

Review

Tumor-Associated Macrophages as Major Immunosuppressive Cells in the Tumor Microenvironment

Anghesom Ghebremedhin ^{1,†}, Dipti Athavale ¹, Yanting Zhang ^{1,2}, Xiaodan Yao ¹, Curt Balch ^{1,2} and Shumei Song ^{1,2,3,4,*}

¹ Coriell Institute for Medical Research, 403 Haddon Ave., Camden, NJ 08103, USA

² Department Biomedical Sciences, Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA

³ MD Anderson Cancer Center at Cooper, Cooper University Hospital, 2 Cooper Plaza, Camden, NJ 08103, USA

⁴ Departments of Surgery, Cooper University Hospital, 1 Cooper Plaza, Camden, NJ 08103, USA

* Correspondence: ssong@coriell.org

† Current address: MuriGenics Inc., 941 Railroad Ave., Mare Island-Vallejo, CA 94592, USA.

Simple Summary: The tumor microenvironment (TME) refers to the area immediately surrounding a cancerous tumor that influences the tumor's behavior and how the immune system reacts to it. Central to the TME environment are special immune cells—tumor-associated macrophages (TAMs)—that, rather than restrict the tumor, actually facilitate tumor growth and metastasis. Thus, targeting these TAMs can help to eliminate cancer. In this article, we review the biology of TAMs and delve into the signaling mechanisms underlying the polarization of macrophage phenotypes, their plasticity, and therapeutic implications.

Abstract: Within the tumor microenvironment, myeloid cells constitute a dynamic immune population characterized by a heterogeneous phenotype and diverse functional activities. In this review, we consider recent literature shedding light on the increasingly complex biology of M2-like immunosuppressive tumor-associated macrophages (TAMs), including their contribution to tumor cell invasion and metastasis, stromal remodeling (fibrosis and matrix degradation), and immune suppressive functions, in the tumor microenvironment (TME). This review also delves into the intricate signaling mechanisms underlying the polarization of diverse macrophage phenotypes, and their plasticity. We also review the development of promising therapeutic approaches to target these populations in cancers. The expanding knowledge of distinct subsets of immunosuppressive TAMs, and their contributions to tumorigenesis and metastasis, has sparked significant interest among researchers regarding the therapeutic potential of TAM depletion or phenotypic modulation.

Keywords: tumor-associated macrophages; immunosuppression; tumor microenvironment; cancers

Citation: Ghebremedhin, A.; Athavale, D.; Zhang, Y.; Yao, X.; Balch, C.; Song, S. Tumor-Associated Macrophages as Major Immunosuppressive Cells in the Tumor Microenvironment. *Cancers* **2024**, *16*, 3410. <https://doi.org/10.3390/cancers16193410>

Academic Editor: Akiteru Goto

Received: 12 September 2024

Revised: 2 October 2024

Accepted: 5 October 2024

Published: 8 October 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

In 2022, global cancer data reported approximately 20 million new cancer cases, and 10 million deaths, worldwide. Demographics-based predictions suggest that new cancer cases will reach 35 million by 2050, underscoring the urgent need for advanced research, prevention strategies, and treatment options [1]. The increasing cancer burden calls for enhanced cancer research, new healthcare infrastructure, and public health initiatives. Key challenges, such as tumor heterogeneity and the complex, immunosuppressive tumor microenvironment (TME), contribute to poor treatment efficacy and poor patient outcomes [2]. Addressing these issues requires a multifaceted approach, including improved characterization of tumor heterogeneity, novel strategies to modify the TME, and personalized treatments that adapt to tumor dynamics.

The TME is a highly complex ecosystem, possessing heterogeneity between and within tumor types, as well as within individual tumors. Typically, the TME encompasses a

spectrum of elements, including tumor cells, and a diverse array of immune cells, including lymphocytes (T cells and B cells), various myeloid cells (including macrophages), cancer-associated fibroblasts (CAFs), extracellular matrix components like collagen and fibronectin, and the tumor vasculature [3,4]. Recruitment of these cells to tissues is intricately regulated by specific receptors expressed by monocytes or macrophages, including colony-stimulating factor 1 (CSF1R) and Chemokine Receptor 2 (CCR2). Within the TME, tumor-associated macrophages (TAMs) are among the notable components, constituting approximately 50% of the tumor mass in most tumor types. TAMs, during the early stage of the tumor, are mostly anti-tumorigenic M1-like TAMs; these, however, are typically transformed into pro-tumorigenic M2-like TAMs as the tumor progresses. Hence, this review article focuses on the pro-tumorigenic M2-like TAM populations [5]. We summarize their roles in tumor initiation/progression, reshaping the TME, and suppressing anti-tumor immune responses. At the conclusion, we examine their possible therapeutic targeting.

2. Origin of Tumor-Associated Macrophages, and Their Recruitment to the TME

The majority of TAMs, within the TME, originate from circulating monocytes continually recruited to the tumor site. Cancer cells, TAMs, and other TME constituents (e.g., CAFs) are primary sources of chemoattractants, orchestrating monocyte recruitment [6–8]. Despite such recruitment of circulating monocytes, however, tissue-resident macrophages (TRMs) (arising during embryogenesis, in contrast to hematopoietic stem cells) also supplement the total pool of TAMs [9]. Following fetal development, these TRMs self-renew, into adulthood, protecting the local tissue [9]. Studies by Franklin et al. [10] revealed a progressive decrease in resident macrophage numbers, over time, in murine breast cancer models, paralleled by a concurrent increase in monocyte-derived TAMs. Notably, depletion of resident macrophages had no impact on tumor growth, whereas depletion of circulating monocytes led to improved outcomes [10]. Conversely, TRMs polarize into an M2 phenotype, replicating in a pancreatic ductal adenocarcinoma (PDAC) mouse model, favoring fibrotic desmoplasia. In this case, suppression of TRMs, but not circulating monocytes, regressed tumors [11].

TME plays a crucial role in shaping the composition and function of myeloid cells recruited from the circulation. Various chemokines, such as CCL2, CCL5, and CXCL12, orchestrate the recruitment of bone marrow-derived monocytes, which subsequently differentiate into mature macrophages upon arrival at the neoplastic site. This transition is facilitated by tumor-derived growth factors such as M-CSF and GM-CSF. Furthermore, tumor-produced factors (e.g., IL-4, IL-10, TGF β 1, and PGE2) contribute significantly to the functional polarization of monocytes/macrophages into immunosuppressive cells, highlighting the intricate interplay between tumor cells and the immune system [12,13].

Phenotypic analysis of M2-like TAMs, by techniques such as single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry, revealed the expression of various myeloid surface markers, including CD68, CD163, CD206, MGL, MARCO, and MS4A4A [14], as well as the immune checkpoint molecules PD-L1, TIM3, and VISTA [15–18]. These markers not only aid in defining and characterizing M2-like TAMs but also hold potential as prognostic indicators for cancer patients.

3. Cellular Signaling Involved in Macrophage Polarization in the TME

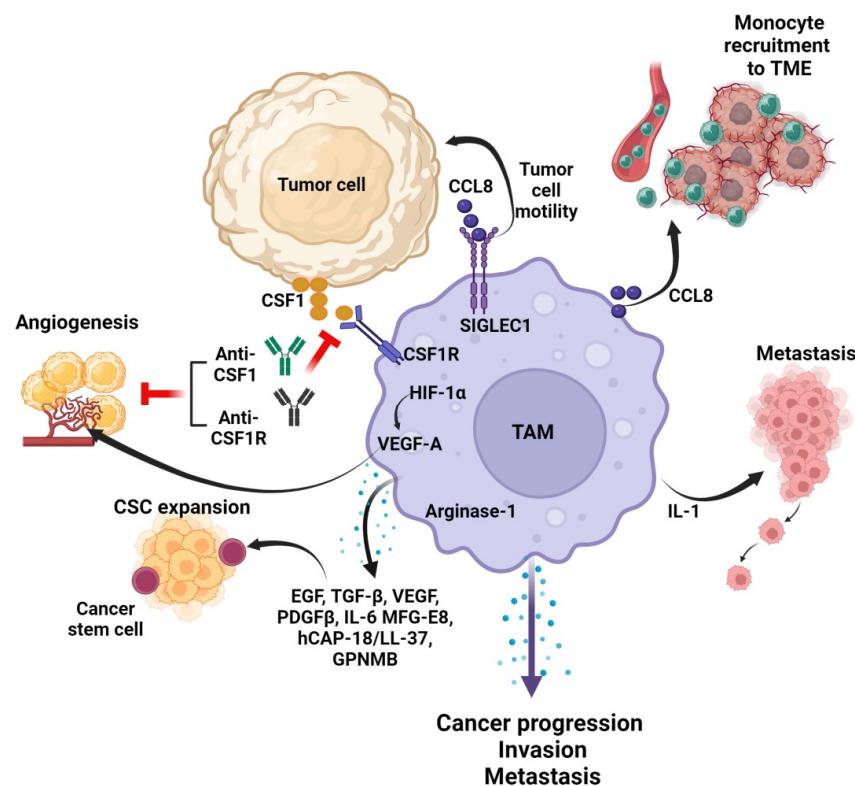
Traditionally, macrophages have been classified into M1 (classically activated) and M2 (alternatively activated) types. However, this classification is now considered too simplistic for macrophages in the TME, due to their considerable diversity, with additional macrophage subsets identified by scRNA-seq. Nonetheless, many TAMs exhibit characteristics more akin to M2-like macrophages, displaying immunosuppressive functions [19–21]. The polarization of macrophages within the TME toward either pro-tumorigenic/pro-fibrotic (M2) or anti-tumorigenic (M1) phenotypes involves intricate signaling pathways. Activation of the JNK signaling pathway drives macrophage polarization toward the M2 phenotype, whereas inhibiting JNK activity promotes the M1

phenotype. Cytokines such as IL-4, IL-10, and IL-13, under the regulation of signal transducer and activator of transcription-6 (STAT-6), induce M2-like macrophages by upregulating peroxisome proliferator-activated receptor (PPAR) expression [22,23]. Conversely, IFN- γ , a potent endogenous macrophage activator, triggers M1-like polarization through the IFN- γ /JAK/STAT-1 pathway [24]. AMP-activated protein kinase (AMPK) [25] and C/EBPb [26,27], further contribute to macrophage activation and polarization toward M2-specific gene expression.

Moreover, the involvement of interferon regulatory factors (IRFs) is notable, with IRF-1, IRF-5, and IRF-8 favoring M1-like polarization, while IRF-3 and IRF-4 promote the M2-like phenotype [28]. Activation of Akt1 and Notch induces an M1-like phenotype, whereas Akt2 activation promotes an M2-like phenotype [29,30]. These intricate signaling cascades underscore the dynamic interplay between macrophage polarization states and their impact on tumor progression. Macrophage polarization is also associated with significant metabolic dysregulation, including that of lactate, glutamine, succinate, and 2-ketoglutarate, affecting macrophage cellular pathways such as hypoxia, fatty acid oxidation, NF- κ B, and epigenetic alterations [31]. Moreover, such differentially polarized macrophages demonstrate distinct gene signatures [32].

Besides via tumor cells themselves, macrophage polarization can also be influenced by various other cells in the tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs), endothelial cells, platelets, adipocytes, and stellate cells. Signaling via the Hippo pathway, including its effectors YAP/TAZ, drives the expression/secretion of numerous cytokines (e.g., IL-4, IL-6, CSF-1) that help recruit monocytes to the TME, followed by their M2-like polarization into TAMs that express tumor immune checkpoints such as PD-1 [33].

4. Crosstalk between TAMs and Tumor Cells in the TME


TAMs play a pivotal role in tumor progression by serving as the primary source of CCL8 [34], whose interaction with SIGLEC1 orchestrates a positive feedback regulatory loop between tumor cells and TAMs, amplifying tumor cell motility. In response to cancer cell secretion of CCL8, the production of colony-stimulating factor-1 (CSF1), a critical factor supporting macrophage survival and proliferation, is stimulated, thus perpetuating the auto-stimulatory cycle. Moreover, heightened levels of CCL8 not only facilitate cancer-TAM communication but also serve as a potent monocyte chemoattractant, enhancing recruitment to the TME [34].

Several research studies highlight the infiltration of M2-like polarized TAMs into the delicate ecosystem of tumors, influencing tumor immunosuppression, cancer progression, angiogenesis, invasion, and metastasis. TAMs exert their pro-tumorigenic effects primarily through the secretion of a plethora of growth factors such as EGF, TGF β , VEGF, and PDGF β , which foster angiogenesis and tumor growth within the TME. As the principal source of these growth factors in the tumor milieu, TAMs significantly contribute to tumor development [35,36]. In neuroblastomas, it was also found that monocyte-derived macrophages and mesenchymal stem cells were recruited to closely colocalize at tumor sites, and then activated into TAMs and cancer-associated fibroblasts (CAFs), respectively [37].

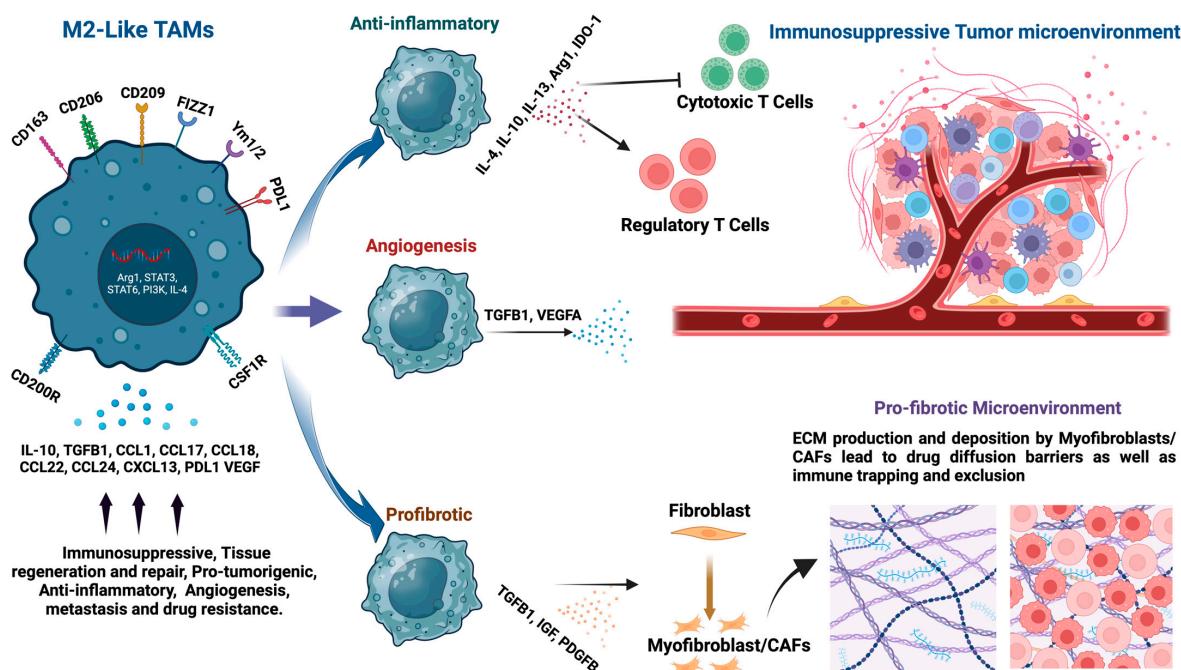
In most human tumors, the presence of TAMs is intricately linked to unfavorable patient prognosis, as evidenced by numerous studies [38,39]. However, there exist intriguing exceptions to this paradigm, as observed notably in colorectal cancer [6–8,40–42]. TAMs contribute to tumor progression through multifaceted mechanisms, spanning from tumor initiation to metastasis, thereby influencing various hallmarks of cancer. Indeed, TAMs actively support the expansion of cancer stem cells by secreting a plethora of mediators, such as interleukin-6 (IL-6), platelet-derived growth factor (PDGF), milk fat globule-EGF factor 8 (MFG-E8), human cationic antimicrobial protein-18/LL-37 (hCAP-18/LL-37), and the recently implicated glycoprotein non-metastatic B (GPNMB) [43–46]. Additionally, cytokines derived from macrophages, notably interleukin-1 (IL-1), facilitate the recruitment and colonization of metastatic cancer cells at specialized niche sites [47–49]. TAMs,

through their production of arginase-1, also metabolize arginine to ornithine and putrescine, which can promote tumor cell proliferation, while also suppressing cytotoxic T cells and downregulating the tumor-cytotoxin nitric oxide (NO) [50].

It was also found that in TAMs, hypoxia-inducible factor-1 (HIF-1 α), during oxygen deprivation, activated vascular endothelial growth factor A (VEGF-A), involved in tumor blood vessel neogenesis [51]. Analogously, TAM levels were found to be associated with vascular density, in both translational models and human specimens [52]. Depletion of macrophages, via CSF1 inactivation, clodronate liposome administration, or CSF1 receptor (CSF1R) inhibition, has been linked to diminished angiogenesis across various preclinical models, including those employing MMTV-PyMT transgenic mice [53,54]. Furthermore, TAMs can directly impede the efficacy of anti-tumor drugs through various mechanisms, including the production of protein-degrading enzymes or sequestration of therapeutic agents, thereby obstructing their intended targets. This multifaceted role of TAMs underscores their significance in shaping the TME while highlighting the challenges of developing effective therapeutic strategies against cancer. Furthermore, TAMs contribute to cancer cell invasion and metastatic progression by secreting proteolytic enzymes that facilitate extracellular matrix (ECM) digestion [55]. Figure 1 demonstrates tumor cell and TAM interactions and their downstream effects.

Figure 1. The interactions between TAMs and tumor cells in TME. TAMs govern tumor progression, metastasis, angiogenesis, invasion, and cancer stem cell (CSC) expansion via sections of various cytokines and growth factors. CCL8 produced by TAMs not only induces monocyte recruitment to TME but also promotes secretion of colony-stimulating factor-1 (CSF-1), which in turn supports TAM survival and proliferation. Abrogating the interaction between CSF1 and CSF1R inhibits tumor angiogenesis. CCL8 interacts with SIGLEC1 and promotes tumor cell motility. IL-1 supports the recruitment and colonization of metastatic cancer cells (Created in BioRender.com, accessed on 2 October 2024).

5. Immunosuppressive Functions of TAMs in the TME


Repression of tumor immunity, within the TME, can also occur via tumor cell secretion of paracrine-acting factors (e.g., IL-10 and PGE2), resulting in polarization of monocytic MDSCs into M2-like TAMs; analogously, inhibition of prostaglandin synthesis (via COX2

inhibition) reversed this effect [12,13]. Additionally, IL-1 has been implicated in driving the upregulation of TET2 expression, a DNA methylcytosine dioxygenase, thereby sustaining TAM-mediated immunosuppression in both murine and human melanoma [56]. Macrophages play a crucial role in regulating immune responses, and they produce several inhibitory molecules that can modulate the activity of T cell lymphocytes. M2-like TAMs have upregulated Programmed Death-Ligand 1 (PD-L1) ligand, a ligand that interacts with PD-1 on T cells, leading to T cell exhaustion and reduced immune responses against tumors [57–59]. M2-like TAMs also express Fas Ligand (FasL) which binds to Fas on T cells, inducing apoptosis and promoting immune tolerance [60]. Furthermore, M2-like TAMs upregulate HLA-G, a non-classical MHC molecule that can inhibit natural killer (NK) cell activity and T cell responses, contributing to immune tolerance [61].

Moreover, myelomonocytic cells induce metabolic starvation in T cells through arginase activity and the production of amino acid metabolites, via indoleamine 2, 3-dioxygenase (IDO1). IDO1 catalyzes the degradation of tryptophan (Trp), along the kynurenine pathway, and is implicated in the induction and expansion of Treg populations [62]. Moreover, M2-like macrophages express various immune checkpoint proteins (e.g., B7-H4, PD-L1, VISTA), resulting in immunosuppression; various neutralizing antibodies were found to reverse this effect [6,63–65].

TAMs also play a pivotal role in promoting T cell apoptosis and immunosuppression, through the secretion of IL-10 and TGF- β 1, thereby hindering the body's natural defense mechanisms against cancer cells (Figure 2) [66]. TAM secretion of IL-10 impedes dendritic cells from activating anti-tumor T cell responses, while TGF- β 1 production by TAMs fosters the survival of regulatory T cells, further exacerbating the immunosuppressive environment. In a murine model of multiple myeloma (MM), T cell activity was suppressed by infiltration of myeloid-derived suppressor cells (MDSCs), as facilitated by TAM-secreted IL-1 β and IL-18 [67]. Analogously, IL-18 knockout mice forestalled MM progression, via CD8+ T cell activity, and bone marrow IL-18 levels correlated negatively with survival, in 73 MM patients [67].

Tumor Associated Macrophages and Their Immunosuppressive Properties

Figure 2. M2-like TAMs and Their Pro-tumorigenic Characteristics: TAMs are among the most prevalent cell types present in the tumor microenvironment (TME). They are crucial in shaping and

sustaining a pro-tumorigenic TME by suppressing inflammatory immune responses, facilitating new blood vessel growth, and fostering a fibrotic microenvironment. These activities of TAMs contribute to tumor progression, resistance to therapy, and tumor dissemination to distant sites (Created in [BioRender.com](https://biorender.com), accessed on 2 October 2024).

6. Stromal Remodeling by TAMs in the TME

Fibrosis plays a well-documented role in the development and onset of various cancers, including pancreatic and liver cancers. In pancreatic ductal adenocarcinoma (PDAC), a serious fibrotic reaction, known as desmoplasia, is a prominent feature. The desmoplastic stroma is rich in activated pancreatic stellate cells (PSCs) and extracellular matrix (ECM), and plays a significant role in tumor initiation as well as progression [68,69]. The role of fibrosis in cancer is also well illustrated by liver cancer, with both hepatocellular and cholangiocarcinoma developing in cirrhotic and fibrotic livers, and fibrosis contributing to immunosuppressive pathways and cascades activated by tissue stiffness [70]. In addition to their pro-tumorigenic roles in the tumor microenvironment, M2-like macrophages also promote tissue fibrosis by secreting the profibrotic cytokine TGF β 1 to induce the differentiation of resident fibroblasts to effector myofibroblasts, which can produce a variety of collagens that promote wound healing. In addition to TGF- β , vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and angiotensin activate stromal cells such as myofibroblasts, resulting in excessive deposition of ECM proteins [71].

TAMs also exert their influence indirectly by affecting various cell types, or the ECM, within the TME. Activated by type II cytokines like IL-4, IL-10, or IL-13, as well as other environmental cues, M2-like TAMs contribute to tissue repair, remodeling, and fibrosis [72]. Thus, TAMs are intimately involved in stromal remodeling. For example, TAMs destroy ECM components, via the release of metalloproteinases, cathepsins, and urokinase plasminogen activator (UPA), releasing matrix-bound growth factors and immunosuppressive cytokines [73], while also depositing neoplastic ECM constituents (Figure 2) such as osteopontin, tenascin, fibronectin, and SPARC (secreted protein acidic and rich in cysteine) [74]. These cumulative activities attenuate extracellular barriers and create a favorable environment for tumor cell migration and invasion.

Notably, in certain cancers such as early pancreatic adenocarcinoma [11] and colon cancer [75], macrophages directly foster fibrosis by ECM deposition. M2 macrophages also highly express PI3K γ , a signaling molecule that promotes tissue fibrosis by promoting M2 polarization of macrophages. PI3K γ , also expressed in endothelial cells and fibroblasts [76–79], likely elicits tumor infiltration of leukocytes, as PI3K γ -deficient rodents had extended survival and attenuation of bleomycin-induced fibrosis compared to PI3K γ -wild-type rodents. In parallel, PI3K γ -knockout mice upregulated IFN- γ and IL-10, while downregulating TGF β 1, CCL2, collagen, fibronectin, and α -SMA, in addition to having less leukocyte ingress, following bleomycin challenge [80]. In turn, cancer-associated fibroblasts (CAFs) release numerous factors (e.g., periostin, FNT, IGF, and exosomal microRNAs) that promote tumor progression, chemoresistance, and gene amplification [37].

7. Current Strategies to Target Immunosuppressive TAMs

Current macrophage-targeting therapies hold significant promise for treating cancers. Macrophages play pivotal roles in both innate and adaptive immunity, making them attractive targets for therapeutic intervention. In cancer, tumor-associated macrophages (TAMs) often promote tumor growth, angiogenesis, immunosuppression, and metastasis, presenting opportunities for targeted therapies to modulate their functions [8] (Figure 2). Therapeutic strategies directed at TAMs can be grouped into four areas: limiting monocyte recruitment, targeting TAM activation, reprogramming TAMs to anti-tumor macrophages, and targeting TAMs in combination with standard therapies.

Strategies aimed at limiting monocyte recruitment involve targeting recruitment signals. This can be achieved by inhibiting the expression or activity of chemokines such as CCL2 (also known as MCP-1) or CSF-1 (colony-stimulating factor 1), crucial for monocyte recruitment [8,41]. Additionally, blocking adhesion molecules such as integrins or selectins that facilitate the migration of monocytes into the TME can impede TAM infiltration. Once recruited to the TME, monocytes differentiate into TAMs under the influence of various stimuli, such as cytokines (e.g., IL-4, IL-10, TGF- β) and signaling pathways (e.g., STAT3, NF- κ B). Therapeutic strategies targeting TAM activation and differentiation aim to interrupt these signaling cascades or inhibit the receptors involved in TAM polarization. For instance, blocking receptors such as CSF-1R (colony-stimulating factor 1 receptor) or TLRs (Toll-like receptors) can prevent TAM activation and polarization toward a pro-tumoral phenotype [81].

TAMs exhibit plasticity and can be reprogrammed from a pro-tumoral M2-like phenotype to an anti-tumoral M1-like phenotype, representing the most common therapeutic approach. This can be achieved through various means, including the administration of cytokines (e.g., IFN- γ , TNF- α) or agents that activate pattern recognition receptors (PRRs), to induce M1-like polarization. Additionally, targeting specific metabolic pathways or epigenetic modifications involved in TAM polarization can promote their reprogramming toward an anti-tumoral phenotype. For example, CD206, also known as the macrophage mannose receptor, has also emerged as a promising target for cancer therapies, due to its overexpression on TAMs, in various cancers. By targeting CD206, researchers aim to modulate TAM activity, reprogramming them from a pro-tumoral M2-like phenotype to an anti-tumoral M1-like phenotype, thus enhancing anti-tumor immune responses [82,83]. Several preclinical studies have demonstrated the efficacy of CD206-targeting therapies in inhibiting tumor growth, and improving overall survival, in various cancer models [84,85]. However, the clinical translation of these findings is still in its early stages, with ongoing efforts focused on developing safe and effective CD206-targeting agents (including nanoscale cargos) for cancer treatment [86,87].

TAM-targeted therapies are often combined with standard treatment modalities such as chemotherapy, radiotherapy, or immunotherapy, to enhance their efficacy. Combinatorial approaches aim to exploit synergistic effects between TAM-targeted therapies and standard treatments, to overcome tumor resistance mechanisms and improve treatment outcomes. For example, combining TAM-targeted agents with immune checkpoint inhibitors can enhance the anti-tumor immune response by reprogramming TAMs, and overcoming immunosuppression, within the TME. In the syngeneic Lewis lung carcinoma mouse, it was found that blockade of a subset of TAMs expressing the immune checkpoints TIM3 and VISTA resensitized tumors to paclitaxel [18]. Moreover, small molecule inhibitors targeting intracellular signaling pathways in myeloid cells, such as Janus kinase (JAK) inhibitors, have demonstrated efficacy in various inflammatory conditions and cancers [88,89]. A list of current TAM-targeting pharmacological agents is provided in Table 1 below.

Table 1. List of pharmacological inhibitors targeting M2-like TAMs.

Inhibitors	Mechanism of Action	References
Anti-CSF1R	Blocks CSF1R signaling, depleting M2-like TAMs	[84,90]
STAT6 Inhibitors	Blocks STAT6 signaling pathway involved in M2-like TAMs polarization	[91,92]
STAT3 Inhibitors	Blocks STAT3 signaling pathway involved in M2-like TAMs polarization	[93,94]
Anti CD47-SIRPa	Promotes TAMs phagocytic activity	[95–98]
Anti-CD24/Siglec-10	Inhibit the CD24/Siglec-10 signaling pathway, Promote TAMs phagocytic activity	[99,100]
Anti-PDL1	Blocks PD1-PDL1 interaction, leading to T Cell activation and boosted immune response	[57–59]

Table 1. *Cont.*

Inhibitors	Mechanism of Action	References
Chlodronate liposomes	Depletes tumor-associated macrophages	[101,102]
IDO Inhibitors	Inhibit indoleamine 2,3-dioxygenase, altering macrophage polarization	[103,104]
PI3K γ -Inhibitors	Inhibit myeloid cell recruitment and promote M1-like phenotype	[105]
CD40 agonists	Activate CD40 and promote M1 macrophage phenotype	[106,107]
Anti-CCL2/CCR2	Targets CCL2/CCR2 axis, Inhibits TAMs recruitment	[108,109]
Anti-CCL5/CCR5	Inhibits TAMs recruitment	[110–112]

8. Conclusions and Future Perspectives

Recent investigations into the intricate interplay between tumor-associated macrophages (TAMs) and malignant tumors have underscored TAMs' emerging role as promising biomarkers for cancer diagnosis, prognosis, and therapeutic intervention. In human studies, TAMs are frequently characterized by elevated levels of CD163, CD206, and CD204 expression. While these markers lack specificity for individual cancer types, their heightened expression typically correlates with unfavorable clinical outcomes.

The crucial involvement of TAMs in promoting cancer progression and metastasis emphasizes their critical role as primary targets for therapeutic intervention in cancer management. Due to the complex interplay between cancer cells and TAMs, focusing solely on one signaling pathway may prove insufficient. Thus, the pursuit of effective therapies targeting TAMs requires a sophisticated approach, to understand the multitude of factors influencing macrophage polarization. A thorough investigation and characterization of TAM characteristics, across different cancer types, stages, and tissue environments, is essential for the development of potent strategies aimed at effectively targeting this unique cell type.

Author Contributions: Conception and design: A.G. and S.S. Writing—original draft preparation: A.G. Writing—editing and reviewing: A.G., D.A., C.B., Y.Z., X.Y. and S.S. Study Supervision: S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from the Department of Defense (CA160433, CA170906, CA210457 and CA230323 to S. Song); and the National Institutes of Health (R01CA269685 to S. Song) and New Jersey Health Foundation (Grant#PC53-24 to S. Song).

Acknowledgments: The authors wish to extend their gratitude to all those who contributed their valuable feedback and guidance during the preparation of this review article. Their contribution played a role in significantly enhancing the quality of this review. All authors have consented to these acknowledgements.

Conflicts of Interest: The authors declare no conflicts of interest related to the content of this review article. Moreover, there are no financial or personal relationships that could influence the impartiality of the manuscript. Following the completion of this work, Dr. Ghebremedhin's current affiliation is with MuriGenics, Mare Island-Vallejo, CA, USA.

References

- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* **2024**, *74*, 229–263. [\[CrossRef\]](#) [\[PubMed\]](#)
- Wang, S.; Wang, J.; Chen, Z.; Luo, J.; Guo, W.; Sun, L.; Lin, L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. *npj Precis. Oncol.* **2024**, *8*, 31. [\[CrossRef\]](#) [\[PubMed\]](#)
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. *Nat. Med.* **2018**, *24*, 541–550. [\[CrossRef\]](#) [\[PubMed\]](#)
- Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. *Cancer Cell* **2012**, *21*, 309–322. [\[CrossRef\]](#) [\[PubMed\]](#)

5. Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. *J. Clin. Investig.* **2012**, *122*, 787–795. [\[CrossRef\]](#) [\[PubMed\]](#)
6. Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer. *Nat. Rev. Drug Discov.* **2018**, *17*, 887–904. [\[CrossRef\]](#)
7. DeNardo, D.G.; Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. *Nat. Rev. Immunol.* **2019**, *19*, 369–382. [\[CrossRef\]](#)
8. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. *Nat. Rev. Clin. Oncol.* **2017**, *14*, 399–416. [\[CrossRef\]](#)
9. Ginhoux, F.; Guiliams, M. Tissue-Resident Macrophage Ontogeny and Homeostasis. *Immunity* **2016**, *44*, 439–449. [\[CrossRef\]](#)
10. Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The cellular and molecular origin of tumor-associated macrophages. *Science* **2014**, *344*, 921–925. [\[CrossRef\]](#)
11. Zhu, Y.; Herndon, J.M.; Sojka, D.K.; Kim, K.W.; Knolhoff, B.L.; Zuo, C.; Cullinan, D.R.; Luo, J.; Bearden, A.R.; Lavine, K.J.; et al. Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. *Immunity* **2017**, *47*, 323–338.e6. [\[CrossRef\]](#) [\[PubMed\]](#)
12. Mazzoni, M.; Mauro, G.; Erreni, M.; Romeo, P.; Minna, E.; Vizioli, M.G.; Belgiovine, C.; Rizzetti, M.G.; Pagliardini, S.; Avigni, R.; et al. Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. *J. Exp. Clin. Cancer Res.* **2019**, *38*, 208. [\[CrossRef\]](#) [\[PubMed\]](#)
13. Porta, C.; Consonni, F.M.; Morlacchi, S.; Sangaletti, S.; Bleve, A.; Totaro, M.G.; Larghi, P.; Rimoldi, M.; Tripodo, C.; Strauss, L.; et al. Tumor-Derived Prostaglandin E2 Promotes p50 NF- κ B-Dependent Differentiation of Monocytic MDSCs. *Cancer Res.* **2020**, *80*, 2874–2888. [\[CrossRef\]](#) [\[PubMed\]](#)
14. Mattiola, I.; Tomay, F.; De Pizzol, M.; Silva-Gomes, R.; Savino, B.; Gulic, T.; Doni, A.; Lonardi, S.; Astrid Boutet, M.; Nerviani, A.; et al. The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. *Nat. Immunol.* **2019**, *20*, 1012–1022. [\[CrossRef\]](#) [\[PubMed\]](#)
15. Blando, J.; Sharma, A.; Higa, M.G.; Zhao, H.; Vence, L.; Yadav, S.S.; Kim, J.; Sepulveda, A.M.; Sharp, M.; Maitra, A.; et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. *Proc. Natl. Acad. Sci. USA* **2019**, *116*, 1692–1697. [\[CrossRef\]](#)
16. Gordon, S.R.; Maute, R.L.; Dulken, B.W.; Hutter, G.; George, B.M.; McCracken, M.N.; Gupta, R.; Tsai, J.M.; Sinha, R.; Corey, D.; et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. *Nature* **2017**, *545*, 495–499. [\[CrossRef\]](#)
17. Kato, S.; Okamura, R.; Kumaki, Y.; Ikeda, S.; Nikanjam, M.; Eskander, R.; Goodman, A.; Lee, S.; Glenn, S.T.; Dressman, D.; et al. Expression of TIM3/VISTA checkpoints and the CD68 macrophage-associated marker correlates with anti-PD1/PDL1 resistance: Implications of immunogram heterogeneity. *Oncoimmunology* **2020**, *9*, 1708065. [\[CrossRef\]](#)
18. Vanmeerbeek, I.; Naulaerts, S.; Sprooten, J.; Laureano, R.S.; Govaerts, J.; Trotta, R.; Pretto, S.; Zhao, S.; Cafarelli, S.T.; Verelst, J.; et al. Targeting conserved TIM₃⁺VISTA⁺ tumor-associated macrophages overcomes resistance to cancer immunotherapy. *Sci. Adv.* **2024**, *10*, eadm8660. [\[CrossRef\]](#)
19. Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. *Immunol. Rev.* **2008**, *222*, 155–161. [\[CrossRef\]](#)
20. Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. *Trends Immunol.* **2002**, *23*, 549–555. [\[CrossRef\]](#)
21. Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. *Immunity* **2014**, *41*, 14–20. [\[CrossRef\]](#) [\[PubMed\]](#)
22. Kang, K.; Reilly, S.M.; Karabacak, V.; Gangl, M.R.; Fitzgerald, K.; Hatano, B.; Lee, C.H. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. *Cell Metab.* **2008**, *7*, 485–495. [\[CrossRef\]](#) [\[PubMed\]](#)
23. Szanto, A.; Balint, B.L.; Nagy, Z.S.; Barta, E.; Dezso, B.; Pap, A.; Szeles, L.; Poliska, S.; Oros, M.; Evans, R.M.; et al. STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. *Immunity* **2010**, *33*, 699–712. [\[CrossRef\]](#) [\[PubMed\]](#)
24. Hu, X.; Chen, J.; Wang, L.; Ivashkiv, L.B. Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. *J. Leukoc. Biol.* **2007**, *82*, 237–243. [\[CrossRef\]](#) [\[PubMed\]](#)
25. Zhou, D.; Huang, C.; Lin, Z.; Zhan, S.; Kong, L.; Fang, C.; Li, J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. *Cell Signal.* **2014**, *26*, 192–197. [\[CrossRef\]](#)
26. Foldi, J.; Shang, Y.; Zhao, B.; Ivashkiv, L.B.; Hu, X. RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes. *Protein Cell* **2016**, *7*, 201–209. [\[CrossRef\]](#)
27. Ruffell, D.; Mourkioti, F.; Gambardella, A.; Kirstetter, P.; Lopez, R.G.; Rosenthal, N.; Nerlov, C. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. *Proc. Natl. Acad. Sci. USA* **2009**, *106*, 17475–17480. [\[CrossRef\]](#)
28. Chistiakov, D.A.; Myasoedova, V.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. The impact of interferon-regulatory factors to macrophage differentiation and polarization into M1 and M2. *Immunobiology* **2018**, *223*, 101–111. [\[CrossRef\]](#)

29. Arranz, A.; Doxaki, C.; Vergadi, E.; Martinez de la Torre, Y.; Vaporidi, K.; Lagoudaki, E.D.; Ieronymaki, E.; Androulidaki, A.; Venihaki, M.; Margioris, A.N.; et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. *Proc. Natl. Acad. Sci. USA* **2012**, *109*, 9517–9522. [\[CrossRef\]](#)

30. Huang, F.; Zhao, J.L.; Wang, L.; Gao, C.C.; Liang, S.Q.; An, D.J.; Bai, J.; Chen, Y.; Han, H.; Qin, H.Y. miR-148a-3p Mediates Notch Signaling to Promote the Differentiation and M1 Activation of Macrophages. *Front. Immunol.* **2017**, *8*, 1327. [\[CrossRef\]](#)

31. Mehla, K.; Singh, P.K. Metabolic Regulation of Macrophage Polarization in Cancer. *Trends Cancer* **2019**, *5*, 822–834. [\[CrossRef\]](#) [\[PubMed\]](#)

32. Jablonski, K.A.; Amici, S.A.; Webb, L.M.; Ruiz-Rosado Jde, D.; Popovich, P.G.; Partida-Sanchez, S.; Guerau-de-Arellano, M. Novel Markers to Delineate Murine M1 and M2 Macrophages. *PLoS ONE* **2015**, *10*, e0145342. [\[CrossRef\]](#) [\[PubMed\]](#)

33. Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP and TAZ: A signalling hub of the tumour microenvironment. *Nat. Rev. Cancer* **2019**, *19*, 454–464. [\[CrossRef\]](#) [\[PubMed\]](#)

34. Haque, A.; Moriyama, M.; Kubota, K.; Ishiguro, N.; Sakamoto, M.; Chinju, A.; Mochizuki, K.; Sakamoto, T.; Kaneko, N.; Munemura, R.; et al. CD206⁺ tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. *Sci. Rep.* **2019**, *9*, 14611. [\[CrossRef\]](#) [\[PubMed\]](#)

35. Murdoch, C.; Muthana, M.; Coffelt, S.B.; Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. *Nat. Rev. Cancer* **2008**, *8*, 618–631. [\[CrossRef\]](#)

36. O’Sullivan, C.; Lewis, C.E.; Harris, A.L.; McGee, J.O. Secretion of epidermal growth factor by macrophages associated with breast carcinoma. *Lancet* **1993**, *342*, 148–149. [\[CrossRef\]](#)

37. Hashimoto, O.; Yoshida, M.; Koma, Y.; Yanai, T.; Hasegawa, D.; Kosaka, Y.; Nishimura, N.; Yokozaki, H. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. *J. Pathol.* **2016**, *240*, 211–223. [\[CrossRef\]](#)

38. Chang, J.; Feng, Q.; Mao, Y.; Zhang, Z.; Xu, Y.; Chen, Y.; Zheng, P.; Lin, S.; Shen, F.; Zhang, Z.; et al. Siglec9 + tumor-associated macrophages predict prognosis and therapeutic vulnerability in patients with colon cancer. *Int. Immunopharmacol.* **2024**, *130*, 111771. [\[CrossRef\]](#)

39. Festekdjian, T.; Bonavida, B. Targeting the Depletion of M2 Macrophages: Implication in Cancer Immunotherapy. *Crit. Rev. Oncog.* **2024**, *29*, 55–73. [\[CrossRef\]](#)

40. Engblom, C.; Pfirschke, C.; Pittet, M.J. The role of myeloid cells in cancer therapies. *Nat. Rev. Cancer* **2016**, *16*, 447–462. [\[CrossRef\]](#)

41. Nakamura, K.; Smyth, M.J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. *Cell. Mol. Immunol.* **2020**, *17*, 1–12. [\[CrossRef\]](#) [\[PubMed\]](#)

42. Ruffell, B.; Coussens, L.M. Macrophages and therapeutic resistance in cancer. *Cancer Cell* **2015**, *27*, 462–472. [\[CrossRef\]](#) [\[PubMed\]](#)

43. Jinushi, M.; Chiba, S.; Yoshiyama, H.; Masutomi, K.; Kinoshita, I.; Dosaka-Akita, H.; Yagita, H.; Takaoka, A.; Tahara, H. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. *Proc. Natl. Acad. Sci. USA* **2011**, *108*, 12425–12430. [\[CrossRef\]](#) [\[PubMed\]](#)

44. Liguori, M.; Digifico, E.; Vacchini, A.; Avigni, R.; Colombo, F.S.; Borroni, E.M.; Farina, F.M.; Milanesi, S.; Castagna, A.; Mannarino, L.; et al. The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. *Cell. Mol. Immunol.* **2021**, *18*, 711–722. [\[CrossRef\]](#) [\[PubMed\]](#)

45. Lu, H.; Clauser, K.R.; Tam, W.L.; Frose, J.; Ye, X.; Eaton, E.N.; Reinhardt, F.; Donnenberg, V.S.; Bhargava, R.; Carr, S.A.; et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. *Nat. Cell Biol.* **2014**, *16*, 1105–1117. [\[CrossRef\]](#)

46. Pasto, A.; Consonni, F.M.; Sica, A. Influence of Innate Immunity on Cancer Cell Stemness. *Int. J. Mol. Sci.* **2020**, *21*, 3352. [\[CrossRef\]](#)

47. Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. *Nat. Rev. Cancer* **2009**, *9*, 239–252. [\[CrossRef\]](#)

48. Peinado, H.; Zhang, H.; Matei, I.R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R.N.; Bromberg, J.F.; Kang, Y.; et al. Pre-metastatic niches: Organ-specific homes for metastases. *Nat. Rev. Cancer* **2017**, *17*, 302–317. [\[CrossRef\]](#)

49. Qian, B.Z.; Li, J.; Zhang, H.; Kitamura, T.; Zhang, J.; Campion, L.R.; Kaiser, E.A.; Snyder, L.A.; Pollard, J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. *Nature* **2011**, *475*, 222–225. [\[CrossRef\]](#)

50. Chang, C.I.; Liao, J.C.; Kuo, L. Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. *Cancer Res.* **2001**, *61*, 1100–1106.

51. Lewis, J.S.; Landers, R.J.; Underwood, J.C.; Harris, A.L.; Lewis, C.E. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. *J. Pathol.* **2000**, *192*, 150–158. [\[CrossRef\]](#) [\[PubMed\]](#)

52. Leek, R.D.; Lewis, C.E.; Whitehouse, R.; Greenall, M.; Clarke, J.; Harris, A.L. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. *Cancer Res.* **1996**, *56*, 4625–4629. [\[PubMed\]](#)

53. Lin, E.Y.; Li, J.F.; Gnatovskiy, L.; Deng, Y.; Zhu, L.; Grzesik, D.A.; Qian, H.; Xue, X.N.; Pollard, J.W. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. *Cancer Res.* **2006**, *66*, 11238–11246. [\[CrossRef\]](#) [\[PubMed\]](#)

54. Priceman, S.J.; Sung, J.L.; Shaposhnik, Z.; Burton, J.B.; Torres-Collado, A.X.; Moughon, D.L.; Johnson, M.; Lusis, A.J.; Cohen, D.A.; Iruela-Arispe, M.L.; et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: Combating tumor evasion of antiangiogenic therapy. *Blood* **2010**, *115*, 1461–1471. [\[CrossRef\]](#)

55. Mason, S.D.; Joyce, J.A. Proteolytic networks in cancer. *Trends Cell Biol.* **2011**, *21*, 228–237. [\[CrossRef\]](#)

56. Pan, W.; Zhu, S.; Qu, K.; Meeth, K.; Cheng, J.; He, K.; Ma, H.; Liao, Y.; Wen, X.; Roden, C.; et al. The DNA Methylcytosine Dioxygenase Tet2 Sustains Immunosuppressive Function of Tumor-Infiltrating Myeloid Cells to Promote Melanoma Progression. *Immunity* **2017**, *47*, 284–297.e5. [[CrossRef](#)]

57. Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. *N. Engl. J. Med.* **2012**, *366*, 2455–2465. [[CrossRef](#)]

58. Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. *Nat. Med.* **2002**, *8*, 793–800. [[CrossRef](#)]

59. Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. *N. Engl. J. Med.* **2012**, *366*, 2443–2454. [[CrossRef](#)]

60. Suda, T.; Okazaki, T.; Naito, Y.; Yokota, T.; Arai, N.; Ozaki, S.; Nakao, K.; Nagata, S. Expression of the Fas ligand in cells of T cell lineage. *J. Immunol.* **1995**, *154*, 3806–3813. [[CrossRef](#)]

61. Carosella, E.D. The tolerogenic molecule HLA-G. *Immunol. Lett.* **2011**, *138*, 22–24. [[CrossRef](#)] [[PubMed](#)]

62. Forteza, M.J.; Polyzos, K.A.; Baumgartner, R.; Suur, B.E.; Mussbacher, M.; Johansson, D.K.; Hermansson, A.; Hansson, G.K.; Ketelhuth, D.F.J. Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. *Front. Immunol.* **2018**, *9*, 950. [[CrossRef](#)]

63. Kryczek, I.; Zou, L.; Rodriguez, P.; Zhu, G.; Wei, S.; Mottram, P.; Brumlik, M.; Cheng, P.; Curiel, T.; Myers, L.; et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. *J. Exp. Med.* **2006**, *203*, 871–881. [[CrossRef](#)] [[PubMed](#)]

64. Ruffell, B.; Affara, N.I.; Coussens, L.M. Differential macrophage programming in the tumor microenvironment. *Trends Immunol.* **2012**, *33*, 119–126. [[CrossRef](#)] [[PubMed](#)]

65. Wang, L.; Rubinstein, R.; Lines, J.L.; Wasiuk, A.; Ahonen, C.; Guo, Y.; Lu, L.F.; Gondek, D.; Wang, Y.; Fava, R.A.; et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. *J. Exp. Med.* **2011**, *208*, 577–592. [[CrossRef](#)] [[PubMed](#)]

66. Kubota, K.; Moriyama, M.; Furukawa, S.; Rafiul, H.; Maruse, Y.; Jinno, T.; Tanaka, A.; Ohta, M.; Ishiguro, N.; Yamauchi, M.; et al. CD163⁺CD204⁺ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. *Sci. Rep.* **2017**, *7*, 1755. [[CrossRef](#)]

67. Nakamura, K.; Kassem, S.; Cleynen, A.; Chretien, M.L.; Guillerey, C.; Putz, E.M.; Bald, T.; Forster, I.; Vuckovic, S.; Hill, G.R.; et al. Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. *Cancer Cell* **2018**, *33*, 634–648.e5. [[CrossRef](#)]

68. Wilson, J.S.; Pirola, R.C.; Apte, M.V. Stars and stripes in pancreatic cancer: Role of stellate cells and stroma in cancer progression. *Front. Physiol.* **2014**, *5*, 52. [[CrossRef](#)]

69. Zhao, T.; Xiao, D.; Jin, F.; Sun, X.; Yu, J.; Wang, H.; Liu, J.; Cai, W.; Huang, C.; Wang, X.; et al. ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1beta/NF-kappaB/ESE3 signalling axis. *Br. J. Cancer* **2022**, *127*, 1461–1472. [[CrossRef](#)]

70. Affo, S.; Yu, L.X.; Schwabe, R.F. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. *Annu. Rev. Pathol.* **2017**, *12*, 153–186. [[CrossRef](#)]

71. Otranto, M.; Sarrazy, V.; Bonte, F.; Hinz, B.; Gabbiani, G.; Desmouliere, A. The role of the myofibroblast in tumor stroma remodeling. *Cell Adhes. Migr.* **2012**, *6*, 203–219. [[CrossRef](#)] [[PubMed](#)]

72. Bosurgi, L.; Cao, Y.G.; Cabeza-Cabrero, M.; Tucci, A.; Hughes, L.D.; Kong, Y.; Weinstein, J.S.; Licona-Limon, P.; Schmid, E.T.; Pelorosso, F.; et al. Macrophage function in tissue repair and remodeling requires IL-4 or IL-13 with apoptotic cells. *Science* **2017**, *356*, 1072–1076. [[CrossRef](#)] [[PubMed](#)]

73. Liguori, M.; Solinas, G.; Germano, G.; Mantovani, A.; Allavena, P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. *Cancers* **2011**, *3*, 3740–3761. [[CrossRef](#)] [[PubMed](#)]

74. Allen, M.; Louise Jones, J. Jekyll and Hyde: The role of the microenvironment on the progression of cancer. *J. Pathol.* **2011**, *223*, 162–176. [[CrossRef](#)] [[PubMed](#)]

75. Afik, R.; Zigmond, E.; Vugman, M.; Klepfish, M.; Shimshoni, E.; Pasmanik-Chor, M.; Shenoy, A.; Bassat, E.; Halpern, Z.; Geiger, T.; et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. *J. Exp. Med.* **2016**, *213*, 2315–2331. [[CrossRef](#)]

76. Lu, Y.; Azad, N.; Wang, L.; Iyer, A.K.; Castranova, V.; Jiang, B.H.; Rojanasakul, Y. Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production. *Am. J. Respir. Cell Mol. Biol.* **2010**, *42*, 432–441. [[CrossRef](#)]

77. Pinho, V.; Russo, R.C.; Amaral, F.A.; de Sousa, L.P.; Barsante, M.M.; de Souza, D.G.; Alves-Filho, J.C.; Cara, D.C.; Hayflick, J.S.; Rommel, C.; et al. Tissue- and stimulus-dependent role of phosphatidylinositol 3-kinase isoforms for neutrophil recruitment induced by chemoattractants in vivo. *J. Immunol.* **2007**, *179*, 7891–7898. [[CrossRef](#)]

78. Pinho, V.; Souza, D.G.; Barsante, M.M.; Hamer, F.P.; De Freitas, M.S.; Rossi, A.G.; Teixeira, M.M. Phosphoinositide-3 kinases critically regulate the recruitment and survival of eosinophils in vivo: Importance for the resolution of allergic inflammation. *J. Leukoc. Biol.* **2005**, *77*, 800–810. [[CrossRef](#)]

79. Puri, K.D.; Doggett, T.A.; Huang, C.Y.; Douangpanya, J.; Hayflick, J.S.; Turner, M.; Penninger, J.; Diacovo, T.G. The role of endothelial PI3Kgamma activity in neutrophil trafficking. *Blood* **2005**, *106*, 150–157. [[CrossRef](#)]

80. Russo, R.C.; Garcia, C.C.; Barcelos, L.S.; Rachid, M.A.; Guabiraba, R.; Roffe, E.; Souza, A.L.; Sousa, L.P.; Mirolo, M.; Doni, A.; et al. Phosphoinositide 3-kinase gamma plays a critical role in bleomycin-induced pulmonary inflammation and fibrosis in mice. *J. Leukoc. Biol.* **2011**, *89*, 269–282. [\[CrossRef\]](#)

81. Wiehagen, K.R.; Girgis, N.M.; Yamada, D.H.; Smith, A.A.; Chan, S.R.; Grewal, I.S.; Quigley, M.; Verona, R.I. Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity. *Cancer Immunol. Res.* **2017**, *5*, 1109–1121. [\[CrossRef\]](#) [\[PubMed\]](#)

82. Mills, C.D.; Lenz, L.L.; Harris, R.A. A Breakthrough: Macrophage-Directed Cancer Immunotherapy. *Cancer Res.* **2016**, *76*, 513–516. [\[CrossRef\]](#) [\[PubMed\]](#)

83. Jaynes, J.M.; Sable, R.; Ronzetti, M.; Bautista, W.; Knotts, Z.; Abisoye-Ogunniyan, A.; Li, D.; Calvo, R.; Dashnyam, M.; Singh, A.; et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. *Sci. Transl. Med.* **2020**, *12*, eaax6337. [\[CrossRef\]](#)

84. Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. *Nat. Med.* **2013**, *19*, 1264–1272. [\[CrossRef\]](#)

85. Ruffell, B.; Chang-Strachan, D.; Chan, V.; Rosenbusch, A.; Ho, C.M.; Prysor, N.; Daniel, D.; Hwang, E.S.; Rugo, H.S.; Coussens, L.M. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. *Cancer Cell* **2014**, *26*, 623–637. [\[CrossRef\]](#)

86. Lepland, A.; Asciutto, E.K.; Malfanti, A.; Simon-Gracia, L.; Sidorenko, V.; Vicent, M.J.; Teesalu, T.; Scodeller, P. Targeting Pro-Tumoral Macrophages in Early Primary and Metastatic Breast Tumors with the CD206-Binding mUNO Peptide. *Mol. Pharm.* **2020**, *17*, 2518–2531. [\[CrossRef\]](#)

87. Scherger, M.; Bolli, E.; Antunes, A.R.P.; Arnouk, S.; Stickdorn, J.; Van Driessche, A.; Schild, H.; Grabbe, S.; De Geest, B.G.; Van Ginderachter, J.A.; et al. Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. *Cells* **2020**, *9*, 2222. [\[CrossRef\]](#)

88. Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. *Nat. Rev. Immunol.* **2011**, *11*, 723–737. [\[CrossRef\]](#)

89. Roszer, T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. *Mediat. Inflamm.* **2015**, *2015*, 816460. [\[CrossRef\]](#)

90. Zhu, Y.; Knolhoff, B.L.; Meyer, M.A.; Nywening, T.M.; West, B.L.; Luo, J.; Wang-Gillam, A.; Goedegebuure, S.P.; Linehan, D.C.; DeNardo, D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. *Cancer Res.* **2014**, *74*, 5057–5069. [\[CrossRef\]](#)

91. Binnemars-Postma, K.; Bansal, R.; Storm, G.; Prakash, J. Targeting the Stat6 pathway in tumor-associated macrophages reduces tumor growth and metastatic niche formation in breast cancer. *FASEB J.* **2018**, *32*, 969–978. [\[CrossRef\]](#) [\[PubMed\]](#)

92. Yu, T.; Gan, S.; Zhu, Q.; Dai, D.; Li, N.; Wang, H.; Chen, X.; Hou, D.; Wang, Y.; Pan, Q.; et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and TriM24. *Nat. Commun.* **2019**, *10*, 4353. [\[CrossRef\]](#) [\[PubMed\]](#)

93. Fletcher, J.S.; Springer, M.G.; Choi, K.; Jousma, E.; Rizvi, T.A.; Dombi, E.; Kim, M.O.; Wu, J.; Ratner, N. STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma. *Oncogene* **2019**, *38*, 2876–2884. [\[CrossRef\]](#) [\[PubMed\]](#)

94. Moreira, D.; Sampath, S.; Won, H.; White, S.V.; Su, Y.L.; Alcantara, M.; Wang, C.; Lee, P.; Maghami, E.; Massarelli, E.; et al. Myeloid cell-targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell-mediated immunity. *J. Clin. Investig.* **2021**, *131*, e137001. [\[CrossRef\]](#) [\[PubMed\]](#)

95. Al-Sudani, H.; Ni, Y.; Jones, P.; Karakilic, H.; Cui, L.; Johnson, L.D.S.; Rose, P.G.; Olawaiye, A.; Edwards, R.P.; Uger, R.A.; et al. Targeting CD47-SIRPa axis shows potent preclinical anti-tumor activity as monotherapy and synergizes with PARP inhibition. *npj Precis. Oncol.* **2023**, *7*, 69. [\[CrossRef\]](#) [\[PubMed\]](#)

96. Bian, Z.; Shi, L.; Kidder, K.; Zen, K.; Garnett-Benson, C.; Liu, Y. Intratumoral SIRPalpha-deficient macrophages activate tumor antigen-specific cytotoxic T cells under radiotherapy. *Nat. Commun.* **2021**, *12*, 3229. [\[CrossRef\]](#) [\[PubMed\]](#)

97. Kuo, T.C.; Chen, A.; Harrabi, O.; Sockolovsky, J.T.; Zhang, A.; Sangalang, E.; Doyle, L.V.; Kauder, S.E.; Fontaine, D.; Bollini, S.; et al. Targeting the myeloid checkpoint receptor SIRPalpha potentiates innate and adaptive immune responses to promote anti-tumor activity. *J. Hematol. Oncol.* **2020**, *13*, 160. [\[CrossRef\]](#)

98. Saito, Y.; Iida-Norita, R.; Afroj, T.; Refaat, A.; Hazama, D.; Komori, S.; Ohata, S.; Takai, T.; Oduori, O.S.; Kotani, T.; et al. Preclinical evaluation of the efficacy of an antibody to human SIRPalpha for cancer immunotherapy in humanized mouse models. *Front. Immunol.* **2023**, *14*, 1294814. [\[CrossRef\]](#)

99. Barkal, A.A.; Brewer, R.E.; Markovic, M.; Kowarsky, M.; Barkal, S.A.; Zaro, B.W.; Krishnan, V.; Hatakeyama, J.; Dorigo, O.; Barkal, L.J.; et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. *Nature* **2019**, *572*, 392–396. [\[CrossRef\]](#)

100. Li, X.; Tian, W.; Jiang, Z.; Song, Y.; Leng, X.; Yu, J. Targeting CD24/Siglec-10 signal pathway for cancer immunotherapy: Recent advances and future directions. *Cancer Immunol. Immunother.* **2024**, *73*, 31. [\[CrossRef\]](#)

101. Opperman, K.S.; Vandyke, K.; Clark, K.C.; Coulter, E.A.; Hewett, D.R.; Mrozik, K.M.; Schwarz, N.; Evdokiou, A.; Croucher, P.I.; Psaltis, P.J.; et al. Clodronate-Liposome Mediated Macrophage Depletion Abrogates Multiple Myeloma Tumor Establishment In Vivo. *Neoplasia* **2019**, *21*, 777–787. [\[CrossRef\]](#) [\[PubMed\]](#)

102. Zeisberger, S.M.; Odermatt, B.; Marty, C.; Zehnder-Fjallman, A.H.; Ballmer-Hofer, K.; Schwendener, R.A. Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach. *Br. J. Cancer* **2006**, *95*, 272–281. [\[CrossRef\]](#) [\[PubMed\]](#)

103. Chen, X.; Yao, J.; Zhang, M.Y.; Li, R.; Liu, X.; Qu, Y.Q. IDO1 Promotes the Progression of NSCLC by Regulating the Polarization of M2 Macrophages. *Int. J. Gen. Med.* **2023**, *16*, 1713–1733. [\[CrossRef\]](#) [\[PubMed\]](#)

104. Hornyak, L.; Dobos, N.; Koncz, G.; Karanyi, Z.; Pall, D.; Szabo, Z.; Halmos, G.; Szekvolgyi, L. The Role of Indoleamine-2,3-Dioxygenase in Cancer Development, Diagnostics, and Therapy. *Front. Immunol.* **2018**, *9*, 151. [\[CrossRef\]](#) [\[PubMed\]](#)

105. Kaneda, M.M.; Messer, K.S.; Ralainirina, N.; Li, H.; Leem, C.J.; Gorjestani, S.; Woo, G.; Nguyen, A.V.; Figueiredo, C.C.; Foubert, P.; et al. PI3Kgamma is a molecular switch that controls immune suppression. *Nature* **2016**, *539*, 437–442; Erratum in *Nature* **2017**, *542*, 124. [\[CrossRef\]](#)

106. Lim, C.Y.; Chang, J.H.; Lee, W.S.; Kim, J.; Park, I.Y. CD40 Agonists Alter the Pancreatic Cancer Microenvironment by Shifting the Macrophage Phenotype toward M1 and Suppress Human Pancreatic Cancer in Organotypic Slice Cultures. *Gut Liver* **2022**, *16*, 645–659. [\[CrossRef\]](#)

107. Liu, P.S.; Chen, Y.T.; Li, X.; Hsueh, P.C.; Tzeng, S.F.; Chen, H.; Shi, P.Z.; Xie, X.; Parik, S.; Planque, M.; et al. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. *Nat. Immunol.* **2023**, *24*, 452–462; Erratum in *Nat. Immunol.* **2023**, *24*, 1591. [\[CrossRef\]](#)

108. Lim, S.Y.; Yuzhalin, A.E.; Gordon-Weeks, A.N.; Muschel, R.J. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. *Oncotarget* **2016**, *7*, 28697–28710. [\[CrossRef\]](#)

109. Tu, M.M.; Abdel-Hafiz, H.A.; Jones, R.T.; Jean, A.; Hoff, K.J.; Duex, J.E.; Chauca-Diaz, A.; Costello, J.C.; Dancik, G.M.; Tamburini, B.A.J.; et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. *Commun. Biol.* **2020**, *3*, 720. [\[CrossRef\]](#)

110. Aldinucci, D.; Borghese, C.; Casagrande, N. The CCL5/CCR5 Axis in Cancer Progression. *Cancers* **2020**, *12*, 1765. [\[CrossRef\]](#)

111. Aldinucci, D.; Casagrande, N. Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. *Int. J. Mol. Sci.* **2018**, *19*, 1477. [\[CrossRef\]](#) [\[PubMed\]](#)

112. Huang, R.; Wang, S.; Wang, N.; Zheng, Y.; Zhou, J.; Yang, B.; Wang, X.; Zhang, J.; Guo, L.; Wang, S.; et al. CCL5 derived from tumor-associated macrophages promotes prostate cancer stem cells and metastasis via activating beta-catenin/STAT3 signaling. *Cell Death Dis.* **2020**, *11*, 234. [\[CrossRef\]](#) [\[PubMed\]](#)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.