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The study of metabolism provides important information for understanding the

biological basis of cancer cells and the defects of cancer treatment. Disorders

of polyamine metabolism is a common metabolic change in cancer. With the

deepening of understanding of polyamine metabolism, including molecular

functions and changes in cancer, polyamine metabolism as a new anti-cancer

strategy has become the focus of attention. There are many kinds of polyamine

biosynthesis inhibitors and transport inhibitors, but not many drugs have been

put into clinical application. Recent evidence shows that polyamine

metabolism plays essential roles in remodeling the tumor immune

microenvironment (TIME), particularly treatment of DFMO, an inhibitor of

ODC, alters the immune cell population in the tumor microenvironment.

Tumor immunosuppression is a major problem in cancer treatment. More

and more studies have shown that the immunosuppressive effect of

polyamines can help cancer cells to evade immune surveillance and promote

tumor development and progression. Therefore, targeting polyamine

metabol ic pathways is expected to become a new avenue for

immunotherapy for cancer.
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1 Introduction

Polyamines, including putrescine, spermidine and spermine,

are polycationic alkylamine that present in mammalian cells in

millimolar concentrations (1). They can interact with negatively

charged biological macromolecules such as nucleic acids and

neurotransmitter under physiological pH conditions (1)

(Figure 1). Polyamines are reported to be involved in

regulation of DNA synthesis and stability, transcription, ion

channel transport, and protein phosphorylation (2–5). In

mammals, polyamines play important roles in diverse

physiological processes, including immunity, aging, hair

growth, and wound heal ing (1) . The intracel lular

concentration of polyamines varies greatly depending on cell

types, cellular context and the surrounding microenvironment

(6, 7). Polyamines are necessary for normal cell growth, and their

consumption results in cell stasis. In the early stages of tumor

transformation and progression, multiple carcinogenic pathways

lead to the dysregulation of polyamine demand and metabolism,

indicating that elevated levels of polyamines are necessary for

transformation and tumor progression (8, 9).

Human diet and gut microbiota are also important sources

of polyamines (10–12). Polyamines are present in all types of

foods in a wide range of concentrations (13). The predominant

polyamine in plant-derived foods is spermidine, whereas

animal-derived foods have higher levels of spermine (13).

Studies have shown that dietary polyamines intake is

associated with cardiovascular, intestinal development, cancer

progression, and anticancer immunity (14, 15). Oral

supplementation of spermidine in mice can prolong life span,

enhance cardiac autophagy, and improves the mechanical elastic

properties of cardiomyocytes (16). Exogenous spermidine

supplementation also reduces transplantable tumor growth,

stimulates anticancer immune surveillance in combination

with chemotherapy, and inhibits tumorigenesis in mice caused

by chemical injury (17). Furthermore, Carlos Gómez-Gallego

et al. reported that formula-fed mice supplemented with

polyamines were similar to normal breast-fed mice in terms of

microbial communities, lymphocyte numbers, and immune-

related gene expression throughout the gastrointestinal tract

(18). Gut microbial-derived polyamines are another important

source of host polyamine reservoirs. Gut microbes can

synthesize putrescine, spermine, and spermidine in milligram

concentrations and use polyamines for cel l-to-cel l

communication, cell signaling, and cell differentiation (19).

Bacteria colonizing the gut produce polyamines, primarily

through the transamination of ingested amino acids by

catalytic enzymes, especially arginine (20, 21). Studies have

shown that supplementat ion with arginine and/or

Bifidobacterium animalis subsp. lactis LKM512 increases the

content of polyamines in the intestine of mice and

significantly prolongs lifespan, which is related to the down-
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regulation of inflammation-related genes and the improvement

of intestinal barrier function (22, 23). With the in-depth study of

polyamines derived from gut microbes, the presence of

probiotics was found to increase the concentration of

polyamines in the gut (24). Studies have shown that

consuming yogurt containing the probiotic strain B. animalis

subsp. Lactis LKM512 can increase the concentration of

polyamines in human intestine, which is beneficial to improve

intestinal health, prolong life and quality of life (25–27).

Moreover, consumption of LKM512 yogurt can improve the

intestinal environment and induce T-helper type 1 cytokine

(IFN-gamma) in atopic dermatitis (AD) patients (25), which

also suggests the potential role of probiotic-derived polyamines

in immune regulation.

Tumors are complicated multicellular systems characterized

by the sophisticated interaction between cancer cells and the

tumor microenvironment (TME) (28). TME consists of

extracellular matrix (ECM) and various noncancerous cell

types, including immune cells, endothelial cells, pericytes, and

fibroblasts (29). In tumor immune microenvironment (TIME),

including various T helper cells, monocytes/macrophages,

natural killer (NK) cells, neutrophils, and dendritic cells, have

multifaceted roles during carcinogenesis and progression (30).

TME, characterized by either elevated and chronic inflammation

or immunosuppression, is considered as one of the hallmarks of

cancer (31). In order to survive and proliferate in TIME, tumor

cells need to evade immune surveillance and avoid being killed

by cytotoxic lymphocytes. This is achieved by shaping the TIME

into a tolerable and immunosuppressive environment, which is

characterized by impaired production of tumoricidal cytokines

and chemokines, decreased infiltration of activated T

lymphocytes, cytotoxic CD8+T cells, and NK cells, and

increased infiltration of immature myeloid derived suppressor

cells (MDSC), regulatory T cells (Tregs), and other

immunosuppressive cells (32–36).

Increased polyamine metabolism is commonly observed in

various types of cancer. Elevated levels of polyamines stimulate

cell proliferation and angiogenesis in tumors, thereby promoting

tumorigenesis and development (37–40). Multiple oncogenes and

tumor suppressors regulate tumor polyamine metabolism, which

not only increased polyamine biosynthesis but also increased

cellular uptake of polyamines via an upregulated polyamine

transport system (41, 42). To date, many reports have suggested

that polyamines play a functional role in immune-modulation,

and participate in anti-tumor immune response by regulating the

proliferation, differentiation and function of immune cells.

Polyamines are essential for the activation and proliferation of

mouse CD4+ and CD8+ T lymphocytes (43). In mouse bone

marrow derived macrophages, spermidine-dependent OXPHOS

metabolism may be beneficial to the alternative activation of

ARG1 expression and inhibition of pro-inflammatory cytokine

expression, which reduces the infiltration of autoimmune CD4+
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and CD8+ T lymphocytes into the central nervous system and the

clinical score of experimental autoimmune encephalomyelitis (44,

45). Polyamines can also improve anti-cancer immunity through

autophagy, a cellular metabolic process necessary for T cell

activation, function and survival (46–50). However, polyamines

have also been reported to exert immunosuppressive effects, which

may contribute to the multiple complex mechanisms by which

cancer cells escape from immune responses. Myeloid-derived

suppressor cells (MDSC) in the tumor microenvironment utilize

polyamines to invoke their suppressive activations and support

their metabolism (51–56). Polyamines also inhibit lymphocyte

proliferation, reduce neutrophil locomotion and NK cell activity,

and suppress macrophage-mediated tumoricidal activity through

reprogramming proinflammatory M1 to anti-inflammatory M2
Frontiers in Immunology 03
phenotypes (57–61). Taken together, polyamine metabolism and

its metabolic molecules, play a complex role in the differentiation

and function of various immune cells under both physiological

and pathological conditions.

Metabolic regulation is a key component of coordinating the

immune response (62). Targeting polyamine metabolism has

long been an attractive approach for cancer chemotherapy. In

animal experiments, polyamine deprivation enhances the

production of chemokines, reverses the inhibitory activity of

cytotoxic cells induced by tumor inoculation, and prevent

tumor-induced immunosuppression (59, 63). Some studies

have shown that inhibition of ornithine decarboxylase (ODC),

and/or treatment of polyamine transport inhibitors (PTIs),

significantly reduces the tumor growth rate due to the
FIGURE 1

The biological function of polyamines. Polyamines have multiple roles in cells, including regulation of gene expression, RNA structure, protein
synthesis, ion channel flux, and autophagy. Polyamines are required for growth and play important roles in a variety of physiological processes,
including immunity, aging, hair growth, and wound healing.
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enhanced anti-tumor immunity (64–66). Moreover, polyamine

blocking therapy (PBT) reduces polyamine-mediated

immunosuppression in the tumor microenvironment and

activates tumor-killing T cells (67). Since accumulating

evidence supports that polyamines contribute important roles

to immune evasion of tumor cells, polyamines might be added to

the list of immunosuppressive metabolites (68). In this review,

we outline the relationship between polyamines and immune cell

function. We also discuss the impact of polyamines on the tumor

immune microenvironment, and the dual regulatory functions

of polyamines in cancer and immune cells. Finally, we provide

insights on targeting polyamine metabolism as a novel avenue

for cancer immunotherapy.
2 Polyamine metabolism

Under normal physiological conditions, the intracellular

concentration of polyamines is strictly regulated by

biosynthesis, catabolism and transport mechanisms (7, 69, 70).

While polyamine pathways, which are modulated by several

important oncogenic pathways, are often dysregulated in cancer.

As such, polyamine metabolism may serve as a promising target

for anticancer therapies (9).
Frontiers in Immunology 04
2.1 Polyamine biosynthesis

Polyamines are produced from arginine and ornithine,

which are controlled by de novo synthesis and diet (71, 72)

(Figure 2). Ornithine is produced from arginine by arginase 1

(ARG1) and metabolized by ornithine decarboxylase (ODC) to

produce putrescine, which is the first mammalian polyamine

(73 ) . Me th ion ine i s me tabo l i z ed by meth i on ine

adenosyltransferase (MAT2) to produce s-adenosylmethionine

(SAM), which is the main methyl donor for cell methylation

(74). SAM is decarboxylated by adenosylmethionine

decarboxylase 1 (AMD1) to produce decarboxylated SAM

(dcSAM), which is a substrate for polyamine synthesis (72). In

inflammatory and autoimmune diseases, intracellular

methylation modification affects immune dysfunction in the

body, including CD4+T lymphocytes, CD8+T lymphocytes, B

lymphocytes, macrophages, and regulatory T cells (75).

Therefore, in addition to playing an important role in the

synthesis of polyamines, AMD1 may also affect the

methylation reaction by affecting the availability of SAM, and

even play a role in immune function (75). Decarboxylated SAM

(dcSAM) is the aminopropyl donor, which is added to the

reactions catalyzed by spermidine synthase (SPDSY, coded by

SRM) and spermine synthase (SPMSY, coded by SMS) to
FIGURE 2

The polyamine metabolic pathway and transport way. Polyamine biosynthesis involves the conversion of ornithine to putrescine by ornithine
decarboxylase (ODC), followed by the formation of spermidine via spermidine synthase (SRM) and decarboxylated s-adenosylmethionine
(dcSAM, formed by AMD1). The aminopropyl fragment required for putrescine to produce spermidine was provided by dcSAM. In a similar
manner, spermine is produced from the conversion of spermidine by spermine synthase (SMS) and AMD1. The polyamine catabolism
process occurs through the action of amine oxidase, mainly polyamine oxidase (PAOX) and spermine oxidase (SMOX). PAOX and SMOX can
generate a large amount of reactive oxygen species (ROS) during the process of decomposing polyamines, causing oxidative damage.
Currently, three models of polyamine transport systems have been proposed. Although the molecules involved in the polyamine transport
system have not been fully recognized, it is known that the polyamine transport system is energy dependent and substrate selective. ODC
antienzymes (AZs) and antizyme inhibitors (AZINs) also play important roles in polyamine transport. ODC monomers have a higher affinity for
AZs. When the intracellular polyamine concentration is high, AZs binds to ODC monomers, preventing ODC activity and promoting the
binding of ODC monomers to the 26S proteasome for degradation in a ubiquitin (Ub)-independent manner (only AZ1 induces ODC
degradation). However, the binding of AZs to ODC can be blocked by AZINs.
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convert putrescine into polyamine metabolites (73, 76).

Spermidine synthase (SRM) catalyzes putrescine and dcSAM

to produce spermine and methylthioadenosine (MTA).

Spermidine can react with the second dcSAM molecule

through the action of spermine synthase (SMS) to produce

spermine and another MTA molecule (69).
2.2 Polyamine catabolism

Polyamine catabolism is another key factor in maintaining

polyamine homeostasis (Figure 2). The aminopropyltransferase

reaction to form spermidine and spermine is irreversible, but the

interconversion of polyamines in cells can occur through the

action of amine oxidase, which are mainly polyamine oxidase

(PAOX) and spermine oxidase (SMOX) (77). The activity of

PAOX is limited by the availability of acetylation products

produced by spermidine/spermine N1-acetyltransferase 1

(SSAT, which is encoded by SAT1). SSAT is a highly inducible

enzyme, which is regulated in response to the free polyamine

concentration to maintain polyamine homeostasis (78). SSAT

forms N1-acetylspermine and N1-acetylspermidine by adding

acetyl group to the N1 position of spermine or spermidine from

acetyl-coenzyme A. Depending on the initial substrate, these

acetylated polyamines can be excreted from the cell or converted

to 3-acetylaminopropanal, H2O2 and spermidine or putrescine

by PAOX (78). SMOX is an FAD-dependent enzyme with high

homology to PAOX and exists in the cytoplasm and nucleus.

Unlike PAOX, SMOX directly oxidizes spermine to generate 3-

aminopropanal, H2O2 and spermidine (77). These catabolic

pathways can prevent excessive concentrations of polyamines

in cells. PAOX and SMOX can generate a large amount of

reactive oxygen species (ROS) during the process of

decomposing polyamines, causing oxidative damage (77, 79).
2.3 Polyamine transport

In addition to polyamine synthesis and catabolism,

polyamine transport also plays an important role in

maintaining an appropriate level of intracellular polyamines.

Completely protonated at physiological pH, polyamines do not

passively diffuse across cell membranes. Currently, three models

of polyamine transport systems have been proposed (80)

(Figure 2). One proposed model relies on a highly selective

membrane permease to allow polyamines to be rapidly

internalized into endosomes, where they can be dispersed

throughout the cell as needed (81). In a second model,

polyamines are internalized by endocytosis which bound to

heparin sulfate moieties in glypican-1 at the cell surface.

Polyamines are internalized into the endosomes and then

released through an oxidation mechanism mediated by nitric

oxide (82). The third model proposes that polyamine transport is
Frontiers in Immunology 05
mediated by endocytosis and solute carrier transport

mechanisms in the gastrointestinal tract, especially SLC3A2 (82).

Ornithine decarboxylase (ODC) and ODC antizymes (AZs)

also play an important role in polyamine transport (83, 84).

ODC is active as a homodimer, but the ODC monomer has a

higher affinity for AZ. There are three main members of the

antizyme family: AZ1, AZ2 and AZ3 (85). Studies have shown

that AZ2 is expressed at much lower levels compared to AZ1.

However, AZ2 shows higher evolutionary conservation, which

may indicate increased functional value (86, 87). AZ3 is tissue-

specific and is mainly expressed in the testis during certain stages

of spermatogenesis (88, 89). Moreover, AZ1, AZ2, AZ3 are able

to inhibit ODC activity and polyamine uptake, only AZ1 induces

ODC degradation (90). AZs negatively regulate the uptake

activity of polyamines. When the intracellular polyamine

concentrations are high, polyamines transport will be blocked

because AZs can bind to ODC monomers to inhibit ODC

activity and chaperon the ODC monomers to the 26S

proteasome for degradation in a non-ubiquitin (Ub) manner.

When the intracellular polyamine concentrations are low, the

full-length AZ cannot be translated, so it cannot inhibit ODC

activity or block the transport of polyamines (83, 84). AZ can

also bind to and inhibit polyamine-specific transporters on the

plasma membrane to affect the transport of polyamines (91).

AZs and polyamine synthesis were also affected by the antizyme

inhibitors (AZINs), which are proteins highly homologous to

ODC (90), and retain no ornithine-decarboxylating activity (92,

93). In contrast to ODC, AZINs are degraded by the proteasome

through a ubiquitin-dependent mechanism (94). Two subtypes

of antizyme inhibitors, AZIN1 and AZIN2, have been reported.

AZIN1 is required for normal embryonic development and is

associated with cell proliferation, but AZIN2 is predominantly

expressed in the human brain and testis, and AZIN2 may play a

role in terminal differentiation rather than cell proliferation (95).

Since only transfection experiments have shown that AZIN2

affects ODC activity and polyamine uptake, and little is known

about the effect of AZIN2 on polyamine levels in vivo (96, 97),

the AZIN described in this article refers to AZIN1. AZIN1

interacts with AZ more efficiently than ODC, counteracting

the negative effects of AZ on intracellular polyamine

biosynthesis (98, 99). And when AZIN1 is tightly bound to

AZ, AZIN1 does not degrade as fast as ODC. Conversely, AZ

binding stabilizes AZIN1 by preventing AZIN1 ubiquitination

(94, 100). Notably, AZIN1 can also increase extracellular

polyamine uptake, presumably by binding to and sequestering

AZ, thereby preventing negative regulation of polyamine

transport by AZ (96). Studies have shown that AZIN is

overexpressed in a variety of malignancies (gastric cancer, lung

cancer, prostate cancer, liver cancer and ovarian cancer) and has

carcinogenic effects (101–104). Increased AZIN1 expression

correlates with elevated polyamine levels, which promote

tumor cell proliferation (100, 105). Although AZ is a tumor

suppressor and its expression can prevent cell growth and
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tumorigenesis, AZIN1 competes with ODC to release ODC from

the ODC-AZ complex based on the stronger binding ability of

AZIN1 and AZ, which is conducive to the polyamine synthesis

pathway and promotes cancer progression (100, 106). With the

deepening of research, it is found that the cancer-promoting

effect of AZIN1 can also affect the secretion of cytokines in the

tumor microenvironment, such as IL-8 and TGF-b (107, 108).

Studies have shown that AZIN1 can up-regulate IL-8 and

promote tumor angiogenesis. IL-8 has been reported to

contribute to cancer progression and metastasis through

different mechanisms, including preangiogenic and cancer

stem cell maintenance, but its ability to attract and regulate

neutrophils and macrophages is arguably one of the most

important factors (107, 109). Although there is no direct

evidence that AZIN can play a role in the tumor immune

microenvironment, AZIN may affect the tumor immune

microenvironment by regulating the secretion of cytokines.
2.4 Polyamine metabolites

2.4.1 Putrescine
Putrescine is the precursor of spermidine and spermine,

produced from ornithine by ornithine decarboxylase (ODC)

(73). Putrescine regulates DNA structure, mRNA translation

and protein activity, and plays an important role in promoting

cell proliferation and migration (2–5). Putrescine has been

shown to promote the proliferation of colon cancer cells, even

be used as a biochemical marker for malignant brain tumors

(110, 111). It is worthy to note that putrescine exerts anti-

inflammatory function by inhibiting IL-8 and TNF-a in a LPS-

stimulated inflammation model, which may provide a survival

mechanism for tumor cells to evade immune response (112).

Meanwhile, putrescine derived from macrophages induces 5-FU

resistance in colorectal cancer (113). In addition, putrescine can

also inhibit the maturation of cytolytic T lymphocyte (CTL),

which may impair anti-tumor immunity (114).

2.4.2 Spermidine
Spermidine is a metabolite of putrescine converted by

spermidine synthase (SRM), or an oxidized product of

spermine catalyzed by SMOX. Spermidine can interact with

polyanions such as nucleic acid and protein to maintain

DNA genome homeostasis and regulate cellular autophagy,

apoptosis, oxidative stress and so on (115). There have been

many reports suggest that spermidine prolongs the life span

across species in an autophagy-dependent manner, and fights

cancer and age-related diseases (such as cardiovascular

disease, neurodegeneration) (16, 17, 45, 116). In the tumor

microenvironment, spermidine can exert multiple functions, e.

g. the cell-autonomous inhibitory effect on proliferation or

induction of apoptosis of cancer cells by releasing H2O2 and
Frontiers in Immunology 06
reactive aldehydes, impeding communication between cancer

cells and immune monitoring effector cells, suppressing the

function of immunosuppressive cells and promoting the

polarization of M2-like tumor associated macrophages

(TAMs) (117). In addition, spermidine can also increase the

autophagy-dependent release of ATP to facilitate immune

monitoring (117).
2.4.3 Spermine
Spermine is converted from spermidine by spermine

synthase. Spermine also regulates cell proliferation,

differentiation, and apoptosis (7, 118). Spermine is more

effective against reactive oxygen species and other stresses than

spermidine and has been shown to be involved in the maturation

of the body’s immune system and induction of autophagy to

delay brain aging (119–121). In addition, spermine has been

reported to regulate T cell function (122), and dietary

supplementation of spermine reduces inflammatory response,

enhances immune function, and regulates gene expression of

inflammation-related signal molecules (123).
3 Roles of polyamines in the innate
immune cell responses in TIME

3.1 Regulation of macrophage
polarization by targeting polyamine-
eIF5A-hypusine axis

Macrophage are professional phagocytic cells that

internalize large particles such as debris, apoptotic cells,

pathogens, and maintain a stable environment in the body

(124). According to their functions, macrophages can be

classified into two categories: classically activated or

inflammatory M1 macrophages and alternately activated or

anti-inflammatory M2 macrophages (125, 126). The cytokines

released by cancer cells in the tumor immune microenvironment

(TIME) affect the polarization of macrophages. In the early

stages of tumor formation, M1 macrophages in TIME initiate

inflammation and exert anti-tumor immunity (126). However,

in established tumors, M1 macrophages can be reprogrammed

into M2-like TAMs by cytokines enriched in TIME, such as IL-

10, IL-4, and IL-13, etc. (125). M2 macrophages have anti-

inflammatory effects and can promote angiogenesis and fibrosis,

so they have immunosuppressive activity (124). The

macrophages located around the TIME are often called TAMs.

However, TAMs are mostly M2 macrophages, which play an

important role in the establishment of immunosuppressive

tumor microenvironment, metastasis, therapy-resistance, and

recurrence of cancer (127–131). Therefore, macrophages

represent a group of cells with high plasticity, which can
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constantly shift their functional states in response to subtle

changes in tissue physiology or environmental challenges

(132–137).

Numerous studies have implicated the involvement of

polyamines in regulating polarization and functions of

macrophages, particularly, in regulating tumor immunity

(138). For instance, putrescine has been shown to inhibit M1

macrophage activation (112, 138) through downregulating IL-8

and TNF-a expression in a LPS-stimulated inflammation model,

thus implying the contribution of M1 macrophage inhibition to

immune evasion of tumor cells (138). Spermidine inhibits M1

macrophages by reducing the expression of co-stimulatory

molecules (CD80 and CD86) in macrophages and the

production of pro-inflammatory cytokines (45). Moreover,

spermidine induces the expression of ARG1 in macrophages

and promotes the polarization of macrophages to M2 phenotype

through inducing mitochondrial superoxide-dependent AMPK

activation, Hif-1a up-regulation and autophagy (45, 139). In

addition, spermine inhibits iNOS in macrophages activated by

Helicobacter pylori to prevent the antibacterial effect of NO,

leading to the persistence of cellular bacteria and an increased

risk of gastric cancer (140). Spermine also induces the autophagy

of liver-resident macrophages (Kupffer cells) by upregulating

ATG5 expression, thereby inhibiting the pro-inflammatory M1

polarization and promoting the anti-inflammatory M2

polarization of macrophages (141).

The role of key enzymes in polyamine metabolism on the

polarization and the immune functions of macrophages should

not be underestimated. In tuberculosis, highly expression of

ARG1 in macrophages leads to collagen deposition and lung

damage, which drives to inflammation by inhibiting Th1 cells

(142). In colitis, ODC in macrophages exacerbates colitis and

promotes the occurrence of colitis-related colon cancer by

impairing the immune response of M1 macrophages (143).

During the occurrence and development of human esophageal

squamous cell carcinoma (ESCC), the activation of ODC can

increase the secretion of IL-33 in the tumor site, thereby

promoting the polarization of macrophages to the anti-

inflammatory M2 phenotype (144). Moreover, MTA

accumulates in MTAP-deficient tumor cells, blocks the

activation of macrophages and inhibits the production of

TNF-a through adenosine A2 receptor and TLR receptor after

LPS stimulation, which promotes the differentiation of M2

macrophages with immunosuppressive effect (145).

According to the recent research reports, polyamines can

regulate the activation and function of macrophages largely

depends on the arginase-eIF5A-hypusine axis. The researchers

activated mouse bone marrow-derived macrophages with IL-4

[referred to M(IL-4)], and found that eIF5AH (eIF5A

Hypusination) was induced upon activation with IL-4.

Significantly increased eIF5AH in M(IL-4) correlated with

enrichment of hypusinating enzymes (ODC, DHPS, DOHH)

expression in these cells. It was also observed that increased
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arginine in M(IL-4) promoted putrescine production by ODC

and increased flux of putrescine to spermidine, which could be

used to synthesize hypusine. These data may imply that even if

the expression of polyamine-hypusine enzymes is not altered,

hypusine synthesis might increase due to the increased

availability of ornithine, putrescine and spermidine, followed

by changes in eIF5AH levels in immune cells (44). In conclusion,

various links in the polyamine pathway play important roles in

the immunomodulatory function of macrophages, especially the

activation of macrophages, thereby promoting the establishment

of an immunosuppressive tumor microenvironment.
3.2 Excessive polyamines in cancer cells
confer immunosuppressive properties
on DCs

Dendritic cells(DCs) are bone marrow-derived cells that

present in all tissues (146–148), and are sentinels of the

immune system, which play a central role in linking innate

and adaptive immune responses (146). The function of DCs is

determined by the integration of environmental signals, which

are sensed via the surface expression and intracellular receptors

of cytokines, pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs) (149).

Dendritic cells can capture tumor antigens released from live

or dead tumor cells, and cross-present these antigens to T cells in

the tumor draining lymph nodes, thus leading to the generation

of tumor-specific CTLs (150, 151). However, signals from the

TIME can prevent antigen presentation and the establishment of

tumor-specific immune responses via a variety of mechanisms.

For example, the anti-inflammatory cytokine IL-10 secreted by

immunosuppressive cells can inhibit the maturation of DCs,

leading to antigen-specific anergy (152, 153). In addition, the

tumor antigens, e. g. glycoproteins carcinoembryonic antigen

(CEA) and mucin 1(MUC1), can be endocytosed by DCs and

confined to the early endosomes, thus preventing their effective

processing and presentation to T cells (154). Polyamines also

play an important role in the maturation and functional

regulation of DCs. ARG1, a key enzyme of polyamine

biosynthesis, is highly expressed in DCs, and is one of the

most important immune checkpoints that allow tumor

immune escape (155–158). It has been reported that DCs

metabolize local arginine to produce local arginine starvation

and prevent the progression of T cell cycle in the G0-G1 phase

by impairing the expression of the T cell receptor (TCR) CD3-x
chain in human and mouse cells (159, 160). In the psoriatic

inflammatory circuit, lack of Pp6 in keratinocytes causes ARG1

accumulation and drives polyamine production, which

promotes self-RNA sensing by dendritic cells, leading to

increased inflammation (161). Adding putrescine to the

microenvironment of DCs will hinder their ability to

effectively cross-prime exogenous antigens, indicating that
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their immunogenic functions are reduced (162). Spermidine

activates the Src kinase and confers IDO1-dependent

immunosuppressive properties in DCs (163). Moreover,

spermine and spermidine may convert immunogenic DCs into

tolerant DCs by promoting the production of IL-10, thereby

inducing anergic cytotoxic CD8+T cells (164–166). Spermidine

may also inhibit the differentiation and maturation of DCs by

promoting the production of VEGF (167–169). In addition, ROS

is released during polyamine catabolism (77, 79). High levels of

ROS in the tumor microenvironment may inhibit the function of

DCs. ROS can enter DCs through diffusion across the plasma

membrane or extracellular vesicles released by tumor cells,

which gives the tumor microenvironment more opportunities

to inhibit DC function (170). Therefore, the ROS generated

during the catabolism of polyamines may not only inhibit the

cross-presentation of DCs, but also inhibit the maturation of

DCs through endoplasmic reticulum stress (171, 172).
3.3 Polyamines for NK cells: A double-
edged sword

NK cells are the first subtype of innate lymphoid cells (ILCs)

characterized by a surface marker profile CD3−CD56+NKp46+

in humans, exerting natural cytotoxicity against primary tumor

cells and metastasis by inhibiting proliferation, migration and

colonization to distant tissues (173). The detection of abnormal

cells by NK cells is determined by the integration of complex

signals such as IL-12, IL-15, and IL-18, as well as the balance

between activation and inhibition signals and the interaction of

MHC-I on the surface of target cells (174–176). During infection

and inflammation, NK cells are recruited and activated within a

short period of time, proliferate rapidly and largely contribute to

the innate and adaptive immune response (177, 178). NK cell

activation is inhibited by the binding of inhibitory receptors to

class I HLA (MHC I) molecules. However, many cancer cells

downregulate the expression of the MHC I molecules to evade

the detection of cytotoxic CD8+T cells. Therefore, due to the lack

of MHC I-induced signaling via inhibitory receptors and the

subsequent increase in activation signaling, NK cells can

recognize and respond to cells of this missing-self phenotype,

and ultimately lead to target cell lysis (179).

Despite their activity in controlling tumor growth, NK cells

are susceptible to multiple immunosuppressive mechanisms in

TIME. Many cancer-related soluble immunosuppressive

molecules have negative effects on NK cell function, including

TGF-b, IL-10, indoleamine 2,3-dioxygenase, prostaglandin E2

(PGE2) and macrophage migration inhibitory factor (MIF)

(180). In addition to immunosuppressive cytokines,

accumulation of tumor-derived metabolites in TIME,

including polyamines, also exerts immunosuppressive effects

on NK cells (37–40, 68, 181). Polyamines act as a double-

edged sword in regulating NK cell functions. According to
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by reducing the cytolytic properties of NK cells, which protect

tumors from the host’s immune response (182), while polyamine

deprivation stimulates NK cell activity (59). Polyamines can also

inhibit the expression of NK1.1 receptors of NK cells and the

production of perforin and IFN-g, thus attenuating NK cell-

mediated tumor cell recognition and cytolysis, and such effects

could be reversed by treatment with DFMO, rosuvastatin, and

their combination (182). Adhesion molecules have been shown

to promote NK cell activation (183). Lymphocyte function-

associated antigen 1 (LFA-1) is expressed on NK cells and

interacts with intercellular adhesion molecules (ICAM) on

target cells. The combination of LFA-1 and ICAM-1 can

enhance NK cell-mediated cytotoxicity by enhancing the

polarization of the cytoskeleton mechanism, which is

necessary for effective delivery of cytotoxic particles (183).

However, spermine, a natural polyamine, can negatively affect

the expression of LFA-1 and attenuate the binding of LFA-1 and

ICAM-1, thus resulting in a decrease in NK cell-mediated

cytotoxicity and ineffective delivery of cytotoxic particles (183,

184). On the other hand, polyamines may participate in the

differentiation of NK cells, contribute to their maturation and

protect their viability. It is well known that IL-2 can induce the

proliferation of NK cells and improve their cytolytic activity

(185). Polyamine biosynthesis can increase IL-2 production,

thus enhancing the cytotoxicity of NK cells (186). In addition,

polyamines, particularly spermidine and spermine, reverse

immune senescence through translational control of autophagy

(121, 187). Autophagy is necessary for the differentiation of

mature NK cells from bone marrow-derived HSC (188, 189),

and is essential for NK cells to clear the virus and enhance the

memory formation of NK cells (188–190). Therefore,

polyamines are involved in regulating the differentiation

process of NK cells, even play an important role in

tumor immunity.
3.4 Polyamines, activators of type I
NKT cells

NKT cells, subtypes of innate-like T lymphocytes, can

quickly respond to antigen stimulation and produce a large

amount of various cytokines and chemokines, thus serving as a

key player in connecting the innate immune system and the

adaptive immune system (191–194). Unlike the TCR of

traditional T cells, which only recognizes one (or at most a

few) epitopes, a single TCR of NKT cells can react with a large

number of antigens, including self and foreign antigens.

Therefore, in a T cell environment specific to an antigen, their

numbers are high enough to initiate a significant immune

response, although the absolute frequency of NKT cells is low

(e.g., about 1% in mouse spleen) (195–197). According to the

heterogeneity of TCR rearrangement, NKT cells are divided into
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two types, type I or type II NKT cells with different roles in

tumor immunity (198). Usually, type I NKT cells promote tumor

immunity, while type II NKT cells inhibit tumor immunity.

Under normal conditions, an immunomodulatory axis exists

between type I and type II NKT cells, wherein they have opposite

polar functions and counteract each other (198).

In tumor immune surveillance, NKT cells can directly kill

malignant cells. For example, both mouse and human NKT cells

can directly lyse tumor cells through a perforin-dependent

mechanism, and the expression of granzyme B also enhances

the killing effect of NK cells (199, 200). However, polyamines can

inhibit the production of perforin, making it unable to effectively

lyse tumor cells (182). Polyamine blocking therapy (PBT) has

been shown to increase the production of granzyme B in

immune cells, thus enhancing the killing effect of NKT cells

(67). It is reported that IL-12 is an effective inducer of IFN-g
(201), the main mechanism by which NKT cells act against

cancer cells and induce other downstream effector cell functions

(especially NK cells and CD8+ T cells) to produce more IFN-g to
mediate tumor lysis (202, 203). Polyamines have been shown to

reduce the production of IL-12 and IFN-g in immune cells (164,

182), thus contributing to the inhibition of the killing function of

NKT cells and NKT-mediated induction and activation of NK

cells, DCs cells, and other immune cells. A main factor of type II

NKT cells-mediated tumor immunosuppression is the increased

production of IL-13 and IL-4 cytokines, which tilt immune

response mainly toward the Th2 type with pro-tumor

functions (204). In immune cells, IL-4 and IL-13 can increase

polyamine levels (68, 205) that may also contribute to type II

NKT cell-mediated tumor immunosuppression. In addition to

lipid antigens, type I NKT cells can also be activated through

toll-like receptor (TLR)-mediated signaling (206). Polyamines

have been reported to affect immune system function by

participating in the expression of Toll like Receptors (TLRs).

Therefore, polyamines may play an important role in regulating

the recruitment and activation of type I NKT cells through

TLRs (207).
3.5 Polyamine-PD-L1-gd T cells: A novel
immune checkpoint pathway

Gamma delta (gd) T cells are a unique lymphocyte

population that mediate natural immunity against various

infections and play a unique role in immune monitoring and

tissue homeostasis (208). Since gd T cells can quickly identify

infected and transformed cells, they are considered as the first

line of defense against infection and malignancy (209). The main

pathway of gd T cell activation involves gd TCR. gd TCR can

bind to soluble or membrane proteins, such as tetanus toxoid,

bacterial protein, viral protein and heat shock protein (210–212).

According to the TCRd chain usage, human gd T cells are

generally divided into 2 main subgroups. One subgroup is Vd1
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T cells, which are abundant in thymus and mucosal epithelial

tissues, produce a variety of cytokines such as TNF-a and IFN-g
and lyse infected or transformed target cells through cytotoxicity

(213, 214). The other is Vd2 T cells that are mainly distributed in

peripheral blood and play a cytotoxic role in tumor immune

regulation and virus infection (215).

gd T cells regulate the immune function of body through the

cell-to-cell contact or soluble factors such as cytokines (216).

Numerous factors, such as IL-2, IL-15, IL-17, IL-21, TGF-b, and
vitamin C, can regulate the differentiation of gd T cells and their

anti-tumor response (217–221). Besides, polyamines, as negative

immune regulators, directly or indirectly affect the function of gd
T cells by regulating their secretion of cytokines and other

mediators. eIF5A is a translation elongation factor that assists

in the translation of specific transcripts, and spermidine is

required for hypusination of eIF5A (44, 222). eIF5A is directly

involved in the translation of IL-17, an inflammatory cytokine

produced mainly by activated Th17 cells, while IL-17 produced

by gd T cells drives tumorigenesis and progression through

several downstream effects on tumor cells, endothelial cells,

and other immune cells (223–225). Therefore, spermidine may

regulate the production of IL-17 in gd T cells through eIF5A and

participate in the immune regulation of a variety of cancers.

Blocking intracellular polyamines with DFMO can significantly

induce TGF-b mRNA expression and increase TGF-b content

(226). TGF-b changes the adhesion characteristics of gd T cells

and plays an important role in promoting the migration ability

and tissue homing of gd T cells (227). Therefore, the occurrence

and development of cancer is usually accompanied by an

increase of polyamines, which may inhibit the toxic activity of

gd T cells. In recent years, researchers have discovered that gd T
cells can promote tumor promotion by regulating PD-1/PDL-1

(228). The immune checkpoint molecule PD-1 and its ligand

PDL-1/2 are one of the main regulatory mechanisms that temper

tumor immunity (229, 230). In vitro studies have shown that

tumor-infiltrating gd T cells inhibit ab T cell activation via cell-

to-cell contact by PD-1/PD-L1 (228), and polyamine blockade

therapy has been reported to enhances the antitumor efficacy of

PD-1 blockade (231), which indicates that polyamines may affect

the immune function of gdT cells through PD-1/PD-L1, thereby

inhibiting the activation of ab T cells, and ultimately promote

tumor progression.
4 Role of polyamines in the adaptive
immune responses in TIME

Tumor infiltrated lymphocytes (TILs) play an important role

in the establishment of a pro- or anti-tumorigenic TME (232). T

lymphocytes are usually the major components of TILs, among

which CD4+ T helper cells (e.g., Th1), CD4+CD25+ regulatory T

cells (Tregs), CD8+ cytotoxic T cells are frequently observed in

various cancers (233–235). Clinically, TILs can be separated,
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screened and amplified in vitro, and then implanted into the

patient’s body to exert a specific killing effect on the tumor (236).
4.1 Polyamine for CD8+ tumor-
infiltrating lymphocytes: TIME’s “enemy”

CD8+ tumor-infiltrating lymphocytes play a key role in the

host’s anti-tumor immune response by acting as cytotoxic cells

through the release of granzyme B, perforin, and pro-

inflammatory cytokines such as TNF-a, IFN-g, and IL-12

(237, 238). However, many factors, such as indoleamine-2, 3-

dioxygenase (IDO), PD-L1, cytokine milieu, and the state of

protein kinases in TIME, can suppress the infiltration and

cytotoxic activities of CD8+ T cells and eventually lead to

immune evasion by tumor cells (239–241).

T lymphocytes obtain energy for their survival, proliferation,

and biological functions through various metabolic pathways,

while dysregulated metabolism in TME contributes to aberrant

functions of TILs, including CD8+ cytotoxic T cells (242, 243).

Alterations in different metabolic pathways in TME can lead to

exhaustion, impaired effector functions and survival of CD8+

cytotoxic T cells in various types of cancer (244–246). Previous

studies have indicated that increased polyamine metabolism is

also involved in regulation of the survival and effector function

of CD8+ TILs (68, 247). For example, polyamines and polyamine

oxidation products may inhibit the activation and proliferation

of CD8+ TILs by down-regulating the production of IL-2 (248,

249). Increased polyamine production was associated not only

with increased IL-10 levels, but also with decreased IL-12 levels,

suggesting that polyamines may inhibit the cytotoxic function

and cause deficiency of CD8+ TILs (250–252). In addition,

polyamines can also reduce the expression of chemokines, thus

inhibiting the migration and recruitment of CD8+ TILs, a key

step for anti-tumor response (45, 253, 254). It has been reported

that the expression of T cell co-inhibitory molecules (PD1, PD-

L1 and CTLA-4) can induce exhaustion of effector T cells, while

blockade of PD-1/PD-L1 T cell co-inhibitory axis can efficiently

enhance the infiltration of CD8+ T cells into TIME and restore

the anti-tumor immune response (255, 256). Most recently,

several lines of evidence have shown that polyamine blocking

therapy (PBT) can improve the anti-tumor efficacy of PD-1

blockade along with an increase in tumor infiltration of

granzyme B+, IFN-g+ CD8+ T-cells and a decrease in

immunosuppressive tumor infiltrating cells including Gr-

1+CD11b+ myeloid derived suppressor cells (MDSCs),

CD4+CD25+ Tregs, and CD206+F4/80+ M2 macrophages (231,

257, 258). These findings suggest that polyamines are directly or

indirectly involved in regulating the function of CD8+ TILs.

Adenosine is a mediator of TME immunosuppression, and its

physiological activity is mediated by adenosine receptors (ARs).

It may limit the success of immunotherapy, especially the
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adoptive cell transfer of TILs (259–261). Activation of

adenylate cyclase by inhibiting ARs can induce the increase of

cellular cAMP levels (262). Studies have shown that cAMP-

elevating agents have excellent anti-tumor activity, and when

used in combination with other anti-tumor agents, cAMP-

elevating agents show enhanced anti-tumor activity (263, 264).

Furthermore, ARs inhibitors have been shown to prevent Ado-

mediated inhibition of CD8+ TILs, probably by inhibiting ODC

and even disrupting spermine synthesis, leading to a significant

reduction in total polyamines (265, 266).
4.2 Polyamines are central determinants
for the fidelity of Th1 cell subsets

T lymphocyte response is necessary for the host to defend

against pathogens. According to the difference of antigen and

cytokine microenvironment during activation, human CD4+

effector T cells can differentiate into at least four main

subtypes, including Th1, Th2, Th9, and Th17 (267–269). The

main inducers of Th1 cells are IL-12 and IFN-g. IL-12 is

produced by antigen-presenting cells and interacts with its

receptors to induce the expression STAT4 and T-bet, the main

transcription factor of Th1 cells. T-bet directly binds to the

promotor of various Th1 specific genes and promotes their

expression (270). T-bet can also negatively regulate the

expression of Th2 and Th17 specific genes to inhibit the

differentiation of Th2 and Th17 cells. STAT4 can directly bind

to the Ifng locus and stimulate IFN-g production. The

cooperation of STAT4 and T-bet will induce the greatest

amount of IFN-g. Therefore, in the absence of STAT4, T-bet

alone cannot induce an optimal expression of IFN-g (270–272).
Metabolic reprogramming is an important factor in the

activation and differentiation of T cells (242). Recent studies

have shown that polyamine metabolism is a major determinant

offidelity of helper T cell lineages (223). Ornithine decarboxylase

is a key enzyme in polyamine synthesis. Lack of ornithine

decarboxylase leads to the serious failure of CD4+ T cells to

adopt the correct subgroup specification, which is highlighted by

the ectopic expression of a variety of cytokines and lineage-

defining transcription factors across Th cell subsets (223). Even

though spermidine does not inhibit the cell proliferation or

cytokine production of Th1 cells, T-bet+ T cells were slightly

reduced when stimulated with higher doses of spermidine,

indicating that spermidine may interfere with the Th1 cell

differentiation process (273). The expression of inducible co-

stimulator (ICOS) is an important indicator of the anti-tumor

response of Th1 cells (274, 275), and serves as a new potential

biomarker for T cell-mediated immunotherapy response (276–

278). However, PD-1 down-regulates ICOS on CD4+ T cells,

which inhibits the differentiation of CD4+ T cells into Th1 cells

and affects the anti-tumor response of Th1 cells (256, 279).
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Polyamines may affect the expression of ICOS in Th1 cells

through PD-1 and then regulate the immune function of Th1

cells, while PBT (polyamine Blocking Therapy) has been shown

to enhance the anti-tumor effect of PD-1 blockade. These data

imply that polyamine and PD-1/PD-L1 may synergistically

contribute to impaired functions of effector T cells and then

tumor growth (231, 256, 279). Meanwhile, polyamines can also

regulate the function of Th1 cells by regulating the production of

cytokines. For instance, polyamines, especially spermidine, have

been reported to inhibit the production of IL-12 in immune cells,

thus resulting in a reduced expression of STAT4 and T-bet, and

ultimately, a significant reduction in IFN-g production (45, 123,

250, 270–272). Taken together, polyamines may play important

roles in regulating the antitumor immunity of Th1 cells.
4.3 Polyamine-Treg cells: Inhibitory fuel
for TIME

Tregs cells are a small subset of CD4+ T lymphocytes (about

5%), which are composed of several cell subgroups with similar

phenotypes and can inhibit the function of autologous

conventional T cells (Tconv) (280, 281). There are two main

subgroups of Treg cells: natural Treg cells and adaptive Treg

cells. Natural Treg cells originate from the thymus and mediate

inhibition through cells contact-dependent mechanism.

Adaptive Treg cells, also called type 1 regulatory T cells (Tr1),

are induced in the periphery in response to environmental

signals, including antigens, IL-2, TGF-b, IL -10 and cAMP

(282, 283). The homing of Treg cells is a key step in the

initiation and spread of immunosuppressive TME (284). In

TIME, Tregs cross-talk with other types of cells, including

infiltrating effector T cells, stromal cells, and tumor cells. Treg

cells contribute to the immunosuppressive TME through

multiple mechanisms, such as inhibiting the maturation of

antigen presenting cells (APC), the secretion of pro-

inflammatory cytokines and the production of cytotoxic

granzymes and perforin by Th1 and CD8+ T cells (285).

Studies also indicate that Tregs can also support tumor

progression through some non-immune mechanisms, such as

promoting angiogenesis, proliferation, and metastasis of tumor

cells (286–288).

Several lines of evidence have implicated the important role

of polyamines in regulating Tregs (289). A recent study has

demonstrated that polyamine-related enzyme expression was

significantly enhanced in pathogenic Th17 cell but suppressed in

Treg cells, while pharmacological and genetic ablation of

polyamine metabolism inhibited Th17 cytokine production

and reprogrammed the transcriptome and epigenome of Th17

cells toward a Treg-like state as evidenced by enhanced Foxp3

expression (290). Spermidine can also regulate T cell

development and enhance the differentiation of mouse and
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human naive T cells into Treg cells in an autophagy-related

manner. The increased synthesis of polyamines in tumor cells

may lead to increased secretion of spermidine, which in turn

may damage anti-tumor immunity by promoting Treg cells

(273). In the process of polyamine catabolism, a large amount

of reactive oxygen species (ROS) is produced (77, 79). In TME,

ROS can affect the function of immune cells, e. g. the inhibition

or activation of Treg functions depending on its concentration

(291, 292). In general, ROS at a low level suppresses the function

of Treg cells. In vitro, neutrophil cytoplasmic factor 1-deficient

mice have lower ROS levels than wild-type mice, and the Treg

cells isolated from neutrophil cytoplasmic factor 1-deficient

mice have weakened functions. In addition, thiol-bearing

antioxidants or NADPH oxidase inhibitors reduce ROS levels

and then can block or attenuate Treg-mediated inhibition of

CD4+ effector T cells (293). However, in psoriatic dermatitis,

elevated ROS levels can induce hyperfunction of Treg cells (294).

Moreover, Treg cells are hyperactive in the culture of 3-

dimethoxy-1,4-naphthoquinone (DMNQ), which can induce

an increase in ROS levels in a dose-dependent manner (295).

It was reported that spermidine ameliorated Dextran Sulfate

Sodium -induced inflammatory bowel disease (IBD) in mice by

promoting M2 macrophage polarization by inducing

mitochondrial reactive oxygen species (mtROS). ROS are key

signaling molecules that play a critical role in tumor immunity.

Whereas, how ROS production during polyamine catabolism

could affect the immune function of Tregs cells, and to what

extend would ROS contribute to polyamines’s function in Treg

cells regulation, remain to be further investigated.
5 Clinical studies of polyamine
blockade therapy for cancer

Due to the general elevated level of polyamines in TIME and

their wide spectrum effects on tumor and immune cells,

polyamine blockade therapy (PBT) is emerging as a novel

adjuvant therapy of both chemo- and immune-therapies for a

variety of cancers (9, 67, 296). DFMO is a potent, highly specific

enzyme-activated, irreversible inhibitor of ODC activity (297–

299). DFMO has shown excellent promise in chemoprevention

and/or treatment of cancer (9). However, a major disadvantage

of DFMO as monotherapy is the compensatory increase in

polyamine transport when polyamines are depleted. Therefore,

the use of nontoxic polyamine transport inhibitors in

combination with DFMO to deplete polyamine levels is a

more promising area, which is PBT therapy (300). The most

exciting finding is that PBT therapy not only depletes

polyamines in tumor cells, but also promotes anti-tumor

immune responses, resulting in greater anti-tumor effects than

expected. In immunocompetent mouse models of lymphoma,

melanoma, and colon cancer, treatment with DFMO in
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combination with AMXT 1501 inhibited tumor growth by

reducing tumor-infiltrating myelosuppressor cells and

increasing CD3+ T cells (68). In addition to AMXT1501,

DFMO can also be used in combination with different

polyamine transport inhibitors (Trimer PTIs) to increase

granzase B and IFN-g and activate effector T cells, ultimately

inhibiting tumor-promoting microenvironment and increasing

antitumor immune responses (67). To date, numerous inhibitors

of polyamine metabolism-related enzymes or polyamine

transport have been shown to possess potent antitumor effects

both in vitro and in preclinical cancer models, and several of

them have been moved into clinical trials for treating a variety of

cancer (Table 1).

In addition to clinically tested inhibitors of enzymes

involved in polyamine metabolism or polyamine transport,

there are a number of newly discovered inhibitors that were

not initially used to inhibit polyamine levels. Clofazimine (CLF)

is a riminophenazine-based drug approved by the US FDA for
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the treatment of leprosy and tuberculosis (301, 302). CLF plays A

role in tumor xenografts by inhibiting Kv1.3 potassium

channels, interfering with Wnt signaling, or enhancing

phospholipase A2 activity (303–307). Some of these effects of

CLF can be explained by CLF-dependent inhibition of

polyamines, as polyamines have previously been shown to

inhibit phospholipase A2 and C activities (308). In addition,

CLF was found to inhibit multiple myeloma through the Aryl

hydrocarbon receptor/polyamine biosynthesis axis (309). The

Aryl hydrocarbon receptor (AHR) is a direct transcriptional

activator of ODC1 and AZIN1. CLF treatment reduced the

binding of AHR to the promoters of AZIN1 and ODC1 in a

dose-dependent manner, accompanied by a decrease in the

levels of putrescine, spermidine and spermine. Not only this,

but CLF can also induce secretion of acetylated polyamines

(catalyzed by SSAT) as well as increased protein levels of SMOX,

suggesting that CLF promotes polyamine catabolism (309).

Therefore, it is not necessary to only use traditional polyamine
TABLE 1 Polyamine metabolism interventions in cancers: Clinical trials*.

Inhibitor Target Cancer Status Phase Interventions Plus drugs Immune cells that
may be involved

DFMO ODC Prostate Cancer Completed 2 DFMO in high-risk
therapy

– –

Prostate Cancer Completed 2 DFMO to prevent
recurrence

Bicalutamide –

Non-melanoma Skin Cancer Recruiting 2 DFMO for
chemoprophylaxis

Solaraze –

Non-melanomatous Skin
Cancer

Completed 3 DFMO to prevent
recurrence

– –

Non-melanomatous Skin
Cancer (Precancerous/
nonmalignant condition)

Completed 2 DFMO to prevent
recurrence

Triamcinolone –

Bladder Cancer Completed 3 DFMO to prevent
recurrence

– –

Cervical Cancer
(Precancerous condition)

Completed 2 DFMO to prevent
recurrence

– –

Esophageal Cancer Completed 2 DFMO to prevent
recurrence

– –

Colorectal Cancer (with
familial adenomatous
polyposis)

Completed 2 DFMO in high-risk
therapy

Celecoxib –

Colorectal Cancer
(Precancerous condition)

Completed 3 DFMO to prevent
recurrence

Sulindac –

Colorectal Neoplasms Recruiting 3 DFMO to prevent
recurrence

Sulindac –

Adenomatous Polyp Completed 2 DFMO in high-risk
therapy

Aspirin –

Gastric Cancer Recruiting 2 DFMO in high-risk
therapy

– –

Anaplastic Astrocytoma Recruiting 3 DFMO to prevent
recurrence

Lomustine –

Medulloblastoma Recruiting 2 DFMO in high-risk
therapy

– –

(Continued)
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inhibitors to intervene polyamine metabolism, but also can be

combined with other drugs to intervene polyamine metabolism,

or combined with other immunotherapy modalities. However,

these require further investigation to realize the full potential of

this strategy.
6 Conclusions

Despite extensive research in the field of polyamines and

cancer, the role of polyamines in immunomodulatory function

in the complex TIME environment remains uncertain,
Frontiers in Immunology 13
especially the mechanism by which they promote tumor

immune evasion. Various inhibitors utilizing polyamine

depletion strategies are currently being tested in clinical

trials. DFMO, a specific inhibitor of ODC, shows excellent

promise in chemoprevention and/or treatment of cancer.

Moreover, recent evidence suggests that PBT therapy can

mediate the remodeling of the immune landscape of

the tumor microenvironment, particularly to promote

antitumor immune responses. Emerging evidence in

preclinical models of inflammation demonstrates the critical

regulatory role of polyamines in immune cell lineage

specification, proliferation, and function (Figure 3).
TABLE 1 Continued

Inhibitor Target Cancer Status Phase Interventions Plus drugs Immune cells that
may be involved

Neuroblastoma Recruiting 2 DFMO to prevent
recurrence

Etoposide –

Neuroblastoma Active, not recruiting 2 DFMO to prevent
recurrence

– –

Neuroblastoma Active, not recruiting 2 DFMO to prevent
recurrence

– –

Neuroblastoma Active, not recruiting 1 DFMO to prevent
recurrence

Celecoxib,
Topotecan,
Cyclophosphamide

–

Neuroblastoma Active, not recruiting 1/2 DFMO to prevent
recurrence

Bortezomib –

Neuroblastoma Recruiting 2 DFMO to prevent
recurrence

– –

Neuroblastoma Completed 1 DFMO to prevent
recurrence

Etoposide –

Neuroblastoma Recruiting 2 DFMO in high-risk
therapy

Ceritinib, Dasatinib,
Sorafenib, Vorinostat

–

Neuroblastoma Suspended (Scheduled
Interim Monitoring)

2 DFMO to prevent
recurrence

Dinutuximab,
Sargramostim,
Temozolomide,
Irinotecan
Hydrochloride

–

BENSpm SSAT,
SMOX

Hepatocellular Carcinoma Terminated 1/2 BENSpm in high-risk
therapy

– –

PG-11047 ODC,
AMD1,
SRM, SMS,
SSAT,
SMOX

Solid Tumors Completed 1 PG-11047 in
advanced refractory
therapy

– –

Solid tumors and lymphoma Completed 1 PG-11047 in
advanced therapy

Gemcitabine,
Docetaxel,
Bevacizumab,
Erlotinib,
Cisplatin, Sunitinib
5-flurouracil/
leucovorin

Lymphocytes,
Macrophages,
NK cells

Lymphoma Completed 1 PG-11047 to prevent
recurrence

- Macrophages,
Lymphocytes, NK cells

AMXT
1501

Polyamine
transport

Solid Tumors Recruiting 1 AMXT 1501 in
advanced therapy

DFMO –
*All clinical trials on cancers intervention are based on polyamine level inhibition, as listed in the https://clinicaltrials.gov/, query date Mar. 4, 2022.
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Furthermore, the combination of polyamine blockade and

checkpoint immunotherapy (anti-PD1 or anti-PDL1

immunotherapy) has yielded exciting results in multiple

cancer models in mice. All these reports may provide a

rationale for utilizing polyamine depletion strategies to

promote antitumor immune responses. In fact, the effect of

polyamines on immune function was discovered in 1977,

and in this pioneering work, exogenous polyamine

administration suppressed innate and adaptive immune

responses in mouse splenocytes. After decades of intensive

research and thousands of studies published, the effects

of polyamines on immunity and cancer are surprising.

However, the studies on these immune functions are not

comprehensive, mainly focusing on macrophages and T

lymphocytes, and there are significant differences between

different cell types and different diseases. Therefore, it is

necessary to further explore the role of polyamines in

different tumor immune microenvironments.
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FIGURE 3

The role of polyamines in both innate and adaptive immune responses in cancer Polyamines and their key enzymes can reshape the
tumor immune microenvironment through a variety of transcription factors or cytokines, even have dual roles. The polyamine-eIF5A-
hypusine axis regulates macrophage polarization, especially polyamines tend to promote the polarization of M2-type macrophages.
Polyamines also negatively regulated the functions of DC cells, NKT cells, CD8+ TILs and Th1 cells, and positively regulated the functions
of Treg cells. For NK cells, polyamines are a double-edged sword. In fact, the tumor immune microenvironment is mutually influenced
and restricted by a variety of factors. The regulation of polyamines in regulating the function of immune cells is not absolute, which will
change according to the changes of tumor immune microenvironment.
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