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Abstract

Objective

Traditionally, gait analysis has been centered on the idea of average behavior and normality.

On one hand, clinical diagnoses and therapeutic interventions typically assume that average

gait patterns remain constant over time. On the other hand, it is well known that all our move-

ments are accompanied by a certain amount of variability, which does not allow us to make

two identical steps. The purpose of this study was to examine changes in the intra-individual

gait patterns across different time-scales (i.e., tens-of-mins, tens-of-hours).

Methods

Nine healthy subjects performed 15 gait trials at a self-selected speed on 6 sessions within

one day (duration between two subsequent sessions from 10 to 90 mins). For each trial,

time-continuous ground reaction forces and lower body joint angles were measured. A

supervised learning model using a kernel-based discriminant regression was applied for

classifying sessions within individual gait patterns.

Results and discussion

Discernable characteristics of intra-individual gait patterns could be distinguished between

repeated sessions by classification rates of 67.8 ± 8.8% and 86.3 ± 7.9% for the six-session-

classification of ground reaction forces and lower body joint angles, respectively. Further-

more, the one-on-one-classification showed that increasing classification rates go along

with increasing time durations between two sessions and indicate that changes of gait pat-

terns appear at different time-scales.

Conclusion

Discernable characteristics between repeated sessions indicate continuous intrinsic

changes in intra-individual gait patterns and suggest a predominant role of deterministic
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processes in human motor control and learning. Natural changes of gait patterns without

any externally induced injury or intervention may reflect continuous adaptations of the motor

system over several time-scales. Accordingly, the modelling of walking by means of average

gait patterns that are assumed to be near constant over time needs to be reconsidered in

the context of these findings, especially towards more individualized and situational diagno-

ses and therapy.

Introduction

The ability to walk is a key component of human mobility that is highly related to quality

of life. Its assessment enables insight into the system’s behavior, the capacity to identify the

severity or nature of a locomotor disease or injury, and to determine the effect of a treatment.

Clinical diagnosis and therapeutic interventions are typically oriented on the idea of average

behavior and normality. Accordingly, gait patterns are most often modeled using average

values of time-discrete variables (e.g. maximum impact force) or average waveforms of time-

continuous patterns (e.g. time courses of knee joint angle) from a sample of strides. In conse-

quence, these averaged values are mostly taken as a characteristic representative of a gait stride

from an individual or a group. Experimental protocols recording a high number of strides are

recommended in order to reduce deviations and provide reliable data that are assumed to be

stable over time [1–3].

On a rather coarse view, gait patterns from healthy individuals seem to remain relatively

constant over time, even during unconstrained walking. However, a more detailed observation

reveals persistent deviations among subsequent executions of a movement task and shows the

unlikely possibility of generating identical movement patterns on recurrent efforts of perform-

ing the same motor task, even under constant environmental conditions [4–6]. These devia-

tions were traditionally neglected and considered as a maladaptive noise in the system [7] or

experimental errors [8–10] that, therefore, need to be minimized during the analysis and treat-

ment of movement. However, understanding the nature of the variability of movement pat-

terns in general has become a major research topic in human movement science [6,11,12].

Movement variability has been identified as an inherent feature of human motor control

and learning that occurs naturally throughout multiple levels of movement organization and

contributes to deviations in the output of the motor system [5,6,13–17]. Moreover, gait vari-

ability is described as a necessary prerequisite in order to ensure an adaptable and flexible loco-

motion in unpredictable and changing environments [18–20]. Furthermore, gait variability

provides information about the maintenance of the health status [21] and can for example be

related to age [22–24], disease or injuries [21,25,26], and the risk of falling [27].

The application of concepts and tools from nonlinear dynamics, fractal analysis and chaos

theory identified more details about the nature of movement variability and contributed to

the understanding that variability is no more considered as equivalent to insignificant noise

[7,17,28,29,30]. Movement variability is rather understood to be driven by deterministic and

stochastic processes [17]. Accordingly, a normal and healthy gait is characterized by a certain

structure and magnitude of variability [18,20,21,31]. White gaussian random noise seems to

reflect only a background component in the structure of movement variability [17].

Hence, the modeling of gait patterns by means of averaging several trials that are assumed

to be near constant over time (or at least over the duration of a therapeutic intervention) and

treating their variability operationally as random deviation within distributional statistics
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needs to be questioned [17,19,28,32,33]. Whether this modeling is dependent on the usage of

time-discrete or time-continuous variables [34] or on the number of considered variables [35]

is still pending.

However, a complementary and promising approach towards individualized analysis of gait

patterns is provided by the application of more holistic methods in data analysis (e.g., pattern

recognition) [34,36]. In this context, the distinction of individual gait patterns [34] and the

identification of situational characteristics like emotions [37] or fatigue [38] within intra-indi-

vidual gait patterns provided further clarification for deterministic features in human move-

ments and thereby indicated advantages of an analysis and treatment of human gait based on

individual and situational needs [39,40]. Nevertheless, up to now, it is uncertain how complex

deterministic and stochastic processes on multiple levels of movement organization and time-

scales affect biomechanical analysis of the individual’s average gait stride patterns or rather the

clinical decision-making based on it.

That is, the interaction/influence of natural temporal changes of gait patterns in different

time-scales on the evaluation of treatment effect in studies with pre-post design or the moni-

toring of the rehabilitation process. Although deterministic properties have been shown by

means of temporal dependencies in stride-to-stride fluctuations of gait patterns within a single

recording or measurement session (intra-session variability) [19,41,42], there is a lack of research

of the time-dependent characteristics of gait patterns between repeated measurement sessions

(inter-session variability) [43]. In particular, the level of intrinsic persistence of gait patterns has

not been well detailed [43]. Previously, the identification of intra-individual changes of gait pat-

terns between days indicated that the intrinsic persistence of gait patterns is smaller than often

assumed in gait analysis [40]. Accordingly, we tested the hypothesis that gait patterns as well as

their persistence over time are predominantly determined by deterministic processes that lead to

time-dependent behavior in terms of natural temporal changes of gait patterns between repeated

measurement sessions within a day and different degrees of changes in different time-scales.

Therefore, the aim of this study was to examine intrinsic changes in time-continuous gait pat-

terns by: (1) quantifying intra-individual differences in gait patterns between repeated measure-

ment sessions within a day; and (2) quantifying intra-individual differences in gait patterns at

different time-scales (i.e., tens-of-mins, and tens-of-hours).

Methods

Subjects and ethics statement

Nine physically active subjects (three female, six male; 27.4 ± 3.0 years; 1.74 ± 0.11 m; 73.2 ± 13.3

kg) without gait pathology and free of lower extremity injuries participated in the study. The

study was carried out according to the Declaration of Helsinki and all subjects were informed

about the experimental protocol and provided their informed written consent. The approval from

the ethical committee of the medical association Rhineland-Palatinate in Mainz was received.

Experimental protocol and data acquisition

The subjects performed 15 gait trials in each of 6 test sessions (S1-S6), while they did not

undergo any intervention between the sessions. The time intervals of rest after the first, third

and fifth session to the beginning of the subsequent session were 10 mins. The interval

between session 2 and 3 and between session 4 and 5 were 30 and 90 mins, respectively.

For each trial lower body joint angles as well as ground reaction forces were measured,

while the subjects walked on a 10 m path. The subjects were instructed to walk barefoot at a

self-selected speed. Kinematic data were recorded using a lower body marker set consisting of

34 retro reflective markers placed on anatomical landmarks (Fig 1). The three-dimensional
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marker trajectories were captured by nine Oqus 310 infrared cameras (Qualisys AB, Sweden)

at a sampling frequency of 250 Hz.

The three-dimensional ground reaction forces were recorded by two Kistler force plates

(Type 9287CA) (Kistler, Switzerland) at a frequency of 1000 Hz. The recording was managed

time-synchronized by the Qualisys Track Manager 2.7 (Qualisys AB, Sweden). Two experienced

assessors attached the markers and conducted the analysis. Every subject was analyzed by the

same assessor only. The laboratory environment was kept constant during the investigation.

Before the first session, each subject performed 20 test trials to get accustomed to the exper-

imental setup and to assign a starting point for a walk over the force plates. Before each of the

following sessions 5 test trials were performed to consider an effect of practice and control the

starting point of the walk. This procedure is described to minimize the impact of targeting on

the force plates on the observed gait variables and their variability [44,45]. Additionally, the

participants were instructed to watch a neutral symbol (smiley) on the opposing wall of the

laboratory to direct their attention away from targeting on the force plates and ensure a natural

walk with an upright body position.

Data processing

The gait analysis was conducted for one gait stride per trial. The stride was defined from right

foot heel strike to left foot toe off and was determined using a vertical ground reaction force

Fig 1. Lower body marker set in (A) anterior (B) posterior (C) left lateral view. The markers were placed bilaterally at anterior superior iliac spine,

posterior superior iliac spine, femur lateral epicondyle, femur medial epicondyle, fibula apex of lateral malleolus, tibia apex of medial malleolus, posterior

surface of calcaneus, head of 1st metatarsus, head of 5th metatarsus and clusters with four markers each at the thigh and shank.

https://doi.org/10.1371/journal.pone.0179738.g001
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threshold of 10 N. The computation of the lower body joint angles was conducted by Visual3D

Standard v4.86.0 (C-Motion, USA) for hip, knee and ankle in sagittal, transversal and coronal

plane. The resulting joint angles were filtered by a second order Butterworth bidirectional low-

pass filter at a cut off frequency of 18 Hz. The ground reaction force data were normalized to

the body weight measured before every session to exclude the impact of changes in the body

mass during the investigation.

Further data processing and analysis was executed by a self-written script within the soft-

ware Scilab 5.4.1 (Scilab Enterprises, France). Each variable time course was normalized to 100

data points, z-transformed and scaled to a range of -1 to 1 [46]. The z-transformation was exe-

cuted for kinematic variables for each trial separately and for kinetic variables for all trials. The

scaling was carried out in order to prevent numerical difficulties during the calculation of the

support vector machines [46] and to ensure an equal contribution of all variables to the classi-

fication rates and thereby avoid that variables in greater numeric ranges dominate those in

smaller numeric ranges [46]. Scaling is a common procedure for data processing in advance

for the classification of gait data [e.g., 34].

Data analysis

The classification of gait patterns based on joined vectors of all variables, i.e. on input vectors

of 1 × 1800 (kinematic) and 1 x 600 (kinetic) per trial. In total, a matrix of size 90 x 1800 (90 =

6 session x 15 trials; 1800 = 100 time points x 2 legs x 3 joints x 3 directions) and 90 x 600

(90 = 6 session x 15 trials; 600 = 100 time points x 2 ground contacts x 3 directions) formed the

basis of the classification of one subject for kinematic and kinetic data, respectively. The classi-

fication was carried out by supervised learning models using a kernel-based discriminant

regression (KBDR) [47] and support vector machines (SVM) [48,49]. Both are supervised

learning models for the recognition of patterns and regularities in data. While SVM represent

an well-established model for the classification of gait patterns based on joined vectors of

time-continuous kinematic and kinetic data [38,40,50,51], KBDR is a recently developed clas-

sification approach that has never been applied for the analysis/classification of human move-

ments. While KBDR showed higher classification accuracies than SVM and other models [47],

especially on data sets with a small sample size but high dimensions, it seemed to be a promis-

ing model for the given classification problem. The ability to distinguish gait patterns of one

test session from gait patterns of other test sessions was investigated in a multiclass classifica-

tion (six-session-classification) and a binary classification for all combinations of two sessions

(one-on-one-classification). The multiclass classification used a “one-versus-all” algorithm.

The classification rates were conducted for each subject individually by a cross-validation

through the leave-one-out-method [52]. The kernel-based discriminant regression was used

with a proximal point algorithm and a polynomial kernel function. The degree of the polyno-

mial kernel exp = 0.1, 0.3, . . ., 3, and proper values for α = 10−7, 10−6, . . ., 10−3 and β = 0.01,

0.03, . . ., 10 have been selected using cross validation before training and testing. The L2-regu-

larized L2-loss support vector classification of the Liblinear Toolbox 1.4.1 [53] was used with a

linear kernel function. A grid search within the range of the cost parameter C = 2−5, 2−4.75, . . .,

215 has been conducted to determine C experimentally before training and testing.

Statistical analysis

The statistical analysis was conducted using SPSS 21 (IBM, Armonk, New York, USA). The

normal distribution of each variable was tested by the test of Shapiro-Wilk. For data that did

not significantly deviate from normal distribution, descriptive statistics were presented as

means and standard deviations; otherwise, the data were presented as medians and quartile
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1-quartile 3. In order to ensure similar walking conditions during the investigation, gait speed,

step length, step width and the time from right heel strike to left toe off have been assigned

and statistically tested for differences between the six sessions by a repeated measures ANOVA

and post-hoc paired t-tests. Compound symmetry, or sphericity, was verified by the test of

Mauchly. When the assumption of sphericity was violated, the degrees of freedom were

adjusted according to the Greenhouse-Geisser-correction. Likewise, the classification rates for

the one-on-one-classification were compared for differences depending on the time duration

between two sessions. Therefore, time durations between 2 sessions were grouped into 4 time

intervals (T1: 10 mins, T2: 30–50 mins, T3: 90–110 mins and T4: 130–150 mins). A Friedman

ANOVA and post-hoc Wilcoxon signed-rank tests were applied when values deviated signifi-

cantly from normal distribution. The significance levels were set at p = 0.05. In the post-hoc

analysis the significance level was adjusted according to the Bonferroni-correction. The effect

size eta-square (η2) for the repeated measures ANOVA and r effect size for the Wilcoxon

signed rank test were calculated and interpreted according to Cohen [54].

Results

All control variables remained on a similar level during the investigation (Table 1). The

repeated measures ANOVA did not show statistically significant differences between the six

measurement sessions and confirms comparable walking conditions.

The six-session-classification resulted in a mean classification rate of 67.8 ± 8.8% (KBDR)

and 61.0 ± 9.0% (SVM) for time-continuous ground reaction force curves and 86.3 ± 7.9%

(KBDR) and 82.3 ± 8.3% (SVM) for time-continuous joint angle curves. Consequently, the

kernel-based discriminant regression was able to classify a mean of 61 (ground reaction force)

and 78 (lower body joint angles) out of 90 intra-individual gait patterns correct to the corre-

sponding test sessions.

Fig 2 shows the time and amplitude normalized curves of every trial as well as the overall

mean curve and curves of enveloping two standard deviations from subject 8. Qualitatively,

the curves display different characteristics between the 6 sessions. It is noticeable that the

curves did not vary randomly about the global mean curve and rather reveal session specific

characteristics (e.g., at ~20% of the gait stride are trials from session 1 & 2 below and trials

from session 4, 5 & 6 above the mean curve).

The mean classification rates for the one-on-one-classification disclosed the lowest classifi-

cation rates for the time duration of ten mins between two test sessions (T1) (Table 2). Fur-

thermore, the results of the one-on-one-classification showed a trend that increasing

classification rates go along with increasing time intervals between the sessions.

The median classification rates for the one-on-one-classification based on KBDR for

ground reaction force curves resulted in T1 (81.1 (76.1–87.2)%), T2 (90.8 (87.1–97.9)%), T3

(93.3 (85.2–95.0)%) and T4 (97.5 (92.5–100.0)%). The statistical test revealed highly significant

results over the four time intervals (Χ2 = 19.400; df = 3; p = .000). The pairwise comparisons of

T1 and T2 (Z = -2.666; p = .024; r = -.889), T1 and T4 (Z = -2.666; p = .024; r = -.889), T2 and

Table 1. Mean (standard deviation) of the control variables for each of the six sessions (n = 9).

session 1 session 2 session 3 session 4 session 5 session 6 repeated measures ANOVA

gait velocity [m/s] 1.50 (0.14) 1.52 (0.14) 1.54 (0.13) 1.55 (0.14) 1.55 (0.15) 1.55 (0.15) (F 2, 14 = 1.621; p = .177; η2 = .169)

step length [m] 0.77 (0.06) 0.79 (0.06) 0.79 (0.04) 0.79 (0.04) 0.80 (0.05) 0.79 (0.04) (F 2, 15 = 1.615; p = .231; η2 = .168)

step width [m] 0.13 (0.02) 0.13 (0.02) 0.12 (0.02) 0.12 (0.02) 0.12 (0.02) 0.12 (0.02) (F 3, 24 = 2.453; p = .088; η2 = .235)

step duration [s] 1.18 (0.08) 1.17 (0.08) 1.15 (0.08) 1.15 (0.08) 1.15 (0.09) 1.15 (0.09) (F 2, 19 = 1.846; p = .180; η2 = .188)

https://doi.org/10.1371/journal.pone.0179738.t001
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Fig 2. Vertical ground reaction force of the 15 gait trials (grey) of each of the six sessions (A-F) as well as the global mean (green) and two

standard deviations (green dotted) of all 90 gait trials from subject 8 (n = 1).

https://doi.org/10.1371/journal.pone.0179738.g002
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T4 (Z = -2.675; p = .004; r = -.891) as well as T3 and T4 (Z = -2.549; p = .048; r = -.850) showed

a statistically significant difference.

The mean classification rates for the one-on-one-classification based on SVM for ground

reaction force curves resulted in T1 (73.4 ± 10.2%), T2 (86.0 ± 10.9%), T3 (83.6 ± 10.7%) and

T4 (93.0 ± 6.6%). The statistical test revealed highly significant results over the four time inter-

vals (F 3, 24 = 13.019; p = .000; η2 = .619). The pairwise comparisons of T1 and T2 (p = .007) as

well as T1 and T4 (p = .001) were statistically significant and T3 and T4 (p = .066) revealed a

statistical trend, whereas the other combinations showed no statistically significant difference.

The median classification rates for the one-on-one-classification based on KBDR for joint

angle curves resulted in T1 (88.9 (83.7–91.0)%), T2 (100.0 (95.2–100.0)%), T3 (100.0 (100.0–

100.0)%) and T4 (100.0 (100.0–100.0)%). The statistical test led to significant differences

between the four time intervals (Χ2 = 21.409; df = 3; p = .000). The pairwise comparisons were

statistically significant for T1 and T2 (Z = -2.547; p = .048; r = -.849), T1 and T3 (Z = -2.666; p

= .024; r = -.889) as well as T1 and T4 (Z = -2.666; p = .024; r = -.889), whereas T2, T3 and T4

showed no statistically significant difference.

The median classification rates for the one-on-one-classification based on SVM for joint

angle curves resulted in T1 (82.8 (79.2–88.8)%), T2 (98.1 (93.6–100.0)%), T3 (100.0 (99.1–

100.0)%) and T4 (100.0 (100.0–100.0)%). The statistical test led to significant differences

between the four time intervals (Χ2 = 20.68; df = 3; p = .000). The pairwise comparisons were

statistically significant for T1 and T2 (Z = -2.547; p = .048; r = -.849), T1 and T3 (Z = -2.666;

p = .024; r = -.889) as well as T1 and T4 (Z = -2.668; p = .024; r = -.889), whereas T2, T3 and T4

showed no statistically significant difference.

Discussion

The present study identified characteristics in intra-individual gait patterns that differ across

measurement sessions and revealed permanent, non-random, temporal changes of gait pat-

terns. Discernible changes of time-continuous gait patterns indicate that the gait patterns

are not constant over time and their persistence is less than often assumed in gait analysis.

Table 2. Mean ± standard deviation of the classification rates of the one-on-one-classification of kernel-based discriminant regression analysis

(KBDR) and support vector machines (SVM) (n = 9).

time interval sessions duration ground reaction force lower body joint angles

KBDR SVM KBDR SVM

T1 (10 mins) S1-S2 10 mins 83.6 ± 12.6% 77.8 ± 14.7% 91.3 ± 6.8% 88.6 ± 7.9%

S3-S4 10 mins 77.2 ± 15.1% 68.7 ± 17.7% 88.3 ± 5.6% 85.0 ± 6.8%

S5-S6 10 mins 80.5 ± 8.4% 73.6 ± 6.9% 84.0 ± 10.4% 78.3 ± 10.3%

T2 (30–50 mins) S2-S3 30 mins 79.8 ± 12.5% 73.2 ± 15.3% 93.2 ± 10.5% 90.9 ± 13.3%

S2-S4 40 mins 93.6 ± 6.1% 88.5 ± 15.5% 99.3 ± 1.5% 98.1 ± 2.9%

S1-S3 40 mins 92.8 ± 9.3% 88.9 ± 10.5% 98.8 ± 2.5% 97.0 ± 4.3%

S1-S4 50 mins 95.2 ± 9.8% 93.4 ± 9.5% 99.6 ± 1.1% 99.6 ± 1.1%

T3 (90–110 mins) S4-S5 90 mins 84.5 ± 8.7% 76.9 ± 15.1% 100.0 ± 0.0% 99.8 ± 0.8%

S4-S6 100 mins 87.3 ± 9.2% 82.6 ± 12.1% 99.6 ± 1.1% 99.3 ± 1.4%

S3-S5 100 mins 89.9 ± 9.0% 83.3 ± 11.9% 100.0 ± 0.0% 99.6 ± 1.1%

S3-S6 110 mins 94.8 ± 10.3% 91.4 ± 11.7% 100.0 ± 0.0% 99.8 ± 0.8%

T4 (130–150 mins) S2-S5 130 mins 94.4 ± 5.6% 91.4 ± 8.0% 100.0 ± 0.0% 99.6 ± 1.1%

S2-S6 140 mins 97.4 ± 4.7% 94.8 ± 6.8% 100.0 ± 0.0% 100.0 ± 0.0%

S1-S5 140 mins 96.2 ± 6.4% 90.3 ± 11.5% 100.0 ± 0.0% 100.0 ± 0.0%

S1-S6 150 mins 97.7 ± 3.4% 95.5 ± 5.5% 100.0 ± 0.0% 100.0 ± 0.0%

https://doi.org/10.1371/journal.pone.0179738.t002
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Furthermore, the results showed that the amount of randomness within gait patterns is smaller

than previously expected [17]. The non-significant differences in basic gait variables like gait

velocity, step length and width as well as step duration, imply similar gait conditions and sug-

gest that these variables were not responsible for differences in gait patterns between different

sessions. Extrinsic sources of variability in terms of measurement errors were minimized to

only a negligible influence on the separation of gait patterns from different sessions. Our find-

ings suggest that inter-session variability is predominantly caused by intrinsic temporal

changes of individual gait patterns between measurement sessions [55,56].

The six-session-classification rates of 67.8% (KBDR) and 61.0% (SVM) for time-continuous

ground reaction force curves and 86.3% (KBDR) and 82.3% (SVM) for time-continuous joint

angle curves differ clearly from a theoretical random classification rate of 16.7% (= chance

level for one out of six sessions). This means, both supervised learning approaches for pattern

recognition were able to identify characteristics of individual gait patterns that are specific

for a certain session and can be used to distinguish gait patterns from other sessions. The dis-

tinction of intra-individual gait patterns from repeated measurement sessions indicates con-

tinuous changes of gait patterns that appear naturally without any intervention or injury.

Accordingly, natural changes of gait patterns can be observed within a single day [40] and the

intrinsic persistence of gait patterns is less than often assumed in gait analysis [43]. Supported

by previously stated good reliability/repeatability [43], biomechanical diagnoses and therapeu-

tic interventions typically assume that individual gait patterns are near constant without an

intervention or injury [1]. Clinical approaches often describe the subject’s gait stride by aver-

age values of multiple trials and treat their variability in terms of random deviations within

distributional statistics. The identification of temporal changes of gait characteristics point out

limitations of those models. The present findings indicate that inter-session variability does

not merely feature random characteristics around a stable average curve but rather exhibits

incessant temporal changes. Thereby, it is noticeable that the kinematic changes of gait pat-

terns appeared more recognizable or more rapidly than kinetic changes. This might be

explained by the fact that the ground reaction forces are determined to a great extent by body

mass and gravity, two relatively constant influencing variables. In addition, lower body joint

angles exhibit a higher degree of freedom than ground reaction forces and consequently fea-

ture a broader range of possible movement solutions. The present findings provide further

clarification for deterministic features in human movements, namely time-dependent behav-

ior in terms of natural changes of gait patterns between different test sessions. In accordance

with findings from nonlinear measures on the basis of stride-to-stride fluctuations that charac-

terize intra-session variability [7,20,29,41,42], intra-individual changes of gait patterns empha-

size a predominant role of deterministic processes in human walking. Consequently, in

addition to the identification of information like emotions [37] or the grade of fatigue [38]

within intra-individual gait patterns, time-dependent changes provide further clarification for

deterministic features in human locomotion.

In addition, the one-on-one-classification shows that increasing classification rates go

along with increasing time durations between observations. The lowest, but still high, classifi-

cation rates of 80.4% (KBDR) and 73.4% (SVM) for ground reaction force curves and 87.9%

(KBDR) and 84.0% (SVM) for joint angle curves, respectively, are present for time interval T1

of 10 mins between the sessions. The classification rates of the time intervals T2, T3 and T4

tend to rise sequentially. Increasing classification rates for increasing time intervals between

sessions indicate that more and more gait characteristics are changing by time, until gait pat-

terns are completely distinguishable from each other (T4).

However, the results do not provide evidence for a clear linear drift of gait patterns by time

but rather indicate changes that appear in different time-scales. Clear differences appear
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between the classification rates of time interval T1 (tens-of-mins) and T4 (tens-of-hours),

whereas the classification rates for the ground reaction force curves are slightly higher for T2

compared to T3. This might be explained by intra-individual differences in adaptations and

time-scales of feedback and adaptation processes [33,34,57]. Feedback processes on different

levels of movement organization and multiple time-scales may influence the variability of gait

patterns within a single measurement session [17,57,58] as well as intrinsic changes between

different measurement sessions. Further research is needed in order to examine how deter-

ministic and stochastic processes control stride-to-stride fluctuations as well as intrinsic

changes of gait patterns between observations. Moreover, it is interesting how intra- and inter-

session variability are connected and if both reflect specific functions of the motor system that

may provide different levels of information about human walking.

Apart from this, the identification of natural changes in gait patterns raises many more

questions about deterministic processes and time-dependent behavior between observations.

For example, do intra-individual gait patterns drift incessantly apart from each other or do

they exhibit recurring characteristics in certain time-scales. Which characteristics in intra-

individual gait patterns are changing exactly? Are there certain characteristics changing while

others remain constant over time? A state-space framework presentation and approaches like

the autoregressive integrated moving average analysis might be promising to provide details

on these questions.

Changes of intra-individual gait patterns may reflect continuous adaptations of the motor

system to so far unknown changes of boundary conditions (e.g. emotions, metabolism, or-

thostasis) that appear naturally in order to ensure a nearly stable locomotion. The increase of

variance in the gait patterns in elderly [23] should be reconsidered with the background of

increased anatomical changes with increasing age. The increased gait variability should be con-

sidered as a preventative act in order to cope with the bigger anatomical changes caused by

aging processes. From this point of view, the rate of intrinsic changes in gait characteristics

may as well provide information about the subject. Gait characteristics with more or less con-

stancy could be identified and may provide a basis for an eventual treatment.

In summary, both supervised learning models (KBDR and SVM) lead to comparable results

and reinforce the findings. However, the classification accuracy of KBDR was throughout

higher than SVM (on average about 5%) and thereby provide first empirical evidence that

KBDR seems to be promising for movement analysis, especially for the classification of high-

dimensional data based on joined vectors of time-continuous kinematic and kinetic data.

Conclusion

Intra-individual gait patterns indicate time-dependent characteristics of time continuous gait

patterns and a predominant role of deterministic processes in human motor control and learn-

ing that have mostly been neglected so far. Natural changes of gait patterns without any exter-

nally induced intervention or injury may reflect adaptation processes of the motor system that

differ between individuals and appear at different time-scales. Persistent changes of gait pat-

terns seem to be omnipresent in human walking and raise the question if representative tem-

porary gait patterns exist at all. The results emphasize that the modeling of individual gait

patterns by means of average patterns that are assumed to be near constant over time needs to

be further challenged.

Clinical gait analysis has to be reconsidered in the context of these findings, not only

towards more individualized but also towards situational diagnosis, therapy and evaluation

of treatment effects. If a system is continuously changing by itself it is difficult to justify repeti-

tion oriented therapeutic interventions as a preparation for later events in everyday life [33].
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Whether intra-individual changes of gait patterns are incessantly drifting or exhibit recurring

characteristics or whether they are a necessary prerequisite for adaptation or both needs fur-

ther research.
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40. Horst F, Kramer F, Schäfer B, Eekhoff A, Hegen P, Nigg BM, et al. Daily changes of individual gait pat-

terns identified by means of support vector machines. Gait Posture. 2016; 49: 309–314. https://doi.org/

10.1016/j.gaitpost.2016.07.073 PMID: 27479216

41. Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL. Is walking a random walk? Evidence for long-

range correlations in stride interval of human gait. J Appl Physiol. 1995; 78(1): 349–358. PMID:

7713836

42. Hausdorff JM, Purdon PL, Peng CK, Ladin Z, Wei JY, Goldberger AL. Fractal dynamics of human gait:

stability of long-range correlations in stride interval fluctuations. J Appl Physiol. 1996; 80(5): 1448–

1457. PMID: 8727526

43. McGinley JL, Baker R, Wolfe R, Morris ME. The reliability of three-dimensional kinematic gait measure-

ments: a systematic review. Gait Posture. 2009; 29(3): 360–369. https://doi.org/10.1016/j.gaitpost.

2008.09.003 PMID: 19013070

44. Wearing SC, Urry SR, Smeathers JE. The effect of visual targeting on ground reaction force and tem-

porospatial parameters of gait. Clin Biomech. 2000; 15(8): 583–591.

45. Sanderson DJ, Franks IM, Elliott D. The effects of targeting on the ground reaction forces during level

walking. Hum Mov Sci. 1993; 12(3): 327–337.

46. Hsu CW, Chang CC, Lin CJ. A Practical Guide to Support Vector Classification [Internet]. 2003. Avail-

able from: http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

47. Peng C, Cheng J, Cheng Q. A Supervised Learning Model for High-Dimensional and Large-Scale Data.

ACM Trans Intell Syst Technol. 2016; 8(2): Article 30.

48. Boser BE, Guyon IM, Vapnik VN. A Training Algorithm for Optimal Margin Classifiers. In: Haussler D.

Proceedings of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh: ACM Press;

1992. pp. 144–152.

49. Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995; 20(3): 273–297.

50. Lee L, Grimson WEL. Gait analysis for recognition and classification. In: Proceedings of Fifth IEEE

International Conference on Automatic Face and Gesture Recognition. Washington: IEEE;

2002. pp. 148–155.

51. Begg R, Kamruzzaman J. A machine learning approach for automated recognition of movement pat-

terns using basic, kinetic and kinematic gait data. Journal of Biomechanics. 2005; 38(3): 401–408.

https://doi.org/10.1016/j.jbiomech.2004.05.002 PMID: 15652537

52. Jain AK, Duin RPW, Mao J. Statistical pattern recognition: A review. IEEE Trans Pattern Anal Mach

Intell. 2000; 22(1): 4–37.

53. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLINEAR: A library for large linear classification. J

Mach Learn Res. 2008; 9: 1871–1874.

54. Cohen J. Statistical power analysis for the behavioral sciences. New York: Academic Press; 1988.

55. Eve L, McNee A, Shortland A. Extrinsic and intrinsic variation in kinematic data from the gait of healthy

adult subjects. Gait Posture. 2006; 24 S: 56–57.

Intra-individual gait patterns across different time-scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0179738 June 15, 2017 13 / 14

http://www.ncbi.nlm.nih.gov/pubmed/17029655
https://doi.org/10.1016/j.humov.2008.10.005
https://doi.org/10.1016/j.humov.2008.10.005
http://www.ncbi.nlm.nih.gov/pubmed/19062119
http://www.ncbi.nlm.nih.gov/pubmed/11869912
https://doi.org/10.1016/j.jbiomech.2012.02.008
http://www.ncbi.nlm.nih.gov/pubmed/22387120
https://doi.org/10.1016/j.clinbiomech.2004.04.005
http://www.ncbi.nlm.nih.gov/pubmed/15475120
https://doi.org/10.1016/j.humov.2010.08.010
https://doi.org/10.1016/j.humov.2010.08.010
http://www.ncbi.nlm.nih.gov/pubmed/21195495
http://www.ncbi.nlm.nih.gov/pubmed/20944444
https://doi.org/10.1016/j.gaitpost.2016.07.073
https://doi.org/10.1016/j.gaitpost.2016.07.073
http://www.ncbi.nlm.nih.gov/pubmed/27479216
http://www.ncbi.nlm.nih.gov/pubmed/7713836
http://www.ncbi.nlm.nih.gov/pubmed/8727526
https://doi.org/10.1016/j.gaitpost.2008.09.003
https://doi.org/10.1016/j.gaitpost.2008.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19013070
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://doi.org/10.1016/j.jbiomech.2004.05.002
http://www.ncbi.nlm.nih.gov/pubmed/15652537
https://doi.org/10.1371/journal.pone.0179738


56. McGinley JL, Wolfe RSJ, Morris ME, Pandy MG, Baker R. Variability of walking in able-bodied adults

across different time intervals. Journal of Physical Medicine and Rehabilitation Sciences. 2014; 17: 6–

10.

57. Newell KM, Liu YT, Mayer-Kress G. Time scales in motor learning and development. Psychological

Review. 2001; 108(1): 57–82. PMID: 11212633

58. Mayer-Kress G, Newell KM. Stochastic iterative maps with multiple time-scales for modelling human

motor behavior. Nonlinear Phenomena in Complex Systems. 2002; 5(4): 418–427.

Intra-individual gait patterns across different time-scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0179738 June 15, 2017 14 / 14

http://www.ncbi.nlm.nih.gov/pubmed/11212633
https://doi.org/10.1371/journal.pone.0179738

