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Epstein–Barr virus (EBV) is a human herpesvirus that is common among the global
population, causing an enormous disease burden. EBV can directly cause infectious
mononucleosis and is also associated with various malignancies and autoimmune
diseases. In order to prevent primary infection and subsequent chronic disease, efforts
have been made to develop a prophylactic vaccine against EBV in recent years, but there
is still no vaccine in clinical use. The outbreak of the COVID-19 pandemic and the global
cooperation in vaccine development against SARS-CoV-2 provide insights for next-
generation antiviral vaccine design and opportunities for developing an effective
prophylactic EBV vaccine. With improvements in antigen selection, vaccine platforms,
formulation and evaluation systems, novel vaccines against EBV are expected to elicit dual
protection against infection of both B lymphocytes and epithelial cells. This would provide
sustainable immunity against EBV-associated malignancies, finally enabling the control of
worldwide EBV infection and management of EBV-associated diseases.
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INTRODUCTION

Epstein–Barr virus (EBV) is a double-stranded DNA virus that belongs to the gamma herpesvirus
family. It causes endemic infection in over 95% of the worldwide population (1), and is associated
with diseases such as infectious mononucleosis (IM) and a broad range of lymphoid or epithelial
malignancies (2, 3). It is estimated that approximately 2% of malignancies are caused by EBV
infection, resulting in over 200,000 cases of EBV-associated cancer each year (4).

The transmission of EBV within the population is mainly mediated by saliva, and the infection
involves both B lymphocytes and epithelial cells (5). Primary infection mostly occurs in early
childhood with little or no overt symptoms (6). After the primary infection is established, EBV
sustains a persistent infection in B lymphocytes, accompanied by the expression of specialized viral
genes that maintain its latency, which is associated with B cell tumorigenesis (7). Therefore, a
prophylactic EBV vaccine for establishing early protection against primary infection is critical for
prevention both infectious diseases and EBV-associated malignancies. However, there is still no
prophylactic vaccine against EBV in clinical use due to various reasons including antigen selection,
vaccine platform used, and evaluation system for EBV vaccine assessment. Thus, in this review, we
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summarize the challenges and opportunities encountered in the
development of a prophylactic EBV vaccine.
ANTIGEN SELECTION FOR
VACCINE DESIGN

Glycoproteins
Similar to other herpesviruses, EBV is an enveloped virus,
comprising a membrane decorated with envelope glycoproteins
(such as gp350, gp42, gH, gL, and gB), which are crucial for
receptor recognition, attachment, and virus–host membrane
fusion (8). As EBV can infect both B lymphocytes and epithelial
cells, the glycoproteins involved in the infection process of each
cell type differ. For B cell infection, EBV gp350 interacts with
CD21 or CD35 on B cells to establish viral binding, followed by the
binding of gp42 in complex with gHgL to HLA class II on B cells,
after which gB eventually triggers the membrane fusion in
endocytic vesicles (9–12). By contrast, EBV adopts a rather
different and more versatile combination of ligand–receptor
paring during viral entry into epithelial cells. EBV can still use
gp350 to establish attachment to CD21-expressing host cells (13),
while BMRF2 (14) or the gH/gL complex binds to other host cell
receptors to facilitate the infection of cells that lack CD21.
Frontiers in Immunology | www.frontiersin.org 2
Currently, integrins (15), non-muscle myosin heavy chain IIA
(NMHC-IIA) (16) and ephrin receptor A2 (17, 18) (EphA2) are
recognized as receptors for EBV gH/gL, while neuropilin-1 (19)
(NRP1) acts as the receptor for EBV gB during epithelial cell
infection, indicating a more important role of gH/gL complex and
gB during the recognition and attachment in comparison to B cell
infection (Figure 1).

The complex molecular machine of surface glycoproteins
brings challenges for not only understanding the complete
fusion mechanism of EBV, but also choosing appropriate
antigens for vaccine development. Therefore, an ideal
prophylactic vaccine against EBV should be able to elicit
potent neutralizing antibodies against EBV infection in both B
lymphocytes and epithelial cells, which requires careful selection
of antigens during vaccine design.

gp350
As the first-isolated and most abundant EBV glycoprotein, gp350
was the most studied antigen for vaccine candidates and is the
core antigen for the majority of the currently-developed EBV
vaccines (20–28). The first clinical trial of a recombinant viral
vector encoding gp350 performed in China in 1997 proved that
gp350-specific antibodies could be elicited in both seronegative
and seropositive children (29). In later studies, recombinant
A B

C

FIGURE 1 | (A) Structure of the EBV virion. As an enveloped double-stranded DNA virus, the virion of EBV consists of a lipid membrane, tegument, viral capsid and
the packed EBV genome. Glycoproteins are distributed on the virion membrane and are crucial for recognition, host cell attachment and membrane fusion. (B) The
major interaction pattern of host cell receptors and the EBV membrane glycoproteins. EBV infects B lymphocytes and epithelial cells via different combinations of
ligand–receptor interaction. (C) Humoral and cellular immunity against EBV infection. In humoral immunity, antibodies against various glycoproteins play different roles
in the neutralization process. After infection, EBV antigen can be presented, inducing a cytotoxic CD8+ T cell response against infected cells.
June 2021 | Volume 12 | Article 677027
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gp350 adjuvanted with AS04 was used as the vaccine in a
phase II clinical trial among seronegative adults (30) and was
shown to effectively reduce the incidence of IM compared to the
placebo control group. However, this vaccine did not completely
prevent EBV infection in the vaccinated population. In
another phase I clinical trial gp350 was formulated with 0.2%
Alhydrogel® as vaccine for reducing the risk of post-transplant
lymphoproliferative disease (PTLD) (31). The vaccine failed to
elicit neutralizing antibodies and control the viral titer in the
majority of patients, possibly due to its low immunogenicity
for immunosuppressed patients. Thus, despite the early and
thorough study, gp350 exhibited only imperfect vaccination
efficacy as single antigen in both preclinical and clinical trials
(Figure 2A, Tables 1, 2).

gH/gL
Since the gH/gL complex plays a critical role in the infection of B
cells and especially epithelial cells, there is increasing focus on the
gH/gL complex as the antigen for new vaccine candidates. The
recently identified anti-gH/gL dual-tropic neutralizing antibody
AMMO1 (63) further indicated that gH/gL may be an ideal
antigen. In a study on rabbits (51), trimeric or monomeric gH/gL
could elicit >100- and 18-fold higher EBV neutralizing antibody
titers than monomeric gp350. Later nanoparticle vaccines
displaying gH/gL or the gH/gL/gp42 complex were designed,
and immunization assays in BALB/c mice demonstrated that the
Frontiers in Immunology | www.frontiersin.org 3
nanoparticle decorated with gH/gL or gH/gL/gp42 could elicit
much higher neutralizing antibody titers than monomeric gH/gL
or gH/gL/gp42 (55). Despite these promising results for gH/gL as
a vaccine candidate, there are still no clinical trials examining
whether gH/gL could provide broader protection than gp350 and
possibly achieve complete protection from EBV infection.

gp42
gp42 is a subunit of the gH/gL/gp42 heterotrimer on the EBV
virion membrane. It was identified as the ligand for HLA class II
molecules mostly participating in B cell infection and was
recently found to hinder the infection of epithelial cells (64,
65), indicating that it controls the tropism of EBV infection. The
close structural connection and functional complexity suggested
that a combination of gH/gL/gp42 as a complex antigen may be
more potent than gp42 alone. Studies of the effect of
immunization with the EBV viral fusion apparatus indicated
that immunization using gH/gL in complex with gp42, either as
monomers or nanoparticles, could elicit relatively higher
neutralizing antibody titers against infection of both B
lymphocytes and epithelial cells (55). Nevertheless, few studies
investigated gp42 as the target for vaccine design. Moreover, its
role in controlling the tropism of infection would complicate the
protection efficacy of elicited antibodies against gp42, which may
potentially influence the tropism of the original virus and
enhance the efficiency of epithelial cell infection.
A

B

FIGURE 2 | (A) Hallmarks of prophylactic EBV vaccine development using EBV glycoproteins as antigens. Clinical trials are marked in yellow box and others are
marked in gray box. (B) Current candidate platforms for EBV vaccines, including virus-based, protein-based and nucleic-acid-based vaccines.
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TABLE 1 | Summary of EBV vaccine animal trials.

Year Platform/ Adjuvant Antigen Animals Results

1984 Subunit vaccine/
liposome, Freund’s
adjuvant, lipid A

Full length membrane gp340
(gp350) purified from virus

Mice, rabbit
and
cottontop
tamarins

Antibody responses were induced similarly in mice and cotton-top tamarins, among
which groups adjuvanted with liposome and lipid A elicited antibody responses
earlier; Antibody responses in rabbits were rather weak (32).

1985 Prototype subunit
vaccine

Full length membrane gp340
(gp350) purified from virus

cottontop
tamarins

Privided protection against malignant lymphoma (21)

1985 Recombinant vaccinia
virus(WR strain)

gp340 rabbits Neutralizing antibodies against gp340 could be detected (22).

1986 Subunit vaccine gp340 produced by
immunoaffinity chromatography
from B95-8.

cottontop
tamarins

No protection against malignant lymphoma (23)

1988 Subunit vaccine gp350/gp220 produced by
immunoaffinity chromatography
from yeast and mammalian cells

—— All of the mammalian cell-derived versions of the membrane antigen were found
capable of inducing EBV-specific neutralizing antibodies as well as B95-8 (33).

1988 Subunit vaccine/
ISCOMS

gp340 incorporated into
immune-stimulating complexes
(ISCOMS)

cottontop
tamarins

Provided protection against malignant lymphoma (34)

1988 Recombinant vaccinia
virus (Wyeth or WR
strains)

gp340 cottontop
tamarins

Only WR strain derived vaccine could offer protection against malignant lymphoma
(24)

1992 Recombinant subunit
vaccine/
threonylmuramyl
dipeptide adjuvant
formulation.

gp340, lack of membrane
anchor region, produced using
a bovine papillomavirus (BPV)
expression vector

cottontop
tamarins

3/4 immunized cottontop tamarins showed protection against malignant lymphoma,
1/4 immunized cottontop tamarins developed idiopathic colitis due to low immune
responses to gp340 (35).

1993 Replication-defective
recombinant
adenovirus vaccine

gp340/220 cottontop
tamarins

Provided protection against malignant lymphoma despite no detectable neutralizing
antibodies in vitro (25).

1994 Subunit vaccine/alum gp340 Rabbits,
cottontop
tamarins

3/5 immunized cottontop tamarins showed protection against malignant lymphoma
(36).

1996 Recombinant vaccinia
virus

gp340 common
marmosets
challenged
with M81

Vaccinated group showed lower virus load compared to control group (26).

1999 Recombinant subunit
vaccine/ alum VS
Freund’s adjuvant

Single chain gp350 rabbits Elicited high neutralizing antibody titers; three immunizations with MSTOP gp350
elicited neutralizing titers of 3800±5400 in alum and 1,600 ± 3,400 in Freund's
adjuvant (27).

2001 Peptide epitopes HLA A2-restricted epitopes
from the latent, lytic and
structural proteins

Humanized
HLA A2/Kb
mice

A maximal response to the epitopes within the structural proteins and low to
moderate responses to the latent epitopes, indicating hierarchy of CTL responses
between mice and humans (37).

2003 Recombinant poxvirus
vaccine

Polyepitope protein comprising
6 HLA A2–restricted epitopes
derived from LMP1

Humanized
HLA A2/Kb
mice

Successfully reversed the out- growth of LMP1-expressing tumors in HLA A2/Kb
mice (38).

2009 Epitope/HSP70 and
incomplete Freund's
adjuvant

Mycobacterial HSP70 and
LMP2A (356-364) epitope
fusion protein

Humanized
HLA-A2.1
mice

Specific CTL more effectively than a single peptide plus incomplete Freund's
adjuvant; melanoma tumor cells was suppressed in humanized HLA-A2.1 mice (39).

2009 Recombinant adeno-
associated virus/HSP

Latent membrane proteins
(LMP1 and LMP2) CTL epitope

BALB/c (H-
2d) mice

Specific CTL responses; eliminated tumors in mice (40).

2011 Epitope/ HSP70 Reconstituted complexes of
MtHsp70 and LMP2A-peptides

HLA-A2.1
transgenic
mice

Specific CTL responses; protective activity and therapeutic efficacy against LMP2A-
expressed tumor challenge (41).

2011 EBV-derived VLP EBV-derived VLP, deleted or
function- ally inactivated six viral
genes (EBNA2, LMP1,
EBNA3A, -B, and -C, BZLF1)

BALB/c mice Strong CD8+ and CD4+ T cell responses in a preclinical murine model (42).

2011 Combined
immunization of DNA,
AAV, and adenovirus
vector vaccines

LMP2 BALB/c mice Combined immunization with DNA, AAV, and adenovirus vector vaccines induced
specific cellular immunity better than any other combinations (43).

2013 Multimeric subunit
vaccine/tetanus toxoid

gp350 (1-470) BALB/c mice Tetrameric gp350 induced ∼20-fold higher serum titers of specific IgG and >19-fold
enhancements in neutralizing titers at the highest dose;tetanus toxoid (TT)-specific
CD4+ T-cell epitopes into the tetrameric gp350: no effect on specific antibody
responses (44).

(Continued)
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s in Immunology | www.
frontiersin.org
 June 2021 | Volume 12 | Article 6770274

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sun et al. Vaccine Development
gB
EBV gB is the fusion protein on the viral surface mediating
viral–host membrane fusion and recognizing NRP1 on epithelial
cells. Most prophylactic antiviral vaccines target the viral fusion
protein, such as influenza HA (66–68), HIV env (69, 70),
Ebola virus GP (71, 72), and coronavirus spike protein (73,
Frontiers in Immunology | www.frontiersin.org 5
74), as the fusion proteins in these viruses not only drive
membrane fusion but also recognize host membrane factors to
initiate attachment and trigger the fusion process. Thus, in these
viruses the functional domain of the fusion protein is considered
an ideal vulnerable site for neutralization. Hence, the similarity
between EBV gB and other comprehensively studied viral fusion
TABLE 1 | Continued

Year Platform/ Adjuvant Antigen Animals Results

2013 Replication-defective
chimpanzee-derived
adenovirus vectors

Rhesus Lymphocryptovirus
EBNA-1 Homologue, rhEBNA-1

rhesus
macaques

EBNA-1-specific T cells could be expanded by vaccination (45).

2013 Recombinant subunit
vaccine

Truncated EBNA1 (E1DGA,
codons 390–641), produced
from methylotrophic yeast P.
pastoris

BALB/c mice Elicited CD4+ and CD8+ T cell responses (46)

2015 Newcastle disease
virus (NDV)-virus-like
particle

EBV gp350/220 ectodomain BALB/c mice Elicited neutralizing antibody responses, but not better than soluble gp350/220 (47).

2015 Dendritic cells pulsed
with recombinant
BZLF1

BZLF1 hu-PBL-
SCID mice

Elicited specific cellular immunity; improved survival from fatal EBV-LPD (48).

2015 Self-assembling
nanoparticles

gp350 D123-ferritin; gp350
D123- encapsulin

BALB/c
mice;
Cynomolgus
Macaques

gp350-nanoparticle elicited 10- to 100-fold higher neutralization titer compared to
soluble gp350 (49).

2015 Recombinant subunit
vaccine/ TiterMax
(CytRx)

native or denatured/alkylated
gp350 produced from CHO

Rabbits Denatured gp350 could induce binding antibodies but no neutralizing antibodies (28).

2015 Designed peptides,
coupled with keyhole
limpet hemocyanin
(KLH), Sigma adjuvant
system

Designed gp350 peptides to
mimic gp350 amino terminus
that interacts with 72A1

BALB/c mice The gp350 mimetic peptide bound to 72A1 antibody can block gp350 recognition
(50).

2016 Multimeric subunit
vaccine

trimeric gH/gL; trimeric gB;
tetrameric gp350

rabbits Trimeric and monomeric gH/gL, trimeric gB, and tetrameric gp350 groups induced
serum EBV-neutralizing titers >100-, 20-, 18-, and 4-fold higher, respectively, than
monomeric gp350 (51).

2016 Multi-epitope vaccine Chimeric multi-epitope protein
referred to as EBV-LMP2m,
which is composed of
LMP2aa195-232 and
LMP2aa419-436

BALB/c mice Elicited specific antibody and CTL responses (52)

2018 Subunit vaccine Fc-fused gp350 dimer BALB/c mice Elicited higher specific antibody titers than gp350 monomer; elicited potent nAbs (53).
2018 EBV-derived VLP Viral particle expressed both

with lytic and latent proteins by
insertion of latent protein
epitopes into the major
tegument protein BNRF1

Humanized
NSG-A2
mice

Provide significant protection against wild-type EBV infection (54)

2019 Self-assembling
nanoparticles/ SAS
adjuvant

gH/gL-ferritin; gH/gL/gp42-
ferritin

BALB/c
mice;
Cynomolgus
macaques

Monkey immunized with gH/gL/gp42-ferritin nanoparticles elicited >40- and ~4-fold
higher neutralization titers in B cells in comparison with soluble gH/gL and soluble
gH/gL/gp42; in epithelial cells, gH/gL-ferritin and gH/ gL/gp42-ferritin nanoparticles
showed >25- and ~4-fold higher neutralizing titers than the corresponding soluble
glycoprotein vaccines (55).

2020 Newcastle disease
virus (NDV)-virus-like
particle/ aluminum
hydroxide and
monophosphoryl lipid
A

gp350, gB, gp42, gH, and gL
pentavalent complex

rabbits Elicited specific neutralizing antibodies more robust than soluble gp350 ectodomain
(56).

2020 Epitope VLP Combinations of three gp350
epitopes from receptor-binding
domain (aa 16–29/ aa 142–
161/ aa 282-301)

BALB/c mice elicited neutralizing antibodies (57)
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proteins indicates that gB could be a promising target for
vaccine development. In addition to the AMMO1 antibody
targeting EBV gHgL, anti-EBV gB AMMO2/3/4/5 discovered
by Snijder et al. also demonstrated a strong neutralization
Frontiers in Immunology | www.frontiersin.org 6
activity against epithelial cell infection (63), supporting the use
of gB as a prophylactic vaccine candidate. In addition, the
previously mentioned research studying the efficacy of
immunization with trimeric gH/gL in rabbits also explored gB,
TABLE 2 | Summary of EBV vaccine clinical trials.

Trial ID Published
Year

Phase Platform/
Adjuvant

Antigen Subjects Observation index Results

—— 1995 —— Recombinant
vaccinia virus

Major EBV
membrane
antigen
BNLF-1 MA
(gp 220–340)

EBV-positive and
vaccinia-virus-
exposed adults;
EBV-positive, non-
vaccinia-virus-
exposed juveniles;
and EBV and
vaccinia virus-naive
infants

EBV infection status
for EBV negative
infants

EBV-neutralizing titers increased in the
vaccinated juveniles compared to adults; 9/9
vaccinated infants had specific neutralizing
antibody response and only three of them
vaccinated infants infected EBV while 10/10
unvaccinated infants got infected (29).

—— 2002 I Epstein–Barr Virus
(EBV) Peptide-
pulsed Dendritic
Cells

LMP2 Patients with
advanced NPC

Clinical responses in
1-year follow-up:
PR, partial
response; PD,
progressive disease

9/16 patients had epitope-specific CTL
responses; 2/16 patients had lesions shrunk
(58).

—— 2007 I Subunit vaccine/
AS04

gp350 Healthy adults (EBV
+ and EBV− both
included)

Incidence of
infectious
mononucleosis

Seroconversion rates were 100%; adjuvanted
gp350 vaccine is better than non-adjuvanted
in terms of GMTs for anti-gp350 ELISA
responses (20).

—— 2007 I/II Subunit vaccine/
AS04

gp350 EBV-seronegative
subjects

Incidence of
infectious
mononucleosis

NCT00430534 2007 II Subunit vaccine/
AS04

gp350 EBV-seronegative
healthy Young
Adults

Incidence of
infectious
mononucleosis

78.0% efficacy in preventing IM, no efficacy in
preventing asymptomatic EBV infection;
98.7% showed seroconversion to anti-gp350
antibodies, remained anti-gp350 antibody
positive for >18 months (30).

—— 2008 I CD8+ T-Cell
peptide epitope-
Based vaccine/
fusion with tetanus
toxoid formulated
in a water-in-oil
adjuvant,
Montanide ISA
720

HLA B*0801-
restricted
peptide
epitope
FLRGRAYGL
from EBNA3
and tetanus
toxoid

Healthy EBV-
seronegative 18- to
50-year-old
individuals

Incidence of
infectious
mononucleosis

epitope-specific responses were detected in
8/9 peptide-vaccine recipients and 0/4
placebo vaccine recipients; 1/2 placebo
vaccinees who acquired EBV developed
infectious mononucleosis, whereas 4/4
vaccinees who acquired EBV after completing
peptide vaccination seroconverted
asymptomatically (59).

—— 2009 I Subunit vaccine
/alhydrogel

gp350 Children with chronic
kidney disease
awaiting
transplantation

Incidence of
lymphoproliferative
disease after
transplantation

Neutralizing antibodies were detected in four
recipients (1/4 in the 12.5 ug and 3/9 in the
25 ug cohort) (31).

—— 2012 II Adenovirus-
△LMP1-LMP2
transduced
dendritic cell

a truncated
LMP1
(△LMP1,
inactive form)
and full-
length LMP2

EBV-positive
metastatic NPC
(World Health
Organization type II/
III)

Clinical responses in
14-weeks follow-up:
complete response
(CR), partial
response (PR) and
stable disease (SD)
—of longer than 14
weeks

DCs activated LMP1/2-specific T cells in vitro,
no such increase in the frequency of
peripheral LMP1/2-specific T cells was
detected. Three patients had clinical
responses including one with partial response
(for 7.5 months) and two with stable disease
(for 6.5 and 7.5 months) (60).

NCT01256853 2013 I Recombinant
modified vaccinia
Ankara

EBNA1/
LMP2 fusion
protein

NPC patients,
Clinically, all in
remission more than
12 weeks after
primary therapy

Frequency of
functional T-cell
responses; levels of
EBV genomes in
plasma (to reflect
tumor burden).

T-cell responses to one or both vaccine
antigens were increased in 15 of 18 patients
(61).

NCT01147991 2014 I Recombinant
modified vaccinia
Ankara

EBNA1 and
LMP2

EBV-Positive NPC —— T-cell response rates: 7/14 for EBNA1; 6/14
for LMP2 (62).
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which was also able to elicit higher neutralizing antibody titers
than gp350 (51).

With the development of protein structure analysis, the
fusion status of fusion proteins becomes increasingly important
for elucidating the fusion mechanism and understanding the
connection between conformational changes and the fusion
process. Pre-fusion status is often regarded as the natural
conformation on the viral membrane (75, 76) before
interacting with the host cell. The discovery of pre-fusion
status and artificial modification to freeze the fusion protein in
the pre-fusion conformation (77–79) greatly promoted vaccine
development in recent years. During the SARS-CoV-2 pandemic,
the pre-fusion-stabilized spike protein variant S-2P (80, 81)
provided an ideal antigen for the design of broad-use COVID-
19 vaccines. Similarly, pre-fusion-stabilized HIV env BG505-
SOSIP (69) and RSV F DS-CAV1 (77, 79) also provided an
impulse for vaccine development, since they could elicit much
higher neutralizing antibody titers than the post-fusion
conformation. Therefore, there is increasing focus on the
conformation of EBV gB. However, the currently available
crystal structure of gB shows a post-fusion conformation at
pH8.0 (82), and there is still no high-resolution structure of
any pre-fusion gB from the herpesvirus family. Although recent
cryo-electron imaging studies of gB displayed on vesicles (83),
pseudo-virus membranes or virions (84) were highly suggestive
of a potential pre-fusion conformation of gB from other
herpesviruses; more evidence and structural studies are
required to define the pre-fusion form of gB from EBV,
which would greatly promote the use of this antigen as a
vaccine candidate.

Latent and Lytic Phase Proteins
After primary infection, EBV undergoes a short period of
replication in the oropharynx, after which further infection of
B cells ensues, during which glycoproteins encoded by the EBV
genome become eclipsed by certain lytic and latent genes, which
drive the B cell transformation and latency as summarized by a
review (85). Therefore, neutralizing antibodies against
glycoproteins cannot induce the clearance of latently infected
cells which do not express the target, while T cell-mediated
immunity would be critical for controlling EBV infection during
pre-latency and latency. With a deeper understanding of the role
of T cell immunity in the control of EBV infection and extensive
mapping of immuno-focused T cell epitopes of EBV antigens
(86–97), the application of latent or lytic phase proteins as
vaccine antigens has become a topic of continuing study.
Elliott et al. used the EBNA3 HLA-B8 T cell epitope
FLRGRAYGL, adjuvanted with tetanus toxoid and Montanide
ISA 720, as a vaccine in a phase I trial among EBV sero-negative
adults (59). The results showed that despite good vaccine
tolerance and reduced incidence of infectious mononucleosis,
the vaccination did not protect the subjects from EBV infection.
Other CTL epitopes based on LMP1 and LMP2A showed great
potential in tumor treatment in preclinical studies (38–41, 52),
but none displayed a clear viability as effective antigens to
prevent primary infection. Thus, for prophylactic vaccine
Frontiers in Immunology | www.frontiersin.org 7
development, latent or lytic phase proteins could be used as
auxiliary boosters for inducing adequate T cell responses, while
the major glycoprotein antigens still play the key role in the
prevention of primary infection.

Hence, during EBV vaccine development, rational and careful
antigen selection is necessary to ensure both robust and
comprehensive immunity against EBV infection. There is still a
lot of space for extensive study on immunization efficacy of
single glycoproteins, especially gH/gL or gB. Additionally,
combinatorial use of multiple antigens as vaccine candidates,
including glycoprotein sets or glycoprotein-latency protein
combinations, deserves further study for eliciting both
sufficient neutralizing antibody titers and T cell responses.
VACCINE DELIVERY PLATFORMS
AND FORMULATIONS

Delivery Platform for Vaccine Design
The outbreak of the COVID-19 pandemic has brought
significant challenges for global vaccine development,
prompting a continuous stream of innovative designs of
candidate vaccines against SARS-CoV-2, and thus giving great
impetus to next-generation vaccine development. The rapid
application of the first clinically used mRNA vaccine developed
by Moderna and BioNTech (98, 99) achieved great success in
combating SARS-CoV-2 and demonstrated that innovation of
new vaccine designs could accelerate the procedures of vaccine
development, provide more flexible platforms for antigen
delivery, and improve immunization efficacy. Nevertheless,
traditional platforms for vaccine development, such as
weakened or inactivated virus (100–102), still account for the
majority of currently available vaccines and have demonstrated
their value during the COVID-19 pandemic due to their
outstanding stability, immunogenicity, and convenience in
distribution. Therefore, a wider array of adequate platforms for
vaccine design is also critical for EBV vaccine development
(Figure 2B).

Virus-Based Vaccines
Because EBV tends to establish a latent infection of host cells, a
general approach to induce EBV replication and cell lysis
requires complicated procedures and results in a low yield of
live virus. Consequently, the development of attenuated virus or
inactivated virus vaccines based on authentic EBV is challenging
due to limited viral material. Thus, there are few reports on the
use of inactivated or attenuated EBV as vaccine candidates.
Alternatively, modification of EBV the genome for direct
production of defective virions without genomic DNA could
be a viable approach for EBV-derived vaccine development.
EBV-derived virus-like particles (VLPs) are based on different
EBV mutants with various deletions of sets of oncogenic genes or
DNA packaging genes (103), produced by inducing cell lines to
enter the lytic phase, followed by purification from cell
supernatants by centrifugation. Multiple studies developed
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several EBV VLPs (delta BFLF1/BFRF1, delta BBRF1, delta
BFLF2, delta TR terminal repeats) (42, 104–107) by deletion of
certain critical genes to obstruct virus replication and DNA
packaging. However, the possibility of repacking of EBV DNA
would bring safety concerns to such designs. In addition to
the construction of VLPs based on EBV itself, a Newcastle
disease virus-like particle (ND VLP) platform was also used for
the presentation of EBV antigens such as gp350/gp220,
combinations of gHgL-EBNA1 or gB/LMP2, and even
pentavalent gp350/gH/gL/gp42/gB (47, 56). It may be easier to
produce VLPs by additional co-transfection of NDV-F for
particle assembly, benefiting the rapid development of safe
VLP vaccines.

Another approach for the development of virus-based vaccines
is using viral vectors as carriers to deliver targeted antigens by
generating recombinant vaccinia virus. After inserting specific
sequences encoding EBV antigens into the genome of vaccinia
virus, the recombinant virus can infect host cells and drive the
expression of exogenous antigen in the cells, leading to antigen
processing and presentation via the classic MHC-I pathway and
activation of antigen-specific cytotoxic CD8+ T cells (108, 109). In
addition, through maintaining the certain degree of replication
function, attenuated self-replicated vaccinia virus could stimulate
an even higher immune response than replication-defective virus.
The vaccina virus also acted as a self-adjuvant by expressing a
broad range of pathogen-associated molecular patterns (PAMPs),
increasing the whole immunogenicity of vaccine. Currently,
modified vaccinia virus Ankara (MVA) (61, 62, 110, 111),
adenovirus (ADV) (60, 112, 113) and Varicella-zoster virus
(VZV) (114) have been used as a vector to generate an EBV
antigen-carrying recombinant live virus vaccine. However, this
technology was more commonly used for developing therapeutic
vaccines for the treatment of EBV-associated tumors due to the
favorable stimulation of cellular immunity, while few trials
investigated its use in prophylactic vaccines since the first
human test using gp350 as antigen and smallpox-based vaccinia
virus as viral vector (29) due to the uncertain safety and reported
adverse events of this platform (115).

Protein-Based Vaccines
With the rapid development and great progress in structure-
guided protein modification and design (116–122), recombinant
proteins have gradually become an effective approach for
accurate antigen immunization. As gp350 was firstly applied as
antigen for EBV vaccine design, gp350 modification to promote
immunization efficacy was also a focus during the early
exploration of protein-based vaccines against EBV. In the late
20th century, soluble gp350 protein was successfully expressed as
a vaccine antigen (33). Subsequent attempts to enhance the
immunogenicity and improve the immunization efficacy aimed
to increase the valency or target the protein to antigen presenting
cells (APCs) using a variety of methods such as multimerization,
nanoparticle assembly and fusion-protein design. For
multivalency, tetrameric gp350 was designed by fusing two
separate gp350 (1–470) to a C-terminal leucine-zipper with or
without T cell epitopes, and the results showed that tetrameric
Frontiers in Immunology | www.frontiersin.org 8
gp350 could elicit higher neutralizing antibody titers than
monomeric gp350 (51). Additionally, by fusing gp350 to
ferritin or encapsulin, multivalent gp350 nanoparticles (49)
were generated and immunization of mice or monkeys showed
that nanoparticles elicited much higher neutralizing antibody
titers than soluble monomeric gp350. Further, virus challenge
experiments also demonstrated that gp350 nanoparticles provide
better protection against EBV infection and improve the survival
of challenged monkeys. In an effort to both increase the valency
and enable APC-targeting, gp350 was fused with the Fc domain
of mouse IgG2a (53, 123), rendering a dimeric antibody-like
antigen which could target FcgR on antigen-presenting cells to
prolong the retention time for recognition. In addition, the fused
protein simplified the purification and detection.

Comparatively few studies investigated using other
glycoproteins or latent phase proteins as antigens. Trimeric
gHgL constructed by fusing gHgL to a C-terminal trimeric T4
bacteriophage fibritin and native trimeric gB were also tested as
immunogens (51), and the results showed that trimeric gHgL
could elicit higher neutralizing antibody titers than monomeric
gHgL. Recently, analogous methodology was adopted to design
gHgL or gHgL/gp42 nanoparticles by fusing the antigen to the
24-mer ferritin, whereby the neutralizing antibody titers of the
nanoparticle-immunized groups were significantly higher than
in the monomer groups as previously mentioned.

Instead of using the full length or a major segment of the
protein, some studies attempted to use specific epitopes as
antigens to induce site-specific immune responses and thereby
achieve accurate immunization. Jerome et al. designed two 72A1-
gp350 blocking peptides that mimic the interacting region of
gp350 (50), which demonstrated that the neutralization epitope
of the glycoprotein could be an ideal vaccine antigen. Afterwards,
Zhang et al. inserted different tandem gp350 epitopes into
HBC149 to construct a gp350 epitope-displaying VLP (57),
and the neutralizing antibody titers of some gp350 epitope-
VLP groups were even higher than that of gp350ECD123, a
shortened version of the gp350 ectodomain, which compares
favorably to the anti-gp350 nAb 72A1.

Nucleic-Acid Vaccines
The rapid and successful application of nucleic-acid SARS-CoV-
2 vaccines demonstrated their great potential in viral vaccine
development. This method, based on synthetic nucleic acids,
enables large-scale manufacturing with almost perfect
uniformity. Despite such advantages, the use of synthetic
nucleic acids for EBV vaccine development is still in the early
exploration phase. Krzysztof et al. developed DNA vaccines
based on three EBV latency genes (EBNA1, LMP1 and
LMP2A) (124) and found that the vaccine based on EBNA1
and LMP2A could elicit robust T cell immunity. Although
mRNA vaccines are highly potent and can be rapidly
manufactured, the development of an mRNA vaccine for EBV
still awaits the first step. As expected, Moderna has announced its
great ambitions in EBV mRNA vaccine development, with the
candidate mRNA-1189 encoding all the major glycoproteins
(gp350, gB, gH/gL, gp42).
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Adjuvants for Vaccine Formulation
Adjuvants incorporated in components of the antigen for vaccine
formulation can modulate the immune response. In addition to
the original immunogenic profile of the selected antigen, a
carefully selected adjuvant can broaden the use or enhance the
efficacy for immunization. For vaccine platforms such as
inactivated virus or protein-based subunit vaccines/VLPs, the
loss of bioactivity greatly diminishes the immunogenicity of the
antigen itself, which further requires powerful adjuvants for pre-
stimulation of immune recognition, prolongation of antigen
retention, as well as both humoral and cellular immunity
enhancement (125–129).

The development of gp350-based vaccines inspired the
exploration of adequate adjuvants for EBV vaccines. In the late
20th century, adjuvants such as Freund’s adjuvant, lipid A,
immune-stimulating complexes (ISCOMS), and aluminum
hydroxide (32, 34–36, 130) were used in the formulation of
gp350 vaccines. Some may show superior immunization efficacy
compared to unadjuvanted gp350 as immunogen, since an
immunization trial of unadjuvanted gp350 subunit vaccine on
cotton-top tamarins gave unsatisfactory results, with no
protection against incidence of malignant lymphoma in spite
of eliciting antibodies against gp350. With the use of more
complicated adjuvant systems in recent years, a higher
immunization efficacy achieved in preclinical studies supports
the case for further clinical trials. However, due to the paucity of
studies on other protein-based immunogens as vaccines against
EBV, only a limited number of adjuvants were tested. For
example, the VZV gE-based vaccine (Shingrix) was the first
clinically approved herpesvirus vaccine providing protection
against herpes zoster in older adults and immunosuppressed
patients, while containing only VZV glycoprotein gE adjuvanted
with AS01b (131). Although VZV gE was not used as a
prophylactic vaccine antigen to prevent VZV infection, an
appropriate combination with the adjuvant made gE into an
ideal antigen (132), with benefits for controlling latent VZV
infection. This result was based on a systematic screening of
appropriate adjuvant systems (133). This study also offers
insights for EBV vaccine development, confirming that smart
selection of adjuvants can also contribute to the development of a
powerful vaccine against EBV by enhancing both initial
protection from primary infection and secondary protection
from reactivation or expansion of latent infection.

Therefore, an appropriate platform and adjuvant systems
also determine the immunization efficacy of the vaccine, and
not just the antigen. The COVID-19 pandemic exemplifies the
effective and rapid development of vaccines against broadly
distributed infectious pathogens. Both mature, extensively
tested technologies like inactivated virus (100) and emerging
technologies like mRNA vaccines (98, 99) gave satisfactory
results, demonstrating the unlimited opportunities of the
available vaccine design platforms and encouraging further
comparative studies on the use of a variety of platforms for
EBV vaccine development. For virus-based vaccines,
breakthroughs in the mass production of live EBV could be a
solution for inactivated vaccine development, since the latency-
Frontiers in Immunology | www.frontiersin.org 9
preference and complicated induction procedures seriously
hinder its manufacture. For the emerging protein- or nucleic
acid-based vaccines, convenient modification of antigens to
strengthen their immunogenicity and viable co-valency of
multiple antigens to broaden the immune response spectrum
are promising future approaches for vaccine development. Since
the licensed VZV vaccine took the first step in clinical herpes
virus immunization, it has brought home the lesson that
appropriate adjuvants used in vaccine formulation can greatly
enhance the immunization efficacy. Additionally, the rising
application of specific toll-like receptor (TLR) agonists (134–
136) provides additional alternatives in the selection of adjuvants
to achieve specific immunization responses.
EVALUATION SYSTEMS FOR VACCINES

Animal Models
Animal models are necessary and critical for the evaluation of
infection or protection status against infectious disease
pathogens and developing therapeutic drugs or vaccines.
During the evaluation of vaccines against most pathogens,
challenge experiments in animal models are considered the
gold standard for the final assessment of vaccine efficacy (137–
141). However, due to the restricted host tropism of EBV, a
human herpesvirus, there is a limited range of susceptible
candidate animal models (142–144) (Figure 3).

Non-Human Primates
The great similarity between humans and non-human primates
(NHPs) encouraged the use of NHPs as challenge models for
EBV vaccine evaluation (145). The fact that New- and Old-
World NHPs are naturally infected by EBV-related herpesviruses
or lymphocryptoviruses (LCVs) further demonstrated the
potential value of NHP in EBV vaccine evaluation.

In the late 20th century, the discoverer of EBV, Epstein et al. as
well as Emini et al. used cotton-top tamarins and common
marmosets (Callithrix jacchus) for gp350-based vaccine
evaluation of both neutralizing antibody titers and challenge
protection (146, 147). However, cotton-top tamarins are no
longer a viable NHP model because of their critically
endangered status, and the common marmoset is also listed on
the IUCN Red List, which basically rules out these two NHPs
from general use in EBV vaccine evaluation (148).

By contrast, rhesus macaque, as one of the Old World NHPs,
has enjoyed broad use as an animal model for a variety of human
viral infections, mostly due to its relatively larger population and
successful artificial breeding. Although it is susceptible to its
species-specific LCV (rhLCV), which shares a high level of
genomic sequence similarity with EBV (149), EBV cannot
stably infect and immortalize the B cells of rhesus macaques
(150), which restricts the use of this animal model in challenge
experiments. Therefore, the majority of EBV immunization
studies used rhesus macaques as the animal model for
evaluation of specific T cell responses (45, 151–153). And thus,
instead of using EBV as challenge virus, rhLCV could be used as
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an equivalent virus for determining the immune protection from
EBV infection. Singh et al. evaluated the protection efficacy of the
anti-EBV gHgL neutralizing antibody AMMO1 via rhLCV
challenge in rhesus macaques, and the protected animals
showed higher plasma EBV neutralizing activity.

Other Mammalian Models
As themost widely used animalmodel, mice play an important role
in EBV vaccine evaluation. Most prophylactic EBV vaccine studies
used mouse immunization to primarily assess the serum antibody
titer and neutralizing antibody titer (43, 44, 46). However, because
mice cannot be naturally infected with EBV, humanized mice
are used as an alternative animal model for EBV challenge
experiments (37, 48, 54). These chimeric animals are constructed
by transferring human CD34-positive hemopoietic stem cells into
immunocompromised mice (154, 155). This model is appropriate
for evaluating the efficacy of therapeutic treatment for immediate
EBV challenge, rather than the eliciting of an adaptive immune
response by a prophylactic EBV vaccine, since the mice have an
incomplete immune system even after reconstitution and lack
human epithelial cells. A humanized mouse model was also used
to evaluate the protective efficacy of AMMO1 (63), and the results
showed that the AMMO1 antibody could inhibit EBV infection.
Frontiers in Immunology | www.frontiersin.org 10
Some studies also used rabbits as animal models for EBV
vaccine evaluation (22, 27, 28, 51, 56, 155, 156). The anti-EBV
VCA titer and EBV DNA level could be detected in the blood of
most rabbits after intravenous, intranasal, or peroral inoculation.
However, only a portion of rabbits showed positive EBERs,
LMP1, or EBNA in splenectomized samples, and even fewer
rabbits displayed sustained EBV positivity, accompanied by a
heterogenous host reaction (157, 158). The uncertainty of the
infection status hindered the use of rabbits as a challenge model,
and most research studies only used rabbits as an immunization
model for serum response evaluation (159).

Recently, it was found that the Chinese tree shrew (Tupaia
belangeri subsp. chinensis) could also be a viable animal model
for EBV vaccine evaluation. Following intravenous injection of
virus, 8/10 tree shrews displayed symptoms of EBV infection
including detectable expression of EBV-related genes and
increase of anti-EBV antibodies. Despite positive results in
early challenge, only a small portion of tree shrews showed
EBER, LMP, and EBNA2-positive cells in spleen or mesenteric
lymph node samples. The negative staining for EBV markers in
the lungs and nasopharynx also indicated that epithelial cell
infection might also be absent in the tree shrew animal model
(160, 161).
FIGURE 3 | Animal models for EBV vaccine evaluation. Non-human primates are marked in light blue and other animal models are marked in light green.
LCV, lymphocryptovirus.
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Assessment of Immune
Protection Efficacy
After confirming the design of a vaccine and immunization
methods, assessment of immune protection efficacy would be
critical for vaccine evaluation (162). For prophylactic vaccines
against infectious pathogens, the key index revealing the efficacy
of immunization protection is the neutralizing antibody (nAb)
titer (163, 164), since neutralizing antibodies can efficiently block
the virus from interacting with the host receptor, preventing viral
attachment and membrane fusion. Therefore, a higher anti-EBV
neutralizing antibody titer indicates better protection against
EBV infection and could theoretically also reduce the incidence
of EBV-associated malignancies. Although the presence of
neutralizing antibodies is theoretically sufficient evidence for
protection against viral infection, the value of this index in
predicting the incidence of malignancies remained unclear
(165, 166). A large cohort study conducted in Taiwan (167)
indicated that EBV B cell neutralization capability of the serum
or the anti-gp350 antibody titer was associated with lower risk of
nasopharyngeal carcinoma. However, Zhu et al. recently
performed a prospective cohort study on EBV glycoprotein-
targeting neutralizing antibody titers in plasma samples from
nasopharyngeal carcinoma (NPC) patients and healthy controls,
which revealed that there was no significant difference in
neutralizing antibody titers against EBV glycoproteins,
including gp350, gHgL, gp42, and gB (168).

During the evaluation of immune reaction against EBV,
the T cell response is also considered critical part, especially
for eliminating latent infection and adaptive immune responses
against EBV-associated tumors (58, 60–62, 169, 170). A review
concluded that T cell responses participate in the control of
EBV in all phases of infection (171, 172). However, the
majority of vaccine studies evaluating the T cell response were
based on latent-phase proteins such as LMP and EBNA, while
studies on T cell responses induced by EBV glycoproteins or
T cell epitope mapping for glycoproteins were relatively rare.
Thus, further studies on the T cell response elicited by EBV
glycoproteins for controlling both primary infection and
regulating immunological surveillance against EBV-associated
malignant diseases could provide guidance for improving
the evaluation systems for the assessment of prophylactic
vaccine efficacy.
CONCLUSION AND PROSPECTS

In recent years, prophylactic vaccines against EBV received
significant attention, since the latest achievements in fundamental
virology, vaccine technology and synthetic biology have brought
new opportunities for vaccine development.

Early research studies on gp350 as a vaccine candidate
revealed intrinsic shortage of gp350 in eliciting sufficient
humoral immunity against primary infection. But still these
studies become the forerunner for exploration of EBV
glycoproteins as vaccine candidates. Recent progress in the
Frontiers in Immunology | www.frontiersin.org 11
discovery of epithelial cell receptors and elucidation of the
infection mechanism of EBV highlights the critical function of
gH/gL and gB during virus–host interaction and membrane
fusion, indicating that they could be ideal major vaccine target
for eliciting robust neutralizing antibody. Besides glycoproteins,
although immunization with lytic and latent phase proteins is
not able to provide protection against primary infection, the
strong T cell immune response elicited by these proteins
benefits the establishment of lasting immune surveillance of
EBV latent infection and reinforcement of anti-EBV immunity
after primary humoral defense. Additionally, an appropriate
vaccine platform can improve the immunogenicity of certain
antigens and enhance immune recognition. The adoption of
protein modification via multimerization or fusion with
immune cell-targeting domains may provide more possibilities
for protein-based vaccines, while the application of synthetic
nucleic acids as delivery systems could be the next milestone
in the evolution of general vaccine design for not only EBV but
all pathogens. Beyond vaccine design, a finer system for
the evaluation of vaccine efficacy is also crucial for the
development of a successful vaccine. A suitable animal model
for EBV challenge is required. Further studies on the EBV-
susceptibility of non-NHP models or viable NHP models
would be as important as the innovation in EBV vaccine
design. And it remains unclear whether T cell responses
should be listed in the assessment system for determining the
protection efficacy of EBV prophylactic vaccines, urging
more intensive research on the connection between elicited
cellular immunity and protection from both primary infection
and malignancies.

Prospectively, with the advancement in understanding of
immunity against EBV infection, more vaccine targets would
be discovered, and using combinatorial antigens as vaccine
candidate may display even promising immunization efficacy.
The emerging vaccine platforms such as nanoparticle or mRNA
may enjoy a broader application in development of EBV
vaccines. And further studies on searching better animal
models and evaluation indicators for assessment of EBV
vaccine are required to assist the validation of protection
efficacy after immunization.
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