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INTRODUCTION

The delineation of left myocardial boundaries is important 
for the evaluation of myocardial wall thickening and 
obtaining functional data. Manual segmentation of the 
left ventricle (LV) is time-intensive (20–30 minutes); thus, 
semi-automated threshold-based segmentation software has 
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been developed. However, the task remains time consuming, 
and intra- and inter-observer variability are not well 
demonstrated (1, 2). Therefore, highly accurate automatic 
LV wall segmentation methods have been investigated 
using computed tomography (CT), magnetic resonance 
imaging (MRI), and echocardiography (2-7). Currently, 
cardiac CT is widely used to detect coronary artery and 
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valvular heart diseases, as well as assess LV wall thickness 
and cardiac function. Fully automated segmentation 
algorithms using CT have been investigated in previous 
studies (7-13). These approaches used model-based 
methods. The LV can be seen as a donut with the same 
center. The Hough transform converts the location of each 
point to have a center and radius. Points in the LV have 
the same center and similar radii. The parameters of the 
Hough transform are related to the values of the center and 
radius. By using these parameters, we can extract the LV 
region. However, it is difficult to select the exact threshold 
values of these parameters. Other studies incorporated 
more adaptive selection methods for these parameters. 
Algorithms using a generalized Hough transform (11, 13) or 
parametric adaptation (8, 10, 11) are useful in extracting 
cardiac structures, and clinical studies have shown that 
such algorithms are robust and can help realize accurate 
segmentation of the cardiac chambers.

Machine learning (ML) algorithms have also been 
proposed to perform automatic segmentation of the LV. A 
recent study of cardiac MRI demonstrated 98.7% accuracy in 
LV segmentation using convolutional neural network (CNN)-
based localization (6). In this study, we aimed to develop 
a deep learning-based automated LV segmentation system 
using cardiac CT and evaluate the accuracy of the algorithm.

MATERIALS AND METHODS

Dataset
This study was conducted under approval of the hospital 

Institutional Review Board (approval number: 2018-0583) 
and the need for informed consent was waived due to the 
study’s retrospective nature. In this study, 1109 patients 
with suspected coronary artery disease who were included 
in two previously published studies for the quantitative 
evaluation of coronary angiography (14, 15) were selected 
randomly. After excluding nine cases with image noise 
and low resolution (n = 4) or ML errors (n = 5), a dataset 
(multiphase cardiac CT with whole three-dimensional 
[3D] volume images of the LV) of 1100 subjects (median 
age, 63.0 years; interquartile range, 55.3–69.0 years; 
male:female = 839:261) with coronary artery disease was 
included. The CT data for 1100 subjects were obtained 
during the end-diastolic phase, which has the least motion 
artifacts.

First, to develop a fully automated deep learning 
algorithm using semantic segmentation methods based on a 
fully convolutional network (FCN), 50 subjects were selected 
randomly as a training set (Fig. 1). An experienced cardiac 
radiologist generated the manual segmentations of training 
set data. Twenty subjects were used in the validation 
set, and 30 cases were used as the internal test set. For 

100 development set

50 training set confirmed by 
expert cardiac radiologist 20 validation set 30 internal test set

100 external validation set for systolic phase

vs.100 cases automatically drawn LV
wall using machine learning

(systolic phase data)

Additionally manually corrected
machine learning ROIs of 100 cases

(systolic phase data)

vs.1000 cases automatically drawn
LV wall using machine learning

(diastolic phase data)

1000 manually drawn by
experienced technician

(blinded to machine learning ROIs)

1000 external validation set

Fig. 1. Diagram demonstrating use of data. LV = left ventricle, ROI = region of interest
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external validation, automatic two-dimensional (2D) LV 
segmentation was performed in 1000 subjects using a model 
trained on the development set. Manual segmentation of LV 
was performed independently on multi-slice 2D CT images 
for these 1000 subjects by an experienced technician. That 
2D stack of images was used to generate a 3D view of each 
mask. We then compared the manually drawn masks and 
masks obtained using ML.

In addition, automatic segmentation was performed 
in 100 randomly selected subjects with end-systolic 
phase data through ML using the model trained on the 
development set of 100 CT images obtained in the diastolic 
phase. The 100 masks obtained via ML were evaluated by an 
experienced technician and corrected manually, if the masks 
were drawn incorrectly. The similarities of the two systolic 
mask sets, ML masks, and manually evaluated masks were 
then compared. The LV volumes and ejection fractions were 
calculated for the 100 systolic-diastolic paired cases.

CT Acquisition
Using a second-generation dual source CT scanner 

(Somatom Definition Flash, Siemens Healthineers, Erlangen, 
Germany), electrocardiography (ECG)-gated cardiac CT 
scanning was performed. A retrospective ECG-gated spiral 
scan with ECG-based tube current modulation was applied to 
multiphase of 0–90% of the R-R interval, which comprises a 
full dose pulsing window of 30–80% of the R-R interval. The 
tube current was reduced to 20% of the maximum outside the 
ECG pulsing window (16). A bolus of 70–90 mL of contrast 
material (iomeprol; Iomeron 400, Bracco Imaging S.p.A, 
Milan, Italy) was administered by a power injector (Stellant 
D, Medrad, Indianola, PA, USA) at 4.0 mL/s followed by 40 
mL of saline. The bolus tracking method (region of interest, 
ascending aorta; attenuation threshold level: 100 HU; scan 
delay: 8 seconds) was employed to determine the scan time. 
In all CT scans, the tube voltage and tube current–exposure 
time product were adjusted according to each patient’s body 
size. Scan parameters were as follows: tube voltage: 80, 100, 
or 120 kV; tube current–exposure time product: 185–380 
mAs; collimation: 128 x 0.6 mm; and gantry rotation time: 
280 seconds. The tube voltage and tube current–exposure 
time product were adjusted based on the patient’s body size. 
The mean effective radiation dose of coronary computed 
tomography angiography was 9.3 ± 5.8 mSv. The detailed 
CT acquisition protocol is described in Supplementary Table 
1. Note that a standard cardiac filter (B26f) was used for 
imaging reconstruction. 

Manual Segmentation
Manual drawing was performed using the in-house 

software (A-view Cardiac, Asan Medical Center, Seoul, 
Korea) (Fig. 2). After selecting the center of the image, the 
image was rotated to demonstrate a four- or five-chamber 
view. The center of the LV cavity, basal myocardial border 
or mitral annulus, and endomyocardial and epimyocardial 
borders of the LV apex were selected as reference points. 
The mask was then generated semi-automatically by 
interpolation. Annotations were drawn in the short axis 
view of the heart by excluding the papillary muscles, 
trabeculae, LV cavity blood pool, and epicardial fat. Note 
that manual correction was performed if the generated 
mask did not correctly demarcate the LV margin. The drawn 
contours were propagated to other slices and adjusted when 
the drawn points were removed or newly placed.

CNN Architecture and Training
It is well known that the CNN architecture, which is 

composed of multiple convolutional and pooling layers, 
is effective in image classification. In contrast to image 
classification, semantic segmentation provides not only the 
label of the object in the image, but also a pixel-by-pixel 
location of the given object. This semantic segmentation 
can be implemented using the CNN architecture by changing 
the fully connected layer to a fully convolutional one. 

To mimic the manual segmentation procedure, we 
decomposed the short-axis view volume into multiple 2D 
slice images. For 2D segmentation, we used a FCN (17) with 
pretrained weights from VGG16 trained on the ImageNet 
database (18). We applied skip connections to the FCN-
VGG16 model that combined hierarchical features from 
convolutional layers with different scales. By including skip 
connections, the model was able to fuse three predictions 
at 8-, 16-, and 32-pixel strides to refine the spatial 
precision of the output. We refer to this neural network 
model as the FCN-all-at-once-VGG16 model, and have used 
it for the proposed segmentation method. The schema for 
demonstrating FCN-all-at-once-VGG16 is shown in Figure 3. 
As a preprocessing step, the slice images were resampled 
to 256 x 256 pixels and converted to the red, green, blue 
(RGB) color format. The central image and nearby images 
with different displacements were merged into a single 
RGB image using three displacement values, i.e., 0, 1, and 
2 slices. The FCN-all-at-once-VGG16 model was trained on 
each displacement setting using the preprocessed image 
pairs (i.e., the 24-bit RGB color image and 8-bit gray mask) 
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from the training dataset. The three extracted masks were 
fused to generate a single resulting mask using the majority 
voting algorithm. These resulting masks were resampled 
to the original size and stacked to create a 3D volume. 
Here, we used a minibatch size of a single image and 
Adam optimization with initial learning rates of 10-4. The 
algorithm and an example case are available in a repository 
(https://github.com/leegaeun/Cardiac_Segmentation).

Statistical Analysis
Various analytical methods were used to compare 

the manually drawn masks and ML-derived masks. The 
quantitative analysis involved calculating sensitivity and 
specificity according to the number of pixels where the 
two 3D masks of manual and ML segmentation overlap. 
True positive was defined as the number of pixels where 
the two masks overlapped. True negative was defined as 
the number of pixels not included in either mask. False 
positive was defined as the number of pixels in the ML 
masks that were not included in the manual mask, and 
false negative was defined as the number of pixels in 
the manual mask that were not included in the ML mask. 
However, it should be noted that this method is limited 

when the number of pixels indicative of true negative (i.e., 
image pixels other than the LV mask) is large. Therefore, we 
employed similarity algorithms, including the Dice similarity 
coefficient (DSC), Jaccard similarity coefficient (JSC), mean 
surface distance (MSD), and Hausdorff surface distance 
(HSD). The gold standard for the similarity analyses was 
manual segmentation. The four similarity algorithm formulas 
and diagrams to explain the four margin analysis methods 
are described in Supplementary Figure 1.

Additionally, the automatic segmentation of the LV 
myocardium was assessed qualitatively based on a 
17-segment model, i.e., visually, from 100 randomly 
selected cases. The 2D slice short axis views of the apical, 
mid, and basal myocardial segments, as well as two-, 
three-, and four-chamber views, were assessed. We assigned 
“very accurate” if all contours of the LV wall were correctly 
demarcated. If one segment, e.g., the basal anteroseptal 
wall, was inaccurately drawn, the case was classified as 
“accurate.” If two segments were inaccurately drawn, the 
case was classified as “mostly accurate,” and if more than 
three segments were inaccurately drawn, the case was 
considered “inaccurate.”

Center selection

Semi-automatic generation Manual correction and mask generation

Image rotation Select reference points

Fig. 2. Semi-automatic manual LV segmentation method.
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RESULTS

Overall, automated segmentation data were comparable 
to manual segmentation data. The accuracy of ML for 
demarcation of the entire LV myocardium was 88.3%, and 
sensitivity and specificity were high (91.2% and 99.7%, 
respectively). The accuracies, sensitivities, and specificities 
of ML for demarcating apical, mid, and basal walls were 
similar. The sensitivity of ML was lowest for the basal wall 
(89.6%) (Table 1).

The mean DSC between manual segmentation and ML 

masks was 88.3 ± 6.2% (minimum 78.1% and maximum 
96.5%). The mean JSC was 79.5 ± 7.0%, MSD was 1.0 
± 2.4 mm, and HSD was 13.4 ± 12.2 mm (Table 2). The 
per-segment results for ML similarity coefficients and 
segmentation performance are listed in Table 3. The DSC 
in each segment ranged 85.6–91.4%. The sensitivity and 
specificity values for automated segmentation in each 
segment (1–16 segments) were also high (85.5–100.0%). 
Compared to other segments, DSCs were lower at the basal 
inferoseptal (85.6%) and apical inferior (85.9%) walls. 
Sensitivity was also lower at the basal inferoseptal walls 

Fig. 3. Fully convolutional neural network architecture. 
A. RGB data generation at various displacements. B. Results for each input image. FCN = fully convolutional network, ReLU = rectified linear unit, 
RGB = red, green, blue

Axial at no
displacement
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displacement
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(85.5%).
The LV blood volumes were automatically computed by 

using morphological operations from the automatic and 
manual LV segmentation masks. The example case of blood 
volume calculation is shown in Supplementary Figures 2 and 
3. The comparison results of the similarity coefficients, LV 
volumes, and ejection fraction are given in Supplementary 
Table 2. DSC and JSC in the systolic phase data were 
higher than those in the paired diastolic phase data were, 
and the ejection fraction values were different in 6.4 ± 
9.2% between the automatic segmentation and manual 
segmentations.

In 100 cases selected from the 1000 diastolic phase data 
cases, all manual segmentation and ML masks for visual 
analysis were classified as very accurate to mostly accurate, 
and there were no inaccurate cases (Table 4). Interestingly, 
the number of very accurate cases in the ML masks was 
larger than that for manually segmented masks (53 vs. 31). 
Most cases that indicate the superior performance of ML 

were detected due to mistakenly drawn manual masks of the 
mitral annulus in the basal myocardium (Fig. 4). 

DISCUSSION

We developed a new automatic LV segmentation algorithm 
by using a CNN. The scheme is based on 2.5 dimensions, 
which includes the central slice along with nearby slices. 
We incorporated the transfer learning strategy in which 
the parameters were initiated from the trained weights on 
ImageNet (18) and fine-tuned on our dataset. This strategy 
could permit a reduction in the number of training cases 
and achieve better performance. 

We evaluated the similarity and segmentation 
performance of ML relative to manual segmentation of the 
LV of the heart and showed comparable performance of ML 
using a large data set. First, with ML, the DSC values were 
high, ranging from 85.9–94.0%, and the sensitivity and 
specificity values for the ML masks were very high. 

LV function is an important predictor of outcomes for 
patients with myocardial dysfunction, and ventricular 
volume and myocardial mass are associated with myocardial 
diseases such as infiltrative diseases, hypertrophic 
cardiomyopathy, or ischemic cardiomyopathy due to 
coronary artery disease (19, 20). Accurate assessment 
of LV segmentation is essential for clinical purposes, 
and reproducible data are required to resolve the manual 
segmentation issue. 

Table 2. Similarity Coefficient Results
Metrics Mean ± SD Explanation

DSC (%) 88.3 ± 6.2 100, when two masks are same
JSC (%) 79.5 ± 7.0 100, when two masks are same
MSD (mm) 1.0 ± 2.4 MSD between two masks

HSD (mm) 13.4 ± 12.2
Maximum surface distance between 
  two masks

DSC = Dice similarity coefficient, HSD = Hausdorff surface distance, 
JSC = Jaccard similarity coefficient, MSD = mean surface distance, 
SD = standard deviation

Table 3. Machine Learning Per-Segment Similarity Coefficient and Segmentation Performance Results
Segment 1 2 3 4 5 6 7 8

DSC (%)   89.4   87.7   85.6   87.5   91.0   91.4   90.4   89.9
Sensitivity (%)   88.7   89.1   85.5   86.0   93.6   93.4   94.0   93.9
Specificity (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Segment 9 10 11 12 13 14 15 16
DSC (%)   88.3   87.0   89.3   90.7   90.4   87.0   85.9   89.3
Sensitivity (%)   93.3   88.0   94.1   95.2   94.4   94.5   89.6   93.6
Specificity (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 4. Qualitative Results from Visual Assessment of 
Automatic Segmentation of LV Myocardium from 100 Randomly 
Selected Cases

Grade Manual Deep Learning
1–very accurate 31 53
2–accurate 64 39
3–mostly accurate 15 8
4–inaccurate 0 0

Table 1. LV Myocardium Segmentation Performance of Machine 
Learning

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

LV whole myocardium 88.3 91.2 99.7
Apical wall 88.6 93.7 100.0
Mid-wall 89.4 93.2 99.9
Basal wall 89.2 89.6 100.0

LV = left ventricle
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Cardiac CT data with retrospective ECG gating can be used 
for LV function analysis and the LV functional parameters 
showed good agreement with cine MRI and echocardiography 
(5, 21-29). Cardiac CT provides morphologic and functional 

data when CT is used to evaluate coronary artery or heart 
valve disease, although CT has not been used as a first-line 
modality to assess LV function. Previous studies (5, 7, 30) 
have reported that assessment of LV function using cardiac 

Fig. 4. Segmentation examples.
A. Example of superior manual segmentation performance. Machine learning-selected mask includes coronary sinus (arrow) that should not be 
included as part of LV myocardium. B. Example of superior performance of machine learning segmentation. Right atrium is incidentally included 
in manual segmentation of LV myocardium (arrows). However, machine learning segmentation clearly demarcates border of basal myocardium 
(arrowheads).

Manual segmentation Machine learning

A

Manual segmentation Machine learning

B
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CT, with or without the use of semi-automated software 
tools, was feasible and reliable. However, the processing 
time with manual or commercial software tools requires 
significant time, and software tools sometimes do not 
optimally delineate the endo- and epi-myocardial borders. 
To include LV function analysis in routine clinical practice, 
reproducibility and time saving are crucial issues. Using 
cardiac CT data, retrospective studies to validate automatic 
ML segmentation in selective cardiac phases are feasible. 
Several previous studies have shown the usefulness of 
automatic ventricular segmentation in dozens of patients 
(7, 9), and fully automated segmentation reduces the post-
processing time to approximately one minute. In our study, 
we confirmed the performance of ML segmentation in a 
large patient population.

Moreover, during qualitative assessment, we observed 
that the number of very accurate cases was greater for ML 
masks than for manually segmented masks. This finding 
suggests that although manual segmentation is used as a 
reference standard in our study, there are more accurately 
drawn masks in the ML sets. This finding can be explained 
from the fact that the similarity coefficients of the ML and 
manually segmented masks were more similar for systolic 
phase datasets, which were initially generated automatically 
by ML and then modified based on visual assessment.

This work has several limitations. First, the segmentation 
method is applied to the transformed data to the view along 
the short axis, and the user performed the transformation 
manually. This makes the performance of the algorithm less 
robust. Second, in our study, there were five cases with ML 
errors. Among them, the fields-of-view of the CT data in 
three cases was quite different from that in the others. In 
these cases, the LVs were not located in the middle and the 
short-axis was not aligned well. Another case had motion 
blurring. The last one showed lower contrast enhancement 
in the LV region. The developed automatic segmentation 
algorithm had very low performance (DSC < 0.2) for these 
cases. Regarding future works, we are considering using 
3D convolution to overcome the first limitation and to 
incorporate image augmentation scheme to address the 
second. 

Using a large data set, we investigated deep learning-
based automatic segmentation of the LV of the heart. The 
automated segmentation results were comparable to those 
provided by manual segmentation with a high Dice index. 
Based on visual analysis, automated LV segmentation using 
deep learning is superior to semi-automatic segmentation 

performed by an experienced technician. Compared to 
manual segmentation, automated LV segmentation can 
reduce the time required to obtain information regarding 
myocardial wall thickening and LV function, and can also 
improve the reproducibility of clinical assessments.
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https://doi.org/10.3348/kjr.2019.0378.
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