosphorylation.186,187 More recently, FOXO3 was

shown to be degraded by basal autophagy by acting as its cargo. In fact, autophagy inhibition in cancer cells was

shown to upregulate FOXO3 activity consequently increasing the proapoptotic protein p53 upregulated modulator

of apoptosis (PUMA) levels conferring the cells a higher sensitivity to an apoptosis inducer. This can explain how

autophagy inhibition can increase apoptosis upon the administration of anticancer drugs.188,189

6 | CANCER THERAPY

6.1 | Targeting FOXOs for cancer therapy

Cancer therapies based in restoring the expression and activation of FOXOs may be effective in tumor suppression.

In fact, FOXOs are involved in the mediation of cancer cell apoptosis promoted by the use of chemotherapeutic

drugs such as 5‐fluorouracil, paclitaxel, and resveratrol, and inhibitors of BCR‐ABL, PI3K, or AKT.190‐194 None-

theless, the effectiveness of the treatments is often vulnerable to the development of multidrug resistance (MDR)

as demonstrated by studies showing that FOXO1 and FOXO3 are key regulators of the MDR1 in adriamycin‐
resistant breast cancer cells and in doxorubicin chemotherapy, respectively.195,196 Therapeutic strategies designed

to target FOXO proteins may also be jeopardized by feedback mechanisms that promote cell survival. Upon

treatment with inhibitors of PI3K or AKT, cancer cells have the ability to readjust to the loss of oncogenic signaling

by FOXOs‐mediated reactivation of PI3K‐AKT pathway. In fact, the activation of FOXO3 by doxorubicin promoted

K562 CML cell survival by upregulating the expression of PI3K catalytic subunit p110α and thereby activating

PI3K/AKT pathway.197 Also, the inhibition of the PI3K‐AKT pathway in renal cell carcinoma increased FOXOs

activity, which enhanced the expression of TORC2 component RICTOR promoting AKT activation.198 Altogether,

these findings reinforce the paradoxical function of FOXOs in cancer.

6.2 | Targeting autophagy for cancer therapy

Treatments aiming at targeting autophagy in tumor cells have been focusing on either its induction and/or in-

hibition. While the induction of cytoprotective autophagy in premalignant lesions may prevent cancer progression,

in more established cancers autophagy inhibition may prevent tumors from growing and spreading.199,200

Autophagy‐inducing drugs include mTOR1 inhibitors like rapamycin and rapamycin derivatives temsirolimus

(CCI‐779) and everolimus (RAD001), which have been used in the treatment of different cancers.201‐204 Other

anticancer and autophagy stimulatory compounds have also been identified, including metformin that upregulates

AMPK205,206; resveratrol that activates SIRT1207; and perifosine that inhibits AKT and mTOR.208,209 Despite the
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induction of cytoprotective autophagy in early‐stage tumors may suppress cancer progression, its potentiation by

chemotherapy and radiation therapy has been identified as a resistance mechanism in several cancers.200,210,211

Together with the fact that tumor cells from advanced cancers benefit from autophagic activity to survive the

augmented metabolic demands, current anticancer therapies have been mainly focused on autophagy inhibition

combined with different types of anticancer approaches. The rationale behind the employment of combination

therapies is to render cells the sensitivity to the treatments. Different autophagy inhibitors actuate on the different

phases of the autophagic process. Inhibitors that actuate at the initiation stage, by blocking autophagosome

formation through class III PI3K targeting, include wortmannin, 3‐methyladenine, and LY294002.212‐215 Other

inhibitors such as chloroquine (CQ), hydroxychloroquine (HCQ), monensin, and Bafilomycin A1, the latter being a

specific inhibitor of vacuolar‐ATPase, inhibit the autophagosome‐lysosome fusion.123,216 By being able to cross the

lysosomal membrane, these drugs inhibit autophagy by preventing lysosomes acidification and blocking the fusion

of autophagosomes with lysosomes.217 Curiously, CQ antitumor actions and ability to sensitize cancer cells to

chemotherapy have also been described to occur through autophagy‐independent mechanisms.218‐220 At the

moment, CQ and HCQ are the only clinically available inhibitors and they have been evaluated alone or in

combination with other anticancer therapies in different cancers (Table 2).210,221,222 Past clinical trials demon-

strated that CQ and HCQ are safe autophagy inhibitors and despite presenting diverging clinical outcomes its

administration still holds encouraging therapeutic benefits. More importantly, current research suggests the need

to design new delivery approaches able to improve the drugs penetration into cancer cells, and to develop more

potent and specific autophagy inhibitors.210 In this sense, new promising autophagy inhibitors have been developed

envisioning their application in forthcoming clinical trials and include ULK1, VPS34, ATG4B, palmitoyl‐protein
thiosterase 1, and phosphoinositide kinase‐type finger‐containing kinase (PIKFYVE) inhibitors223 (Table 3) (re-

viewed in detail by Amaravadi et al210). At the moment, an ongoing phase 1 clinical trial is testing the safety and

pharmacokinetics of the PIKFYVE inhibitor apilimod in patients with non‐Hodgkin's lymphoma (NCT02594384).

The discovery of more reliable biomarkers to screen the tumors before treatment may also result in better

therapeutic outcomes.199,210

6.3 | Therapeutic opportunities related to FOXOs‐autophagy regulation

Evidence regarding FOXOs‐autophagy regulation in cancer may allow the emergence of trustworthy biomarkers

and novel therapeutic strategies aiming to halt cancer progression. In fact, the subcellular localization of FOXO3

upon PI3K inhibition was reported to function as a biomarker to predict the outcome of therapies combining PI3K

and autophagy inhibitors in cervical cancer cells with PIK3CA mutations.246 As the use of PI3K inhibitors is often

accompanied by the development of drug resistance, combined treatment with HCQ was shown to enhance PI3K

inhibitor efficacy in cells that exhibited FOXO3 nuclear translocation.246 In a different study, FOXO1 turnover was

shown to be promoted by ERK‐induced interaction of FOXO1 with X‐box‐binding protein 1 (XBP1). XBP1 was

found to be inversely proportional to FOXO1 and autophagy as shown by XBP1 upregulation and FOXO1

downregulation in human colon cancer samples.247 Therefore, ERK inhibition may impair cancer progression by

inducing FOXO1 expression and autophagy. However, in RAS‐ or BRAF‐mutant cancers, autophagy induction by

MAPK inhibition was recently associated with the development of treatment resistance. Therefore, the combi-

nation of MAPK inhibitors with autophagy inhibitors may offer promising results.248‐250 treatment, a natural

isothiocyanate, was shown to inhibit PI3K/AKT and mitogen‐activated protein kinase/ERK signaling pathways

thereby promoting FOXOs transcriptional activity in pancreatic cancer cells.193 In another study, benzyl iso-

thiocyanate treatment promoted FOXO1 acetylation thus inducing the upregulation of autophagy and inhibiting

the growth of human breast‐cancer cells.251 Interferon regulatory factor‐4 binding protein, whose expression has

been highly correlated with the malignancy and invasiveness of human breast cancer cells, was shown to have a

suppressive effect on these cells autophagic activity that relied on the activation of mTOR2/AKT/FOXO3
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pathway.252 The development and induced innate immunity of natural killer (NK) cells were also shown to be

dependent of FOXOs‐mediated autophagy.253 The efficacy of anticancer immunotherapies resorting to NK could

therefore be enhanced by upregulating FOXOs transcriptional activity and autophagy. The recent discovery that

autophagy modulates FOXO3 turnover is another example of how the synergy between them may pave the way to

the development of more effective therapies, as the inhibition of autophagy caused cancer cells to become more

sensitive to anticancer drugs due to the upregulation of FOXO3 activity and consequent increase of PUMA

levels.188,189

7 | CONCLUSION AND FUTURE DIRECTIONS

Emerging evidence has shown that FOXO proteins and autophagy are promising therapeutic targets for

cancer treatments. However, despite their great potential, it is still necessary to fully comprehend their role in

cancer progression. Identifying the contexts where FOXOs support or suppress cancer progression is para-

mount for the development of more effective therapeutic approaches. The supportive role for FOXO proteins

in cancer progression complicates treatment strategies aiming the reactivation of FOXOs activity. Therefore,

alternative strategies may include a combination of FOXO protein inhibitors and drugs able to target PI3K to

avoid the acquisition of drug resistance. Improvement of drug specificity and development of suitable

methods to measure FOXOs activity before and after treatment also pose as valuable tools to enhance

therapeutic efficacy.

Autophagy studies addressing whether it should be induced or inhibited, and which patients would benefit

from autophagy manipulation will also result in better therapeutic outcomes. Current clinical trials involving

autophagy modulation were designed to evaluate autophagy inhibition alone or in combination with other treat-

ments. Nonetheless, determining which is the better therapy combination and which tumors are more susceptible

TABLE 3 Novel autophagy inhibitors for cancer therapy

Inhibitor Targets Inhibition point

ULK101232 ULK1 Initiation of autophagic vesicle nucleation

SBI‐0206965233

SAR405234 VPS34 Initiation of autophagic vesicle nucleation

Compound 13235

SB02024236

Autophinib237

S130238 Atg4B Autophagosome formation and/or autophagosome fusion with

the lysosome
FMK‐9a239

NSC185058240

LV‐320241

Lys05242,243 Palmitoyl‐protein
thiosterase 1

Autophagosome fusion with the lysosome

DQ661244

DC661243

Apilimod245 PIKFYVE Lysosomal degradation
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to autophagy modulation is still a challenge. The development of more reliable biomarkers to measure the au-

tophagic flux in vivo will facilitate the patients that could benefit from treatments envisioning autophagy inhibition.

Efforts have been made to understand the mechanisms underlying FOXOs‐mediated autophagy in cancer and

its therapeutic potential. A great body of evidence suggest that FOXOs are key autophagy inducers promoting both

health and illness depending on the different contexts.181 In fact, autophagy regulation by FOXO proteins in tumor

cells is different from its regulation in healthy conditions and their established paradoxical role in carcinogenesis

further complicates the understanding of the mechanisms underlying the regulation of this axis during cancer. The

modulation of FOXOs transcriptional activity through its upstream regulators, such as PI3K or ERK, could offer a

potential approach to regulate the autophagic activity of tumor cells. Nonetheless, the establishment of potential

treatment resistance mechanisms would also need to be addressed. The recent discovery that autophagy inhibition

upregulates FOXO3 proteins rendering cells a higher responsiveness to chemotherapy opens new doors to

searching of new approaches. Many questions still need to be addressed to fully comprehend how to benefit from

FOXOs‐autophagy regulation during cancer.
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