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Piech, R.; Skupień, K.; Paczosa-Bator,

B. Graphene Flakes Decorated with

Dispersed Gold Nanoparticles as

Nanomaterial Layer for ISEs.

Membranes 2021, 11, 548. https://

doi.org/10.3390/membranes11070548

Academic Editor:

Konstantin Mikhelson

Received: 2 July 2021

Accepted: 19 July 2021

Published: 20 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30,
PL-30059 Krakow, Poland; bniemiec@agh.edu.pl (B.N.); nlenar@agh.edu.pl (N.L.); rpiech@agh.edu.pl (R.P.)

2 3D-Nano, ul. Lipowa 3, 30-702 Kraków, Poland; kskupien@3d-nano.com
* Correspondence: paczosa@agh.edu.pl; Tel.: +48-0126175021; Fax: +48-0126341201

Abstract: This paper proposes a new type of solid-contact layer based on graphene/gold nanoparti-
cles for ion-selective electrodes. A novel approach to preparing the material for intermediate layer by
modifying the graphene flakes by gold nanoparticles is presented. With this approach, we observed
a large surface area of material and in consequence high electrical capacitance of electrodes. We
have obtained satisfactory results demonstrating that the modification of graphene with gold allows
for enhancing electrical and wetting properties of carbon nanomaterial. Electrical capacitance of
designed nanocomposite-contacted electrode equals to approximately 280 µF, which in consequence
ensures great long-term potential stability defined by the potential drift of 36 µV/h. The modification
of graphene with nanoparticles completely changed its wetting properties, as the designed material
turned out to be hydrophobic with a water contact angle of 115◦. Graphene/gold nanoparticles–
contacted electrodes are insensitive to the changing light conditions, exhibiting near-Nernstian
response in the potassium concentration range between 10−5.9 M and 10−1 M of K+ ions and may be
applied in the pH range between 2 and 10.5.

Keywords: graphene; gold nanoparticles; potentiometric sensor; hydrophobic material; high electri-
cal capacity; potassium determination

1. Introduction

Nanomaterials, commonly known as materials with a single unit sized up to 100 nm,
have been widely applied for the construction of ion-selective electrodes (ISEs) [1]. The ap-
plication covered introducing them to ionophores [2], using them as sensing transducers [3],
and finally making them solid-contact layers in all-solid-state electrodes [4].

All-solid-state electrodes have their origin in early 1970s when Catrall and Freiser [5]
made a significant contribution to the field of ion-selective electrodes by presenting a
coated-wire electrode built of platinum wire and ion-selective membrane. The novelty
of this construction raised from the absence of an inner solution was an integral part of
earlier types of ISEs. Twenty years later this construction of an electrode was enhanced
by implementing the solid-contact layer in between electronic conductor (metal/wire
electrode) and ionic conductor (ion-selective membrane), which made it possible for the
charge to be easily transferred amidst materials of different types of transductions [4].
Hence, the main feature and, simultaneously, the main requirement for solid-contact layers
are ion-to-electron transduction properties [6–8]. Ion-to-electron transducer materials are
characterized either by redox or double-layer capacitance.

Nanomaterials belong to a group with large surface area, which ensures that high
double-layer capacitance is formed in the interface between the solid-contact layer and
membrane. The wide implementation of nanomaterials results from their unique physi-
cal and chemical properties, such as large surface/volume ratio and large pore volume,
ensuring unique surface chemistry and good conductivity [9]. These features make them
appropriate for being applied as solid-contact layers, as the requirements for such materials
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with a high surface, ensuring high electrical capacity, is essential for obtaining a stable and
fast response of sensors [10].

This work describes the design of a nanomaterial composed by modification of
graphene flakes (GR) by gold nanoparticles (AuNPs) and its application in ion-selective
electrodes’ construction as solid-contact layer. Graphene (GR) belongs to the group of
carbon nanomaterials that are among the most widely used materials for solid-contact layer.
It is a two-dimensional carbon material with only one atomic layer that shows unique prop-
erties such as a fast electron transportation, a high surface area, a high thermal conductivity,
and excellent mechanical properties [11,12]. The use of graphene as standalone material
as well as a component of composite material was reported in literature by Li at al. [13]
(standalone GR layer) and by our group in [14] (as a part of graphene-carbon black com-
posite) and [15] (in graphene-ruthenium dioxide composite). Gold nanoparticles (AuNPs)
feature excellent conductivity, high surface area, and redox properties [16] which, together,
makes them excellent materials for solid-contact layers in ion-selective electrodes. As a
standalone material for intermediate layer, gold nanoparticles were successfully applied
into ion-selective electrodes construction by Jaworska et al. [17].

Although both materials used in this work were already applied as solid-contact
layers individually, combining them into one material allowed us to obtain a hydrophobic
layer, of much higher contact angle and greater electrical parameters in comparison with
other, as mentioned above, graphene–based composites. To the best of our knowledge, our
group is the first one to apply graphene/gold nanoparticles material in the construction of
ion-selective electrodes and obtain satisfactory results demonstrating that the modification
of graphene with gold allows for enhancing electrical and wetting properties of carbon
nanomaterial. Obtained results are promising in the context of designing solid-contact
ion-selective electrodes and were presented in the next sections. This paper has been
divided into the following parts: material characteristic and electrical and analytical
characterization of ion-selective electrodes with nanomaterial layer.

2. Materials and Methods
2.1. Chemicals

The solid-contact layer consisted of graphene obtained from ACS Material, gold
nanoparticles, and was provided by 3D-nano, Poland, with Sodium borohydride NaBH4
acting as a reductor. Graphene flakes decorated with gold nanoparticles were dispersed in
dimethylformamide (DMF) (POCH).

The membrane components: potassium ionophore I (Valinomycin), lipophilic salt–
potassium tetrakis(4-chlorophenyl)borate (KTpClPB), 2-nitrophenyl octyl ether (o-NPOE),
and poly(vinyl chloride) (PVC) were purchased from Sigma-Aldrich and dissolved in
Tetrahydrofuran (Sigma Aldrich, Saint Louis, MO, USA).

Potassium chloride (KCl) was purchased from POCH (Gliwice, Poland) and solutions
of K+ ions concentration from 10−7 to 10−1 M were used for potentiometry, chronopo-
tentiometry, and EIS measurements. Hydrochloric acid and sodium hydroxide used for
adjusting the pH value of solutions during the pH sensitivity test were purchased from
POCH, Gliwice, Poland.

2.2. Preparation of SC-ISEs

Graphene modified with gold nanoparticles was implemented onto the glassy carbon
disc electrode’s surface and the material was examined for its suitability as intermediate
layers in ion-selective electrodes.

Solid-contact layer was casted onto glassy carbon disc electrode surface using the drop
casting method, which among other techniques is considered to be the fastest and the sim-
plest. In order to obtain the solid-contact layer, the DMF-based solution of graphene modi-
fied with nanogold was prepared by a simple one-pot method. For this purpose, HAuCl4
(1 mg/mL; abcr GmbH, 99.9% metal basis) was mixed thoroughly with DMF/graphene
dispersion (4 mg/mL, ACS Material) for 20 min with the assistance of sonification. After-
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wards, NaBH4 (0.1 mg/mL; Sigma Aldrich, purum p.a. ≥ 96%), acting as a reducing agent,
was added rapidly to the solution being mixed under vigorous stirring. Such a prepared
solution was washed by centrifugation (5000 rpm, 10 min) in order to remove the excess of
the reducing agent, and subsequently redispersed in DMF. The washing procedure was
repeated three times.

At the beginning of the preparation process, glassy carbon disc electrodes were
polished with alumina slurries and rinsed with water and methanol, alternately. Clean and
dried electrodes were casted with 20 µL of solid-contact layer solution. DMF was removed
from casted layers by evaporation process until only the solid particles were left at the
electrode’s surface. At this stage, the layers were tested without membrane in order to
examine their electrochemical properties.

The experimental part was followed by casting the obtained layers with 60 µL of
ion-selective membrane solution of the following composition: potassium ionophore I
1.10% (w/w), KTpClPB 0.25% (w/w), o-NPOE 65.65% (w/w), and PVC 33.00% (w/w). All
membrane components of total weight 0.125 g were dissolved in 1 mL of THF. The solvent
was evaporated in the room temperature and after 24 h, the conditioning process begun as
electrodes were placed into 0.01 M KCl solution in order to saturate the membrane with
K+ ions.

One group of electrodes was prepared separately as a control group of coated-disc
electrodes obtained by casting electrodes surface directly with ion-selective membrane,
without the intermediate layer in between.

Both the group of coated-disc and solid-contact electrodes consist of three replic-
ate electrodes.

2.3. Methods

Amongst the methods applied in the experiment for examination of graphene/gold
nanoparticles layers, Transmission Electron Microscope (TEM), contact angle microscope,
Electrochemical Impedance Spectroscopy (EIS), and chronopotentiometry method were used
for material characterization and the potentiometry method was implemented to evaluate the
influence of the layers’ presence on the ion-selective electrodes’ analytical performance.

The microstructure of studied graphene/gold nanoparticles material was investigated
with Transmission Electron Microscope Tecnai 20 X-TWIN (FEI, Hillsboro, OR, USA) fitted
with Energy Dispersive X-Ray Analysis (EDAX) and High Angle Annular Dark Field
(HAADF) detectors.

In order to examine the wetting properties of the obtained material, contact angle
microscope Theta Lite microscope with One Attension software by Biolin Scientific (Gothen-
burg, Sweden) was implemented into studies.

For chronopotentiometry and electrochemical impedance spectroscopy method, glassy
carbon disc electrodes were covered with the studied graphene/gold nanoparticles ma-
terial and placed into a measuring cell in sequence, together with reference Ag/AgCl
electrode with 3 M KCl solution (type 6.0733.100 from ΩMethrom, Herisau, Switzerland)
and auxiliary-glassy carbon electrode. All electrodes were connected to the Autolab ana-
lyzer (Eco Chemie, Utrecht, The Netherlands). The cell was filled with 0.01 M KCl solution
acting as an electrolyte. Both chronopotentiograms—the potentiometric response of elec-
trode recorded with time in the forced current conditions and Nyquist plots, on which the
imaginary part of impedance (Z”) is plotted on the y axis, and the real part of impedance
(Z′) on the x axis, were collected using NOVA 2.1 software.

For potentiometry method all prepared ion-selective electrodes with gold nanoparti-
cles layer and potassium-selective membrane and the coated-disc electrode were connected
to the 16-channel mV-meter (Lawson Labs, Inc., Malvern, PA, USA) and measurements
were conducted against Ag/AgCl electrode (type 6.0733.100 ΩMetrohm, Switzerland)
reference electrode in the presence of platinum auxiliary electrode. For this measurement,
KCl solutions of 10−1 to 10−7 M concentration were used as K+ ions standard solutions.
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3. Results
3.1. Material Characteristic

The examined material was graphene modified with gold nanoparticles, which was
tested using TEM microscope to explore the microstructure. Further, a contact angle
microscope was used to evaluate the wetting properties and Autolab analyzer was used to
evaluate the electrochemical behavior.

3.1.1. Microstructure Investigation

Pictures obtained from the TEM microscope were presented in Figure 1. Figure 1a,b
displays a microstructure of graphene modified with gold nanoparticles, from distant to
very close view and the scans were collected with the use of BF (Bright Field) and HR
(High Resolution) detector. The scan presented in Figure 1c was obtained with the use of
HAADF detector and the point of EDS analysis is marked. Spectra corresponding to the
points are presented next to the scan.

Figure 1. TEM (a) and HR-TEM (b) scans of graphene modified with gold nanoparticles with EDS spectrum and analysis
(c). BF (Bright Field), HR (High Resolution), and HAADF (High-angle Annular Dark-field) detectors were applied to obtain
scans a, b, and c, respectively.
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In the BF scan nanoparticles are visible as dark points on the graphene flakes (of lighter
color) while in the HAADF (High-angle Annular Dark-field) scan, gold nanoparticles can be
spotted as light points. This was also confirmed by the EDS analysis, as for the lightest point
(indicated in the Figure 1c), the analysis showed the presence of gold. The quantitative
analysis in the marked point was as follows: gold 19.44% (w/w) and carbon 80.55% (w/w).

HR-TEM scan allowed to evaluate the size of a single particle. According to the scale,
the diameter of the gold nanoparticle is equal to approximately 5 nm.

All scans display single nanoparticles of gold evenly distributed on the graphene
flakes without an evidence of an agglomeration process, which in the context of obtaining
the material of a highly active surface area is greatly desirable.

3.1.2. Contact Angle Measurements

When choosing or designing the material for solid-contact layer, wetting properties of
material should be taken into consideration. The hydrophobicity of the material is highly
desired as it prevents the formation of water layer on the surface of the solid-contact layer
(under the membrane). The wettability of graphene/gold nanoparticles material was tested
using the contact angle microscope; the water droplet of 5 µL was discharged onto the
materials’ surface, while software measured the angle between the surface and the tangent
to the water drop, as shown in Figure 2.

Figure 2. Contact angle of the studied graphene/gold nanoparticles material calculated by One
Attension software.

The software gave the contact angle a value of 115◦, which indicates that the designed
material is hydrophobic. The obtained results were compared with those presented in our
previous work concerning the graphene/ruthenium dioxide material. The contact angles
of 49.5◦ and 61.9◦ were reported for graphene individually and graphene/ruthenium
dioxide composite, respectively [15]. Those values are considerably lower than the one
obtained for graphene/gold nanoparticles material, which indicates that the addition of
gold nanoparticles not only significantly affects graphene wetting properties but also makes
it a great material for a solid-contact layer in ion-selective electrodes. In this case, a higher
water contact angle is likely caused by the increase of the roughness of graphene after its
modification with gold nanoparticles, since a rough surface can influence the boundary
between a water drop and the examined surface [18,19].

Implementing hydrophobic intermediate layer into ion-selective electrodes’ construc-
tion was repeatedly shown to prevent the formation of water film. This is not only crucial
in the context of analytical performance of electrodes but also when it comes to the lifetime
of electrodes, as a water layer under an ion-selective membrane causes the delamination of
membrane and, in consequence, mechanical damage of the electrode.

3.1.3. Electrical Characteristics of the Intermediate Layer and Electrode

Designed electrodes were characterized with the use of two electrochemical techniques:
chronopotentiometry and electrochemical impedance spectroscopy.

Based on the chronopotentiograms recorded with the use of electrodes covered with
tested graphene-gold nanoparticles layer, the electrical parameters of the layer were eval-
uated including electrical capacitance and resistance. With solid-contact layers for ion-
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selective electrodes, the higher the electrical capacity, the more stable the potentiometric
response of electrodes is. Therefore, high values of electrical capacitance and low values
of resistance are considered as desirable features. Figure 3a presents a part of recorded
chronopotentiograms consisting of two steps; first 60 s with +100 nA current flow and
another 60 s with −100 nA. For the tested layer, the value of electrical capacitance was
calculated for the linear part of the chronopotentiometric curve, which equaled to 1.80 ±
0.06 mF, indicating that the modification of graphene with gold nanoparticles allowed to
almost double the capacity, in comparison to the results reported by Paczosa-Bator [14].
The determined value of the resistance equaled to 2.30 ± 0.08 kΩ.

Figure 3. Electrochemical characteristics of the intermediate layer (a,b) and ready-to-use electrode
(c,d) represented by chronopotentiograms and the Nyquist plot.

Another method used for the intermediate layer characterization is electrochemical
impedance spectroscopy. The Nyquist plot, being the visualization of the imaginary part of
the impedance (−Z′ ′) (axis y) and the real part of impedance (Z′) (axis x), is presented in
the Figure 3b. The electric charge capacity of the double layer can be easily determined
from the low frequency data using the C = 1/(2πf(−Z′ ′)) relation, where f is the frequency
and−Z′ ′ is the corresponding imaginary part of the impedance. The capacitance value was
determined on the basis of three frequencies 13.9, 19.3, and 26.8 mHz and was respectively
2.75, 2.58, and 2.39 mF.

After being examined, GR-AuNPs–based layers were covered with ion-selective mem-
brane solution in order to obtain ready-to-use solid-contact ion-selective electrodes. The
electrical properties of the studied electrodes were also evaluated using chronopoten-
tiometry and electrochemical impedance spectroscopy. The dependencies obtained in the
subsequent measurements are shown in Figure 3c,d.

Based on the chronopotentiogram, presented in the Figure 3c, recorded with a current
flow of ±100 nA, the electric charge capacity equal to 277 ± 5 µF (for the linear part of
recorded curve) and the resistance equal to 137 ± 1 kΩ were determined. Taking into
consideration the results obtained for single layers and layers covered with potassium mem-
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brane, it can be seen that the presence of ion-selective membrane increases the resistance of
electrodes and decreases the value of electrical capacitance.

The EIS measurement results are shown again in the Nyquist plot in Figure 3d. The
shape of the graph is characteristic for solid-contact electrodes with a transducer layer
with a capacitive conduction mechanism. The visible semicircle corresponds to the high
range of measurement frequencies and is related to the parameters of the ion-selective
membrane, such as bulk resistance or geometric capacitance. The low measuring frequency
corresponds to the line visible on the chart, which corresponds to the characteristics of
the processes taking place at the interface between the solution and the ion-selective
membrane. On the basis of this range, we determine the electrical capacity of the double
layer, according to the formula given above for solid-contact layers. Again, the capacitance
value was calculated for several of the lowest frequencies: 10, 13.9, and 19.3 mHz and was
equal to 224, 210, and 195 µF, respectively.

3.2. Potentiometric Tests

For the potentiometric tests, the studied graphene/gold nanoparticles layer was
covered with ion-selective membrane, and the ready-to-use electrode was connected to
the potentiometer. The characteristics of solid-contact and coated-disc electrodes were
recorded in standard KCl solutions in order to determine such parameters of electrodes as
standard potential and sensitivity (measured as slope of calibration curve).

3.2.1. Potentiometric Response

Calibration curves were recorded after 24, 48, and 72 h of conditioning in 0.01 M
KCl solution for each group of electrodes (solid-contact and coated-disc) and presented
in Figure 4. Standard deviations for the electrode’s parameters were calculated based on
the results obtained for one electrode representing each group during the three days of
conditioning process and were collected in Table 1.

Figure 4. Potentiometric response of GC/GR-AuNPs/K+-ISE (green plot) and coated disc electrode
(blue plot) after 24, 48, and 72 h of conditioning in 0.01 M KCl.
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Table 1. Calibration curves parameters calculated for one electrode representing each group after 24, 48, and 72 h of
conditioning (n = 3).

Group of Electrodes Sensitivity S
[mV/dec] Normal Potential E0 [mV] Limit of Detection [M] Linear Range

[M]

GC/GR-AuNPs/
K+-ISM 59.6 ± 0.2 429.2 ± 0.6 10−5.9±0.1 10−5.5–10−1

GC/K+-ISM 57.9 ± 0.5 224 ± 4 10−5.5±0.1 10−5–10−1

All tested electrodes exhibit the slope of calibration curve consistent with the theoreti-
cal Nernstian value.

To compare the repeatability of the response of the electrodes with solid-contact layer
and coated disc electrode, calibration curves were recorded firstly by measuring standard
solutions of increasing concentration (from 10−6 to 10−1 M) (arrow pointing up) and
subsequently solutions of decreasing concentration (arrow down), as shown in Figure 5a.

Figure 5. Calibration curves of (a) GC/GR-AuNPs/K+-ISM (olive and light green) and coated-disc
electrode (blue and cyan) with arrows pointing at the increase (olive and blue arrow) or decrease
(light green and cyan arrow) in the concentration of measured standard solutions and (b) averaged
calibration obtained from three copies electrodes from the group of GC/GR-AuNPs/K+-ISM with
standard deviation.

The reproducibility of electrodes was tested within a group of GC/GR-AuNPs/K+-
ISM electrodes of the same composition and the convergence of the potentiometric response
towards potassium ions was examined, as shown in Figure 5b. This parameter was
quantified by the values of standard deviations, calculated based on the results obtained
for three items prepared in an identical manner. The absolute values of standard deviation
are minor and no more than 3.06 mV for the concentration of K+ ions equal to 10−6 M,
which proves the great reproducibility of the tested GC/GR-AuNPs/K+-ISM electrodes.

3.2.2. Reversibility of Response

The reversibility of the response was examined individually for the group of GC/GR-
AuNPs/K+-ISM electrodes and the group of coated disc electrodes. The reversibility of the
potential can be determined by the standard deviation of the potential value obtained for
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a solution of the same concentration after successive rapid changes in the concentration,
as shown in Figure 6. The standard deviation of the potential for the concentration of
10−2 M KCl was 0.2 mV for the GC/GR-AuNPs/K+-ISE electrode and 1.7 mV for the
coated-disc electrode. For the concentration of 10−3 M KCl the results corresponded to
0.1 and 1.5 mV, respectively.

Figure 6. The reversibility of electrodes’ potentiometric response–GC/GR-AuNP/K+-ISM (green
line) and coated-disc electrode (blue line).

3.2.3. Stability of Response

Another two important features of ion-selective electrodes are stability and response
time, defined as the potential change over the time and the time needed to reach the
95% of stable potential value, respectively. Both parameters were tested during 15 h long
measurement in 0.01 M K+ ions solution and the potential response was recorded with
time, as presented in the Figure 7. The potential drift calculated during the measurement
equaled to 0.036 mV/h for GC/GR-AuNPs/K+-ISM electrode and 0.70 mV/h for coated-
disc electrode. The decrease of potential drift value observed for solid-contact electrode
contrary to coated disc electrode is certainly due to the high electrical capacity of electrodes
with the graphene/gold nanoparticles layer. Applying the material of high electrical
capacity to the electrodes’ construction enables it to sustain the potential equilibrium in
the presence of external disturbances. Electrodes with layers characterized by the high
electrical capacitance parameter exhibit stable potentiometric responses over time and
insensitivity to the perturbations that may occur during the measurement, which results in
their great potential stability over the time of measurement.

Insets to the Figure 7 give a closer look at the first 2 min of measurement displaying
the difference in response of solid-contact and coated-disc electrodes. The response of
graphene/gold nanoparticles-based electrodes, after being placed in K+ ions solution was
faster than for coated-disc electrode and the time needed to reach the stable value of
potential was much shorter. For solid-contact electrodes it took only a few seconds to reach
the potential value equal to 95% of equilibrium potential, while CG/K+-ISM electrode did
not reach the stable potential value through the time of measurement and the significant
drift was observed.
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Figure 7. Potentiometric response of GC/GR-AuNP/K+-ISM (green line) and coated-disc electrode
(blue line) measured over 15 h with a closer look at the first 2 min of measurement presented on
the insets.

3.2.4. Light and pH Sensitivity

The examination of potential stability in the stable conditions of potentiometric mea-
surement was followed by the examination of potentiometric response of electrodes in
varying conditions, such as light intensity fluctuation and dynamic changes in the pH
value. Both tests were performed for one item from the group of studied graphene/gold
nanoparticles electrodes and the light test was additionally conducted in the presence of
coated-disc electrode as a control.

Figure 8a presents the course of light sensitivity test. Both electrodes studied, solid-
contact and the control coated disc electrode, were placed into K+ ions standard solution of
0.01 M concentration and the intensity of light was changed from day light, to complete
darkness, then back to day light. The potentiometric response of electrodes with time was
recorded. Visible changes in the electrodes’ response were not detected, therefore it is
concluded that the studied GC/GR-AuNP/K+-ISM electrodes are insensitive to the changes
in the light exposure and may be applied alternatively in day light and dark conditions.

With ion-selective electrodes it is important to examine the pH range in which the
potential response is stable and repeatable, therefore, the range in which electrodes may
be applied. For the purpose of this test 0.01 M K+ ions standard solutions were prepared
and titrated with sodium hydroxide or hydrochloric acid in order to establish their pH
value. A wide range of solutions of varying pH value (from 2 to 12) was prepared and
the potentiometric response of the GC/GR-AuNP/K+-ISM electrode was recorded in each
solution. Results of the test are presented in Figure 8b. As can be seen, studied electrode
exhibit a stable potentiometric response in the solutions of pH values from 2 to 10.5 and
the decrease in potential was observed for higher pH values. It can therefore be concluded
that designed graphene/gold nanoparticles-contacted electrodes can be applied within the
pH range of 2 to 10.5.
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Figure 8. The potentiometric response of studied electrodes; GC/GR-AuNP/K+-ISM (green line)
and GC/K+-ISM (blue line) electrode showing their insensitivity to (a) light exposition, (b) dynamic
pH value.

4. Conclusions

This work explores the association of two nanomaterials by combining them into one
nanocomposite material by modifying the structure of graphene with nanometric particles
of gold. Throughout the paper we have repeatedly proven that the properties of both mate-
rials translate into the electrodes’ performance. The modification of graphene with gold
nanoparticles (size approximately 5 nm) allowed us to create a layer of rough microstruc-
ture observed with the TEM microscope a high water contact angle of 115◦, ensuring the
hydrophobic properties of designed solid-contact layer. This feature of solid-contact layer
prevents the water layer formation, therefore protecting the electrodes from mechanical
damage caused by the membrane delamination. The addition of nanometric particles to
carbon material caused the increase of surface area of material and in consequence the
increase of electrical capacitance value. High electrical capacitance of solid-contact layer (of
1.8 mF) translated into high electrical capacity of graphene/gold nanoparticles-contacted
electrodes (equal to 280 µF). The designed electrodes are insensitive to the light conditions,
exhibit stable potentiometric response (with the potential drift of only 0.036 mV/h) and
may be applied in the pH range between 2 and 10.5 and potassium ions concentration
range between 10−5.9 M to 10−1 M.

The paper has proved that the modification of carbon nanomaterial allows for obtain-
ing more satisfactory results in the context of solid-contact ion-selective electrodes and
presents a universal approach to designing robust potentiometric sensors for future research.
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