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Simple Summary: The tumor microenvironment (TME) refers to the area immediately surrounding
a cancerous tumor that influences the tumor’s behavior and how the immune system reacts to it.
Central to the TME environment are special immune cells—tumor-associated macrophages (TAMs)—
that, rather than restrict the tumor, actually facilitate tumor growth and metastasis. Thus, targeting
these TAMs can help to eliminate cancer. In this article, we review the biology of TAMs and delve into
the signaling mechanisms underlying the polarization of macrophage phenotypes, their plasticity,
and therapeutic implications.

Abstract: Within the tumor microenvironment, myeloid cells constitute a dynamic immune popula-
tion characterized by a heterogeneous phenotype and diverse functional activities. In this review, we
consider recent literature shedding light on the increasingly complex biology of M2-like immunosup-
pressive tumor-associated macrophages (TAMs), including their contribution to tumor cell invasion
and metastasis, stromal remodeling (fibrosis and matrix degradation), and immune suppressive
functions, in the tumor microenvironment (TME). This review also delves into the intricate signaling
mechanisms underlying the polarization of diverse macrophage phenotypes, and their plasticity.
We also review the development of promising therapeutic approaches to target these populations
in cancers. The expanding knowledge of distinct subsets of immunosuppressive TAMs, and their
contributions to tumorigenesis and metastasis, has sparked significant interest among researchers
regarding the therapeutic potential of TAM depletion or phenotypic modulation.

Keywords: tumor-associated macrophages; immunosuppression; tumor microenvironment; cancers

1. Introduction

In 2022, global cancer data reported approximately 20 million new cancer cases, and
10 million deaths, worldwide. Demographics-based predictions suggest that new cancer
cases will reach 35 million by 2050, underscoring the urgent need for advanced research,
prevention strategies, and treatment options [1]. The increasing cancer burden calls for
enhanced cancer research, new healthcare infrastructure, and public health initiatives. Key
challenges, such as tumor heterogeneity and the complex, immunosuppressive tumor mi-
croenvironment (TME), contribute to poor treatment efficacy and poor patient outcomes [2].
Addressing these issues requires a multifaceted approach, including improved charac-
terization of tumor heterogeneity, novel strategies to modify the TME, and personalized
treatments that adapt to tumor dynamics.

The TME is a highly complex ecosystem, possessing heterogeneity between and
within tumor types, as well as within individual tumors. Typically, the TME encompasses a
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spectrum of elements, including tumor cells, and a diverse array of immune cells, including
lymphocytes (T cells and B cells), various myeloid cells (including macrophages), cancer-
associated fibroblasts (CAFs), extracellular matrix components like collagen and fibronectin,
and the tumor vasculature [3,4]. Recruitment of these cells to tissues is intricately regulated
by specific receptors expressed by monocytes or macrophages, including colony-stimulating
factor 1 (CSF1R) and Chemokine Receptor 2 (CCR2). Within the TME, tumor-associated
macrophages (TAMs) are among the notable components, constituting approximately 50%
of the tumor mass in most tumor types. TAMs, during the early stage of the tumor, are
mostly anti-tumorigenic M1-like TAMs; these, however, are typically transformed into
pro-tumorigenic M2-like TAMs as the tumor progresses. Hence, this review article focuses
on the pro-tumorigenic M2-like TAM populations [5]. We summarize their roles in tumor
initiation/progression, reshaping the TME, and suppressing anti-tumor immune responses.
At the conclusion, we examine their possible therapeutic targeting.

2. Origin of Tumor-Associated Macrophages, and Their Recruitment to the TME

The majority of TAMs, within the TME, originate from circulating monocytes contin-
ually recruited to the tumor site. Cancer cells, TAMs, and other TME constituents (e.g.,
CAFs) are primary sources of chemoattractants, orchestrating monocyte recruitment [6–8].
Despite such recruitment of circulating monocytes, however, tissue-resident macrophages
(TRMs) (arising during embryogenesis, in contrast to hematopoietic stem cells) also sup-
plement the total pool of TAMs [9]. Following fetal development, these TRMs self-renew,
into adulthood, protecting the local tissue [9]. Studies by Franklin et al. [10] revealed a
progressive decrease in resident macrophage numbers, over time, in murine breast cancer
models, paralleled by a concurrent increase in monocyte-derived TAMs. Notably, depletion
of resident macrophages had no impact on tumor growth, whereas depletion of circulating
monocytes led to improved outcomes [10]. Conversely, TRMs polarize into an M2 pheno-
type, replicating in a pancreatic ductal adenocarcinoma (PDAC) mouse model, favoring
fibrotic desmoplasia. In this case, suppression of TRMs, but not circulating monocytes,
regressed tumors [11].

TME plays a crucial role in shaping the composition and function of myeloid cells
recruited from the circulation. Various chemokines, such as CCL2, CCL5, and CXCL12,
orchestrate the recruitment of bone marrow-derived monocytes, which subsequently dif-
ferentiate into mature macrophages upon arrival at the neoplastic site. This transition is
facilitated by tumor-derived growth factors such as M-CSF and GM-CSF. Furthermore,
tumor-produced factors (e.g., IL-4, IL-10, TGFß1, and PGE2) contribute significantly to
the functional polarization of monocytes/macrophages into immunosuppressive cells,
highlighting the intricate interplay between tumor cells and the immune system [12,13].

Phenotypic analysis of M2-like TAMs, by techniques such as single-cell RNA sequenc-
ing (scRNA-seq), flow cytometry, and immunohistochemistry, revealed the expression of
various myeloid surface markers, including CD68, CD163, CD206, MGL, MARCO, and
MS4A4A [14], as well as the immune checkpoint molecules PD-L1, TIM3, and VISTA [15–18].
These markers not only aid in defining and characterizing M2-like TAMs but also hold
potential as prognostic indicators for cancer patients.

3. Cellular Signaling Involved in Macrophage Polarization in the TME

Traditionally, macrophages have been classified into M1 (classically activated) and
M2 (alternatively activated) types. However, this classification is now considered too
simplistic for macrophages in the TME, due to their considerable diversity, with ad-
ditional macrophage subsets identified by scRNA-seq. Nonetheless, many TAMs ex-
hibit characteristics more akin to M2-like macrophages, displaying immunosuppressive
functions [19–21]. The polarization of macrophages within the TME toward either pro-
tumorigenic/pro-fibrotic (M2) or anti-tumorigenic (M1) phenotypes involves intricate
signaling pathways. Activation of the JNK signaling pathway drives macrophage po-
larization toward the M2 phenotype, whereas inhibiting JNK activity promotes the M1
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phenotype. Cytokines such as IL-4, IL-10, and IL-13, under the regulation of signal trans-
ducer and activator of transcription-6 (STAT-6), induce M2-like macrophages by upregu-
lating peroxisome proliferator-activated receptor (PPAR) expression [22,23]. Conversely,
IFN-γ, a potent endogenous macrophage activator, triggers M1-like polarization through
the IFN-γ/JAK/STAT-1 pathway [24]. AMP-activated protein kinase (AMPK) [25] and
C/EBPb [26,27], further contribute to macrophage activation and polarization toward
M2-specific gene expression.

Moreover, the involvement of interferon regulatory factors (IRFs) is notable, with
IRF-1, IRF-5, and IRF-8 favoring M1-like polarization, while IRF-3 and IRF-4 promote the
M2-like phenotype [28]. Activation of Akt1 and Notch induces an M1-like phenotype,
whereas Akt2 activation promotes an M2-like phenotype [29,30]. These intricate signaling
cascades underscore the dynamic interplay between macrophage polarization states and
their impact on tumor progression. Macrophage polarization is also associated with
significant metabolic dysregulation, including that of lactate, glutamine, succinate, and 2-
ketoglutarate, affecting macrophage cellular pathways such as hypoxia, fatty acid oxidation,
NF-κB, and epigenetic alterations [31]. Moreover, such differentially polarized macrophages
demonstrate distinct gene signatures [32].

Besides via tumor cells themselves, macrophage polarization can also be influenced
by various other cells in the tumor microenvironment (TME), including cancer-associated
fibroblasts (CAFs), endothelial cells, platelets, adipocytes, and stellate cells. Signaling
via the Hippo pathway, including its effectors YAP/TAZ, drives the expression/secretion
of numerous cytokines (e.g., IL-4, IL-6, CSF-1) that help recruit monocytes to the TME,
followed by their M2-like polarization into TAMs that express tumor immune checkpoints
such as PD-1 [33].

4. Crosstalk between TAMs and Tumor Cells in the TME

TAMs play a pivotal role in tumor progression by serving as the primary source of
CCL8 [34], whose interaction with SIGLEC1 orchestrates a positive feedback regulatory
loop between tumor cells and TAMs, amplifying tumor cell motility. In response to cancer
cell secretion of CCL8, the production of colony-stimulating factor-1 (CSF1), a critical factor
supporting macrophage survival and proliferation, is stimulated, thus perpetuating the
auto-stimulatory cycle. Moreover, heightened levels of CCL8 not only facilitate cancer–
TAM communication but also serve as a potent monocyte chemoattractant, enhancing
recruitment to the TME [34].

Several research studies highlight the infiltration of M2-like polarized TAMs into the
delicate ecosystem of tumors, influencing tumor immunosuppression, cancer progression,
angiogenesis, invasion, and metastasis. TAMs exert their pro-tumorigenic effects primarily
through the secretion of a plethora of growth factors such as EGF, TGFβ, VEGF, and PDGFβ,
which foster angiogenesis and tumor growth within the TME. As the principal source of
these growth factors in the tumor milieu, TAMs significantly contribute to tumor develop-
ment [35,36]. In neuroblastomas, it was also found that monocyte-derived macrophages
and mesenchymal stem cells were recruited to closely colocalize at tumor sites, and then
activated into TAMs and cancer-associated fibroblasts (CAFs), respectively [37].

In most human tumors, the presence of TAMs is intricately linked to unfavorable pa-
tient prognosis, as evidenced by numerous studies [38,39]. However, there exist intriguing
exceptions to this paradigm, as observed notably in colorectal cancer [6–8,40–42]. TAMs
contribute to tumor progression through multifaceted mechanisms, spanning from tumor
initiation to metastasis, thereby influencing various hallmarks of cancer. Indeed, TAMs
actively support the expansion of cancer stem cells by secreting a plethora of mediators,
such as interleukin-6 (IL-6), platelet-derived growth factor (PDGF), milk fat globule-EGF
factor 8 (MFG-E8), human cationic antimicrobial protein-18/LL-37 (hCAP-18/LL-37), and
the recently implicated glycoprotein non-metastatic B (GPNMB) [43–46]. Additionally,
cytokines derived from macrophages, notably interleukin-1 (IL-1), facilitate the recruit-
ment and colonization of metastatic cancer cells at specialized niche sites [47–49]. TAMs,
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through their production of arginase-1, also metabolize arginine to ornithine and putrescine,
which can promote tumor cell proliferation, while also suppressing cytotoxic T cells and
downregulating the tumor-cytotoxin nitric oxide (NO) [50].

It was also found that in TAMs, hypoxia-inducible factor-1 (HIF-1α), during oxygen
deprivation, activated vascular endothelial growth factor A (VEGF-A), involved in tumor
blood vessel neogenesis [51]. Analogously, TAM levels were found to be associated with
vascular density, in both translational models and human specimens [52]. Depletion of
macrophages, via CSF1 inactivation, clodronate liposome administration, or CSF1 receptor
(CSF1R) inhibition, has been linked to diminished angiogenesis across various preclinical
models, including those employing MMTV-PyMT transgenic mice [53,54]. Furthermore,
TAMs can directly impede the efficacy of anti-tumor drugs through various mechanisms,
including the production of protein-degrading enzymes or sequestration of therapeutic
agents, thereby obstructing their intended targets. This multifaceted role of TAMs under-
scores their significance in shaping the TME while highlighting the challenges of developing
effective therapeutic strategies against cancer. Furthermore, TAMs contribute to cancer
cell invasion and metastatic progression by secreting proteolytic enzymes that facilitate
extracellular matrix (ECM) digestion [55]. Figure 1 demonstrates tumor cell and TAM
interactions and their downstream effects.
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Figure 1. The interactions between TAMs and tumor cells in TME. TAMs govern tumor progression,
metastasis, angiogenesis, invasion, and cancer stem cell (CSC) expansion via sections of various
cytokines and growth factors. CCL8 produced by TAMs not only induces monocyte recruitment
to TME but also promotes secretion of colony-stimulating factor-1 (CSF-1), which in turn supports
TAM survival and proliferation. Abrogating the interaction between CSF1 and CSF1R inhibits tumor
angiogenesis. CCL8 interacts with SIGLEC1 and promotes tumor cell motility. IL-1 supports the
recruitment and colonization of metastatic cancer cells (Created in BioRender.com, accessed on
2 October 2024).

5. Immunosuppressive Functions of TAMs in the TME

Repression of tumor immunity, within the TME, can also occur via tumor cell secretion
of paracrine-acting factors (e.g., IL-10 and PGE2), resulting in polarization of monocytic
MDSCs into M2-like TAMs; analogously, inhibition of prostaglandin synthesis (via COX2
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inhibition) reversed this effect [12,13]. Additionally, IL-1 has been implicated in driving
the upregulation of TET2 expression, a DNA methylcytosine dioxygenase, thereby sus-
taining TAM-mediated immunosuppression in both murine and human melanoma [56].
Macrophages play a crucial role in regulating immune responses, and they produce several
inhibitory molecules that can modulate the activity of T cell lymphocytes. M2-like TAMs
have upregulated Programmed Death-Ligand 1 (PD-L1) ligand, a ligand that interacts
with PD-1 on T cells, leading to T cell exhaustion and reduced immune responses against
tumors [57–59]. M2-like TAMs also express Fas Ligand (FasL) which binds to Fas on T cells,
inducing apoptosis and promoting immune tolerance [60]. Furthermore, M2-like TAMs
upregulate HLA-G, a non-classical MHC molecule that can inhibit natural killer (NK) cell
activity and T cell responses, contributing to immune tolerance [61].

Moreover, myelomonocytic cells induce metabolic starvation in T cells through arginase
activity and the production of amino acid metabolites, via indoleamine 2, 3-dioxygenase
(IDO1). IDO1 catalyzes the degradation of tryptophan (Trp), along the kynurenine pathway,
and is implicated in the induction and expansion of Treg populations [62]. Moreover,
M2-like macrophages express various immune checkpoint proteins (e.g., B7-H4, PD-L1,
VISTA), resulting in immunosuppression; various neutralizing antibodies were found to
reverse this effect [6,63–65].

TAMs also play a pivotal role in promoting T cell apoptosis and immunosuppression,
through the secretion of IL-10 and TGF-β1, thereby hindering the body’s natural defense
mechanisms against cancer cells (Figure 2) [66]. TAM secretion of IL-10 impedes dendritic
cells from activating anti-tumor T cell responses, while TGF-β1 production by TAMs
fosters the survival of regulatory T cells, further exacerbating the immunosuppressive
environment. In a murine model of multiple myeloma (MM), T cell activity was suppressed
by infiltration of myeloid-derived suppressor cells (MDSCs), as facilitated by TAM-secreted
IL-1β and IL-18 [67]. Analogously, Il-18 knockout mice forestalled MM progression, via
CD8+ T cell activity, and bone marrow IL-18 levels correlated negatively with survival, in
73 MM patients [67].
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sustaining a pro-tumorigenic TME by suppressing inflammatory immune responses, facilitating new
blood vessel growth, and fostering a fibrotic microenvironment. These activities of TAMs contribute
to tumor progression, resistance to therapy, and tumor dissemination to distant sites (Created in
BioRender.com, accessed on 2 October 2024).

6. Stromal Remodeling by TAMs in the TME

Fibrosis plays a well-documented role in the development and onset of various cancers,
including pancreatic and liver cancers. In pancreatic ductal adenocarcinoma (PDAC), a
serious fibrotic reaction, known as desmoplasia, is a prominent feature. The desmoplastic
stroma is rich in activated pancreatic stellate cells (PSCs) and extracellular matrix (ECM),
and plays a significant role in tumor initiation as well as progression [68,69]. The role
of fibrosis in cancer is also well illustrated by liver cancer, with both hepatocellular and
cholangiocarcinoma developing in cirrhotic and fibrotic livers, and fibrosis contributing to
immunosuppressive pathways and cascades activated by tissue stiffness [70]. In addition
to their pro-tumorigenic roles in the tumor microenvironment, M2-like macrophages
also promote tissue fibrosis by secreting the profibrotic cytokine TGFβ1 to induce the
differentiation of resident fibroblasts to effector myofibroblasts, which can produce a variety
of collagens that promote wound healing. In addition to TGF-β, vascular endothelial
growth factor (VEGF), platelet-derived growth factor (PDGF), and angiotensin activate
stromal cells such as myofibroblasts, resulting in excessive deposition of ECM proteins [71].

TAMs also exert their influence indirectly by affecting various cell types, or the ECM,
within the TME. Activated by type II cytokines like IL-4, IL-10, or IL-13, as well as other
environmental cues, M2-like TAMs contribute to tissue repair, remodeling, and fibrosis [72].
Thus, TAMs are intimately involved in stromal remodeling. For example, TAMs destroy
ECM components, via the release of metalloproteinases, cathepsins, and urokinase plas-
minogen activator (UPA), releasing matrix-bound growth factors and immunosuppressive
cytokines [73], while also depositing neoplastic ECM constituents (Figure 2) such as osteo-
pontin, tenascin, fibronectin, and SPARC (secreted protein acidic and rich in cysteine) [74].
These cumulative activities attenuate extracellular barriers and create a favorable environ-
ment for tumor cell migration and invasion.

Notably, in certain cancers such as early pancreatic adenocarcinoma [11] and colon
cancer [75], macrophages directly foster fibrosis by ECM deposition. M2 macrophages
also highly express PI3Kγ, a signaling molecule that promotes tissue fibrosis by pro-
moting M2 polarization of macrophages. PI3Kγ, also expressed in endothelial cells and
fibroblasts [76–79], likely elicits tumor infiltration of leukocytes, as PI3Kγ-deficient rodents
had extended survival and attenuation of bleomycin-induced fibrosis compared to PI3Kγ-
wild-type rodents. In parallel, PI3Kγ-knockout mice upregulated IFN-γ and IL-10, while
downregulating TGFβ1, CCL2, collagen, fibronectin, and α-SMA, in addition to having less
leukocyte ingress, following bleomycin challenge [80]. In turn, cancer-associated fibroblasts
(CAFs) release numerous factors (e.g., periostin, FNT, IGF, and exosomal microRNAs) that
promote tumor progression, chemoresistance, and gene amplification [37].

7. Current Strategies to Target Immunosuppressive TAMs

Current macrophage-targeting therapies hold significant promise for treating cancers.
Macrophages play pivotal roles in both innate and adaptive immunity, making them
attractive targets for therapeutic intervention. In cancer, tumor-associated macrophages
(TAMs) often promote tumor growth, angiogenesis, immunosuppression, and metastasis,
presenting opportunities for targeted therapies to modulate their functions [8] (Figure 2).
Therapeutic strategies directed at TAMs can be grouped into four areas: limiting monocyte
recruitment, targeting TAM activation, reprogramming TAMs to anti-tumor macrophages,
and targeting TAMs in combination with standard therapies.
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Strategies aimed at limiting monocyte recruitment involve targeting recruitment
signals. This can be achieved by inhibiting the expression or activity of chemokines such as
CCL2 (also known as MCP-1) or CSF-1 (colony-stimulating factor 1), crucial for monocyte
recruitment [8,41]. Additionally, blocking adhesion molecules such as integrins or selectins
that facilitate the migration of monocytes into the TME can impede TAM infiltration.
Once recruited to the TME, monocytes differentiate into TAMs under the influence of
various stimuli, such as cytokines (e.g., IL-4, IL-10, TGF-β) and signaling pathways (e.g.,
STAT3, NF-κB). Therapeutic strategies targeting TAM activation and differentiation aim to
interrupt these signaling cascades or inhibit the receptors involved in TAM polarization. For
instance, blocking receptors such as CSF-1R (colony-stimulating factor 1 receptor) or TLRs
(Toll-like receptors) can prevent TAM activation and polarization toward a pro-tumoral
phenotype [81].

TAMs exhibit plasticity and can be reprogrammed from a pro-tumoral M2-like phe-
notype to an anti-tumoral M1-like phenotype, representing the most common therapeutic
approach. This can be achieved through various means, including the administration of
cytokines (e.g., IFN-γ, TNF-α) or agents that activate pattern recognition receptors (PRRs),
to induce M1-like polarization. Additionally, targeting specific metabolic pathways or
epigenetic modifications involved in TAM polarization can promote their reprogramming
toward an anti-tumoral phenotype. For example, CD206, also known as the macrophage
mannose receptor, has also emerged as a promising target for cancer therapies, due to
its overexpression on TAMs, in various cancers. By targeting CD206, researchers aim to
modulate TAM activity, reprogramming them from a pro-tumoral M2-like phenotype to
an anti-tumoral M1-like phenotype, thus enhancing anti-tumor immune responses [82,83].
Several preclinical studies have demonstrated the efficacy of CD206-targeting therapies in
inhibiting tumor growth, and improving overall survival, in various cancer models [84,85].
However, the clinical translation of these findings is still in its early stages, with ongoing ef-
forts focused on developing safe and effective CD206-targeting agents (including nanoscale
cargos) for cancer treatment [86,87].

TAM-targeted therapies are often combined with standard treatment modalities such
as chemotherapy, radiotherapy, or immunotherapy, to enhance their efficacy. Combinatorial
approaches aim to exploit synergistic effects between TAM-targeted therapies and standard
treatments, to overcome tumor resistance mechanisms and improve treatment outcomes.
For example, combining TAM-targeted agents with immune checkpoint inhibitors can
enhance the anti-tumor immune response by reprogramming TAMs, and overcoming
immunosuppression, within the TME. In the syngeneic Lewis lung carcinoma mouse, it
was found that blockade of a subset of TAMs expressing the immune checkpoints TIM3 and
VISTA resensitized tumors to paclitaxel [18]. Moreover, small molecule inhibitors targeting
intracellular signaling pathways in myeloid cells, such as Janus kinase (JAK) inhibitors,
have demonstrated efficacy in various inflammatory conditions and cancers [88,89]. A list
of current TAM-targeting pharmacological agents is provided in Table 1 below.

Table 1. List of pharmacological inhibitors targeting M2-like TAMs.

Inhibitors Mechanism of Action References

Anti-CSF1R Blocks CSF1R signaling, depleting M2-like TAMs [84,90]

STAT6 Inhibitors Blocks STAT6 signaling pathway involved in M2-like TAMs polarization [91,92]

STAT3 Inhibitors Blocks STAT3 signaling pathway involved in M2-like TAMs polarization [93,94]

Anti CD47-SIRPa Promotes TAMs phagocytic activity [95–98]

Anti-CD24/Siglec-10 Inhibit the CD24/Siglec-10 signaling pathway, Promote TAMs
phagocytic activity [99,100]

Anti-PDL1 Blocks PD1-PDL1 interaction, leading to T Cell activation and boosted
immune response [57–59]
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Table 1. Cont.

Inhibitors Mechanism of Action References

Chlodronate liposomes Depletes tumor-associated macrophages [101,102]

IDO Inhibitors Inhibit indoleamine 2,3-dioxygenase, altering macrophage polarization [103,104]

PI3Kγ-Inhibitors Inhibit myeloid cell recruitment and promote M1-like phenotype [105]

CD40 agonists Activate CD40 and promote M1 macrophage phenotype [106,107]

Anti-CCL2/CCR2 Targets CCL2/CCR2 axis, Inhibits TAMs recruitment [108,109]

Anti-CCL5/CCR5 Inhibits TAMs recruitment [110–112]

8. Conclusions and Future Perspectives

Recent investigations into the intricate interplay between tumor-associated macrophages
(TAMs) and malignant tumors have underscored TAMs’ emerging role as promising
biomarkers for cancer diagnosis, prognosis, and therapeutic intervention. In human studies,
TAMs are frequently characterized by elevated levels of CD163, CD206, and CD204 expres-
sion. While these markers lack specificity for individual cancer types, their heightened
expression typically correlates with unfavorable clinical outcomes.

The crucial involvement of TAMs in promoting cancer progression and metastasis
emphasizes their critical role as primary targets for therapeutic intervention in cancer
management. Due to the complex interplay between cancer cells and TAMs, focusing solely
on one signaling pathway may prove insufficient. Thus, the pursuit of effective therapies
targeting TAMs requires a sophisticated approach, to understand the multitude of factors
influencing macrophage polarization. A thorough investigation and characterization of
TAM characteristics, across different cancer types, stages, and tissue environments, is
essential for the development of potent strategies aimed at effectively targeting this unique
cell type.
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