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Membrane transport proteins play crucial roles in the pharmacokinetics of substrate

drugs, the drug resistance in cancer and are vital to the process of drug discovery,

development and anti-cancer therapeutics. However, experimental methods to profile

a substrate drug against a panel of transporters to determine its specificity are labor

intensive and time consuming. In this article, we aim to develop an in silico multi-label

classification approach to predict whether a substrate can specifically recognize one

of the 13 categories of drug transporters ranging from ATP-binding cassette to solute

carrier families using both structural fingerprints and chemical ontologies information of

substrates. The data-driven network-based label space partition (NLSP) method was

utilized to construct the model based on a hybrid of similarity-based feature by the

integration of 2D fingerprint and semantic similarity. This method builds predictors for

each label cluster (possibly intersecting) detected by community detection algorithms

and takes union of label sets for a compound as final prediction. NLSP lies into the

ensembles of multi-label classifier category in multi-label learning field. We utilized

Cramér’s V statistics to quantify the label correlations and depicted them via a heatmap.

The jackknife tests and iterative stratification based cross-validation method were

adopted on a benchmark dataset to evaluate the prediction performance of the proposed

models both in multi-label and label-wise manner. Compared with other powerful

multi-label methods, ML-kNN, MTSVM, and RAkELd, our multi-label classification model

of NLPS-RF (random forest-based NLSP) has proven to be a feasible and effectivemodel,

and performed satisfactorily in the predictive task of transporter-substrate specificity. The

idea behind NLSPmethod is intriguing and the power of NLSP remains to be explored for

the multi-label learning problems in bioinformatics. The benchmark dataset, intermediate

results and python code which can fully reproduce our experiments and results are

available at https://github.com/dqwei-lab/STS.
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INTRODUCTION

Membrane transport proteins, also known as transporters or
carriers, are a diverse and large group of proteins that transport
various hydrophilic molecules, encompassing ions and small
molecules across lipid bilayers within a cell or between cells,
thus playing crucial roles in various biological functions, such as
binding with small molecules in extracellular space, which is the
key component to determine the bioavailability and biological
activity of chemicals, i.e., their adverse and therapeutic effects
(International Transporter et al., 2010). In recent years, a number
of efflux and influx transporters from ATP binding cassette
(ABC) (Chen et al., 2016) and solute carrier (SLC) (Nyquist
et al., 2017) families have attracted significant interest, since they
are of vital importance in determining the ADMET (absorption,
distribution, metabolism, excretion, and toxicity) properties of
a wide range of drugs and xenobiotics. More importantly,
membrane proteins are the major media of multi-drug resistance
in cancer (Szakács et al., 2006; Fletcher et al., 2010). For example,
multi-drug resistance protein 1 (MDR1; aka P-glycoprotein
and ABCB1) is overexpressed in many malignant neoplasms
and its expression can also be induced by chemotherapy. The
overexpression of MDR1 has proven to be correlated with drug
resistance in breast, prostate and lung cancer (Holohan et al.,
2013). To make things worse, widely-applied targeted drugs
such as nilotinib, imatinib, sunitinib, and erlotinib are also
identified as regulators and substrates for specific transporters.
Thus, understanding the specificity of transporter substrates
(identification of potential transporters for existing and novel
drug molecules at the early phase of drug discovery process) is
not only momentous to the discovery and development of safe
and efficacious drugs but also helpful to identify potential drug
resistance in anti-cancer therapeutics. However, experimental
methods to profile compounds against a panel of transporters
are time- and resource-consuming. It should be of high value to
develop in silico classification models to predict the specificity of
membrane transporter substrates.

Generally, two major categories of computational approaches
are utilized to predict potential transporters involved in
membrane transport of chemicals (Shaikh et al., 2017). The first
type of approaches are receptor-based methods, which evaluate
the interaction details between transporters and drug molecules
via available three-dimensional structures of macromolecules.
However, these approaches are hindered by the scarcity of the
high-resolution structures of membrane transporters, which are
generally difficult to be resolved by experimental technologies.
The second category of approaches are ligand-based methods
(Chakraborty et al., 2017), via the structural likeness of ligands
to known substrates. The most commonly applied ligand-
based approach is the quantitative structure-activity relationship
(SAR or QSAR) model, which aims to build a mapping from
molecular descriptors of ligands to biological functions (e.g.,
whether the compound is a specific transporter substrate). Many
SAR or QSAR models have been built to classify substrates
and non-substrates for a specific type of transporters, such
as P-glycoprotein (P-gp/MDR1/ABCB1) (Huang et al., 2007;
Wang et al., 2011; Poongavanam et al., 2012; Li et al., 2014),
BCRP/ABCG2 (Zhong et al., 2011; Hazai et al., 2013; Gantner

et al., 2017), MRP1/ABCC1 (Lingineni et al., 2017) by a variety
of machine learning models, including linear models, neural
networks, support vector machines (SVM), and etc. Li et al.
(2014) developed the naïve Bayesian classifier to predict potential
P-gp substrates using simple molecular properties, topological
descriptors, and structural fingerprints on a compiled dataset of
423 P-gp substrates and 399 non-substrates. Hazai et al. (2013)
developed an SVM classification model for prediction of BCRP
substrates on a dataset composed of 164 BCRP substrates and
99 non-substrates.

However, these traditional QSAR models only consider a
single type of carrier at a time. With the ever-accumulating
high-quality data of various drug transporters, it is superior
to assign a compound into the maximum possible number of
transporters. The failure of clinical trials on MDR1 inhibitors
such as tariquidar (Pusztai et al., 2005) and zosuquidar (Cripe
et al., 2010) also suggests that, in order to block the potential
drug efflux of cancer cell entirely, we need to consider the
specificity of as much transporters as possible in the design
phase of new drugs. Thanks to the efforts conducted by Mak
et al. (2015), the interaction data on various types of transporters
and their substrates and modulators were curated on Metrabase
database exploited for QSAR modeling. In addition to the data
from Metrabase, Shaikh et al. (2017) further retrieved data of
ABCG2, MDR1 and MRP1 from the literature, to construct
a benchmark dataset of substrates and non-substrates of the
13 transporters from ABC and SLC families. In their recent
study (Shaikh et al., 2017), they employed proteochemometric
(PCM)modeling technique to enable simultaneous consideration
of multiple transporters. They built PCM- and QSAR-based
predictive models for the transporter-substrate specificity of
pharmaceutically important membrane transporters. In those
models, the physicochemical, topological descriptors of ligand
molecules, MACCS and variants of Morgan fingerprints were
used as input features.

Inspired by the successful application of multi-label
classification systems in the classification of drugs (Chen
et al., 2014), we formulated the problem of transporter-substrate
specificity as a multi-label classification task since some
compounds can be substrates of more than one transporters.
Typically, multi-label classification (MLC) models are divided
into three major groups: algorithm adaptation, problem
transformation, and ensembles of multi-label classifier (EMLC).
Algorithm adaptation methods incorporate specific tricks that
convert traditional single-label learning classifiers into multi-
label ones. The representative model of this group is ML-kNN
(Zhang and Zhou, 2005). For the problem transformation
method, it converts multi-label learning tasks into one or several
single-label problems. For example, label powerset (LP) is a
method of problem transformation, which trains models on
each possible subset of label sets (Gibaja and Ventura, 2014).
For a dataset with high cardinality in label set, LP is prone
to overfitting because of the exponentially increased number
of subsets. To tackle the overfitting nature of label powerset,
Tsoumakas et al. (2011) try to segment the label space into
subspaces and apply label powerset in these subspaces. They
proposed the RAkELd method, which cuts the label set into
k disjoint subsets. One major drawback of RAkELd is that
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the k is arbitrarily chosen without incorporating the label
correlations which can be possibly learnt from training data.
The Network-based Label Space Partition (NLSP) (Szymanski
et al., 2016) is an EMLC built upon LP, and it divides the
label sets into n small-sized label sets (possibly intersecting)
by community detection method which can incorporate the
label correlation structures in training set, such that learning k
representative LP classifiers. As a result, NLSP tackles much less
subsets compared to LP and selects k in a data-driven manner.
For a more detailed explanation of multi-label learning, refer to
Zhang and Zhou (2014), Moyano et al. (2018).

In the present study, we developed an in-silico method for
predicting the Specificity of membrane Transporter Substrates
based on the Network-based Label Space Partition algorithm,
termed STS-NLSP, which has both unleashed the correlation
among labels and integrated two types of similarity-based
features. Specifically, a given compound substrate was classified
as one or more of the following classes of transporters (Shaikh
et al., 2017): (i) ABCG2; (ii) MDR1; (iii) MRP1; (iv) MRP2;
(v) MRP3; (vi) MRP4; (vii) NTCP2; (viii) S15A1; (ix) S22A1;
(x) SO1A2; (xi) SO1B1; (xii) SO1B3; (xiii) SO2B1. In order
to represent the information of substrates, we not only used
the structural fingerprints, but also employed their biological
information (i.e., chemical ontology), extracted from the ChEBI
database (Degtyarenko et al., 2008). Then, we compared our
NLSP-based methods to three different types of multi-label

classification methods constructed on identical features. Our
results demonstrated that the NLSP-RF model yielded out
consistently better performance than another two types of
methods using the jackknife test on the benchmark dataset, and
we chose it as our final STS-NLSP. Label-wise analysis, validated
via iterative stratification, of the final models was also performed
for the convenience of experimental biologists. The major steps
in the article are summarized in Figure 1.

RESULTS AND DISCUSSION

Structural Diversity Analysis
In the total of 1, 846 structural different substrates on the
benchmark dataset, we calculated the similarity scores of four
types of fingerprints, FP2, FP3, FP4, MACCS, and their average
similarity score (SS) for each pair (1, 702,935 different pairs
in total) of substrates. The higher the score was between two
substrates, the more similar they were each other. Listed in
Table 1 were the average values of all pairs for the four type of
similarity scores, and the average of these four types. The results
demonstrated that the dataset of substrates was structurally
different and diverse in terms of 2D fingerprints. We could thus
put more confident on the representativeness of this dataset. The
average similarity score of FP2 was lowest among the four types
of fingerprints. Since the four types of fingerprints presented
distinct attributes of the molecules, we used the average similarity

FIGURE 1 | Major steps in the article. Substrates, which were confirmed structural diverse, were featurized into numerical vectors, combined with corresponding

transporter multi-label vectors, and then fed into different multi-label learning models. Label correlation analysis provided us insights on the interaction among

transporters. To facilitate researchers working on specific membrane transporter, NLSP-RF, with consistently better multi-label performance metrics, was selected

after multi-label model comparison for the transporter-wise (single label) analysis. For more detailed description, refer to the subsequent parts in this article.
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Table 1 | The average SS of all pairs of substrates on the benchmark dataset for

the four types of fingerprints.

Fingerprint type Similarity score

FP2 0.1857

FP3 0.4449

FP4 0.2880

MACCS 0.3742

Average 0.3232

score to represent their 2D fingerprint similarity for each pair
of substrates.

Label Correlation Analysis
One primary merit of multi-label learning vis-à-vis single-label
learning framework is the explicit utilization of label correlations
(Zhang and Zhou, 2014). Bias corrected Cramér’s V statistics
were calculated for all the possible label pairs and depicted in
Figure 2A. The UpSet visualization (Lex et al., 2014) of label-
set intersections is shown in Figure 2B. We found 25 substrates
are both transported by MDR1 and ABCG2, which is intuitive
because MDR1 and ABCG2 are both in the superfamily of
ATP-binding cassette transporters. Onemajor common substrate
of MDR1 and ABCG2 is gefitinib (Maemondo et al., 2010),
which is the first-line targeted chemotherapy agent for non–
small-cell lung cancer. Elevated MDR1 and ABCG2 expression
has been demonstrated to confer acquired resistance in in
EGFR-expressing cancer cells (Chen et al., 2011). The medical
implications of co-transport of MDR1 and ABCG2 in cancer has
been already noticed by clinicians and basic researchers. We also
found several label sets are correlated, especially for SOB1B1 and
SOB1B3, of which the Cramér’s V statistic is 0.5. Details about
the pair-wise intersection numbers of substrates and the pair-wise
Cramér’s V statistics between all the transporters are shown in
Tables S1, S2.

Multi-Label Model Comparison
We compared the prediction performance of NLSP-basedmodels
to another three classification methods (i.e., ML-kNN, MTSVM
and RAkELd-based models) on the identification of specificity
of transporter substrates. The classification performances of all
the models on the benchmark dataset using jackknife test were
shown in Table 2. We found NLSP-RF (random forest-based
NLSP) is consistently better than the other models in all the five
predefined multi-label measures. On the other hand, we found all
the NLSP-based methods perform consistently better than other
models, and the MTSVM is the most unsatisfactory model. For
the RAkELd-basedmethods, we found the choice of base-learners
will have huge impact on the model performance. Therefore, we
selected the NLSP-RF as the classification engine to construct the
final prediction model. To get deeper insights of this predictive
task, we compared the mean feature importance (Gini index) of
structural similarity- and semantic similarity-based features on
the final prediction model. We found the structural similarity-
based features are significantly (p < 10−7) more important

than semantic similarity-based features (Figure 3), suggesting
the selectivity of chemicals among different transporters majorly
hinges on the 2D structure of chemicals.

Single-Label Analysis
As for experimental biologist working on specific membrane
protein, it is useful to evaluate multi-label learning models for
each label respectively (Michielan et al., 2009; Mayr et al., 2016).
We utilized the hyperparameters of the best-performing multi-
label model of NLSP-RF and performed 10 times repeated 10-fold
stratified cross validation (10 × 10-fold st CV) (Sechidis et al.,
2011), because the jackknife test is rather time-consuming and
tends to overestimate different performance measures (Kohavi,
1995), The details are listed in Table 3. We found NLSP-RF
perform well in all the single-label subtasks from the viewpoint
of accuracy and AUROC, but perform worse in the prediction
subtask of MRP2, MRP3, MRP4, SO1A2, SOB1B1 in view of F1
score, which is intuitive because our benchmark dataset is highly-
imbalanced for these five proteins. We also compared our model
with the previous results from Shaikh et al. (2017). Although
we did not manually collect equal-sized negative data for each
transporter, our model performs similarly well except for the
subtasks suffering from imbalance learning problem.

Comparison With Previous Studies
In this article, the benchmark dataset proposed by Shaikh
et al. (2017) was compiled and implemented to test our multi-
label classification method. The differences between our method
and Shaikh’s method (Shaikh et al., 2017) were summarized
in Table 4. To our best knowledge, it is the first study
incorporating the prediction of the specificity of membrane
transporter substrates into multi-label learning framework,
whereas previously published methods were constructed as
single-label systems. Compared with the single-label systems,
it is much trickier to develop predictive models within
multi-label learning framework. In the single-label systems,
a balanced dataset of substrates (positive samples) and non-
substrates (negative samples) were usually constructed for each
single transporter, which can result in overestimated prediction
performance than the actual cases where the number of
substrates is significantly lower than that of non-substrates. It
has been noticed that an increasing number of compounds are
simultaneously assigned as substrates of multiple (two or more
different) transporters. Using the multi-label system, our model
extends the discriminative classes from 1 to 13 at a time.

Although it is much more complicated and challenging to
deal with, our proposed model based on the multi-label system
has two main advantages. Firstly, it can simultaneously predict
multiple transporters of a given compound as the substrate.
Secondly, it does not need prepare the datasets of non-substrates
for each single transporter, as the single-label system does,
because one positive instance of one transporter could possibly
be a negative sample for another. Especially, the single-label
systems will take a lot of labor work to manually collect the
same number of non-substrates with the increasing available
substrates. The multi-label systems can avoid the labor work to
build the datasets of non-substrates due to its innate negative
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FIGURE 2 | Label correlation landscape. (A) The pair-wise heatmap visualization of Cramér’s V statistics. (B) The UpSet visualization of label intersections. The

horizontal bars show the number of substrates per transporter and the vertical bars show the number of substrates per transporter category intersection. The filled

dots denote the transporter whose exclusive substrates are counted in the corresponding vertical bars. The vertical lines stand for the intersection of substrates of

specific transporters. More dots they encompass, more intersections are considered for the tallying of the corresponding vertical bars.

TABLE 2 | Performance comparison of various multi-label classification methods.

Method Hamming loss Aiming Coverage Accuracy Absolute true

ML-kNN 0.0617 73.14% 72.19% 69.01% 63.16%

MTSVM 0.0896 41.67% 54.00% 39.80% 27.63%

RAkELd -NB 0.1081 52.49% 67.57% 50.30% 34.62%

RAkELd -RF 0.0556 72.75% 70.74% 68.92% 64.57%

RAkELd -LGB 0.0513 75.89% 72.87% 71.33% 66.79%

NLSP-XGB 0.0513 77.30% 73.77% 72.70% 68.58%

NLSP-LGB 0.0527 76.86% 73.21% 72.09% 67.88%

NLSP-RF 0.0506 77.64% 73.98% 73.10% 69.18%

NLSP-EXT 0.0530 77.00% 73.82% 72.49% 68.20%

The bold value stands for the best value of specific metrics in these models.

nature among labelset. We believe that the multi-label system
proposed in our study will further benefit the research about the
specificity of membrane transporter substrates, especially for the
drug resistance screening in cancer research.

MATERIALS AND METHODS

Benchmark Dataset
We utilized the same benchmark dataset proposed by Shaikh
et al. (2017) to evaluate the performance of the proposed models,
which contains 2,293 small molecules classified into 13 main
classes of transporter substrates. The chemical structures of those
small molecules were identified by Simplified Molecular Input

FIGURE 3 | Comparison of feature importance between structural similarity-

and semantic similarity-based features. “FP,” fingerprint, stands for structural

similarity-based features. “OT,” ontology, stands for semantic similarity-based

features. ****p < 0.0001.

Line Entry Specification (SMILES). The detailed composition
of the benchmark dataset was listed in Table 5. Thus, the
benchmark dataset S can be formulated as

S = S1 ∪ S2 ∪ . . . ∪ Si ∪ . . . ∪ S12 ∪ S13 (1)
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TABLE 3 | Label-wise analysis of best-performing multi-label learning model.

Membrane protein Accuracy Specificity Sensitivity CCR F1 score AUROC Evaluation method

ABCG2 0.8689 0.7221 0.4847 0.6034 0.5769 0.8908 10 × 10-fold st CV

MDR1 0.8263 0.7796 0.9049 0.8422 0.8371 0.9243 10 × 10-fold st CV

MRP1 0.9521 0.8394 0.4445 0.6419 0.5753 0.9057 10 × 10-fold st CV

MRP2 0.9353 0.7221 0.2541 0.4881 0.3602 0.9133 10 × 10-fold st CV

MRP3 0.9705 0.5975 0.3107 0.4541 0.3885 0.8975 10 × 10-fold st CV

MRP4 0.9748 0.3667 0.1670 0.2668 0.2174 0.9341 10 × 10-fold st CV

NTCP2 0.9940a 0.9250 0.8667 0.8958 0.8909 0.9976 10 × 10-fold st CV

S15A1 0.9743 0.9174 0.8770 0.8972 0.8945 0.9808 10 × 10-fold st CV

S22A1 0.9651 0.9194 0.6096 0.7645 0.7304 0.9422 10 × 10-fold st CV

SO1A2 0.9732 0.4967 0.1333 0.3150 0.2037 0.8676 10 × 10-fold st CV

SO1B1 0.9562 0.5190 0.1410 0.330 0.2152 0.8964 10 × 10-fold st CV

ABCG2 0.76 0.756 0.764 0.76 0.77 Not available 5-fold cvb

MDR1 0.776 0.798 0.751 0.775 0.761 5-fold cvb

MRP1 0.826 0.844 0.812 0.828 0.841 5-fold cvb

MRP2 0.814 0.886 0.746 0.816 0.804 5-fold cvb

MRP3 0.869 0.855 0.885 0.87 0.868 5-fold cvb

MRP4 0.905 0.857 0.949 0.903 0.914 5-fold cvb

NTCP2 0.93 0.93 0.93 0.93 0.93 5-fold cvb

S15A1 0.847 0.819 0.869 0.844 0.864 5-fold cvb

S22A1 0.844 0.875 0.813 0.844 0.84 5-fold cvb

SO1A2 0.711 0.979 0.419 0.699 0.581 5-fold cvb

SO1B1 0.776 0.726 0.829 0.777 0.784 5-fold cvb

aThe bold value stands for the best value of specific metrics in the model of NLSP-RF.
b5-fold cv results are from Shaikh et al. (2017).

TABLE 4 | Methodological differences between Shaikh’s method, and our present method (STS-NLSP).

Difference Shaikh’s method (Shaikh et al., 2017) STS-NLSP

Learning framework Single-label learning Multi-label learning

Machine learning method SVM, random forest, etc. NLSP

Dataset distribution A balanced number of substrates and non-substrates for each single

transporter, respectively

Substrates categorized into 13 transporters with an imbalanced

distribution (910 substrates for a majority of transporter MDR1,

and 39 substrates for a minority of transporter SO2B1)

Features Molecular descriptors, molecular fingerprints and Sequence-based

descriptors for transporter proteins

Average similarity score fingerprints, and semantic similarity

Evaluation metrics Recall, Specificity, Precision, Accuracy, F1 score, MCC Aiming, Coverage, Accuracy, Absolute True, Absolute False

Validation method Five-fold cross validation and independent test using an unseen

external set

Jackknife test

where the subset Si includes the samples from the i-th transporter
(i = 1, 2, . . . ,13), and ∪ stands for the symbol for “union” in the
set theory.

Measuring Label Correlation
In order to evaluate the association between two labels, we
calculated the bias corrected Cramér’s V statistic for all the label
pairs (Bergsma, 2013). Cramér’s V (also referred to as Cramér’s
phi, denoted as φc) statistic is a measure of association between
two categorical variables, ranging from 0 to 1 (inclusive). But
it is shown that sample Cramér’s V tends to overestimate the
correlation compared to its population counterpart (Bergsma,

2013). The bias corrected Cramér’s V statistic is given by (here
n denotes sample size and χ2 stands for the chi-square statistic
without a continuity correction for a contingency table with r
rows and c columns).

Ṽ =

√

ϕ̃2

m̃
(2)

where

ϕ̃2 = max(0,ϕ2 −
(r − 1) (c− 1)

n− 1
) , (3)
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TABLE 5 | Anatomy of the benchmark dataset S according to the 13 classes of transporter substrates (see Equation 1). See Supporting Information for further

explanation.

Subset Name Description Substrates

S1 ABCG2 ATP-binding cassette subfamily G member 2 (BCRP) 344

S2 MDR1 Multidrug resistance protein 1 (P-glycoprotein 1) 910

S3 MRP1 Multidrug resistance-associated protein 1 138

S4 MRP2 Multidrug resistance-associated protein 2 136

S5 MRP3 Multidrug resistance-associated protein 3 63

S6 MRP4 Multidrug resistance-associated protein 4 47

S7 NTCP2 Sodium/taurocholate cotransporter 53

S8 S15A1 Solute carrier family 15 member 1 (peptide transporter 1) 230

S9 S22A1 Solute carrier family 22 member 1 (organic cation transporter 1) 144

S10 SO1A2 Solute carrier organic anion transporter family member 1A2 54

S11 SO1B1 Solute carrier organic anion transporter family member 1B1 87

S12 SO1B3 Solute carrier organic anion transporter family member 1B3 48

S13 SO2B1 Solute carrier organic anion transporter family member 2B1 39

Number of total virtual substrates 2,293a

Number of total structural different substrates 1,846b

aThe number of virtual substrates is calculated as follows: for a structurally same substrate, its contribution to the total number of virtual substrates is 2 if it occurs in two different classes

of transporter substrates; that is 3 if it occurs in three different classes of transporter substrates; and so forth.
bOf the 1,846 structural different substrates, 1,591 belong to one class, 145 to two classes, 62 to three classes, 28 to four classes, 12 to five classes, and 4 to six classes, 3 to seven

classes, and 1 to nine classes. Refer to Supporting Information for elaborated information of substrates listed in each of 13 classes.

ϕ2 =
χ2

n
(4)

and

m̃ = min (r̃ − 1, c̃− 1) , (5)

r̃ = r −

(

(r − 1)2

n− 1

)

, (6)

c̃ = c−

(

(c− 1)2

n− 1

)

. (7)

Feature Representation
We are to describe the effective formulization of samples in
the training and testing datasets in this section. Now, let us
address this from both structural and biological (i.e., chemical
ontology) angles.

Features to Reflect Structural Similarity
The simple 2D fingerprint was chosen to represent the structural
characteristics of small molecules, since it not only has high
efficiency on the measurement of inter-molecular structural
similarity, but also it has achieved effectiveness in similarity
search, virtual screening and QSAR studies, despite its neglect of
information about the target-ligand interactions, in comparison
to 3D shape and docking methods (Duan et al., 2010; Xiao
et al., 2013). In this study, four different types of fingerprints
were generated by Open Babel (O’Boyle et al., 2011), which are
MACCS, FP2, FP3, and FP4, on the basis of SMILES for each
substrate. These fingerprints were binary strings, which encode
the presence or absence of sub-structural fragments. Given two

substrates, their fingerprint similarity was defined by Tanimoto
coefficient (Keum et al., 2016),

TC =
c

a+ b− c
(8)

where a and b are the number of bits set in substrate bit-strings,
c strands for the number of bits shared by two substrates. The
structural similarity score between any pair of two substrates was
calculated by the average Tanimoto coefficients of the four types
of fingerprints between them. A specific sample is formulated as
a 13-D vector via its maximum structural similarity score with
those in each of the 13 subsets,

DStrSim = [α1 α2 α3 . . . α13]
T (9)

where α1 denotes its maximum structural similarity score with
the substrates in the subset S1, α2 for that in the subset S2, and
so on.

Features to Reflect Semantic Similarity
In the present study, we utilized the ontology information of
compounds, named as ChEBI ontology (Degtyarenko et al.,
2008), which was similar to gene ontology, to incorporate the
semantic information. ChEBI provides an ontology database
of chemical entities with curated biological annotations. The
ChEBI ontology information was retrieved from ftp://ftp.ebi.
ac.uk/pub/databases/chebi/ontology/ (“chebi.obo,” July 2017).
Theoretically, ontologies are limited vocabularies can be
conceived as graph structures consisting of “terms” forming the
node set and “relations” of two terms forming the edge set. It
consists of three separate subontologies, of which the roots will
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be “chemical entity,” “role,” and “subatomic particle,” respectively
(Hastings et al., 2013). As has been stated in a series of studies
(Pesquita et al., 2009; Ferreira and Couto, 2010; Couto and Silva,
2011; Couto and Pinto, 2013), there are various ways to measure
semantic similarity relying on information content (IC) between
two entities based on an ontology. Given any compound which
corresponds to a term c on the ChEBI ontology, let p(c) be the
usage frequency of the term c in some corpus. The information
content of a term can be given by

IC(c) = −logp (c) (10)

given two compounds c1 and c2, the following formula was used
to measure the semantic similarity between them:

simLin (c1, c2) =
2× IC(cMICA)

IC (c1)+ IC(c2)
(11)

whereMICA is their most informative common ancestor of both
c1 and c2. A specific sample is formulated as a 13-D vector via
its maximum semantic similarity score with those in each of the
13 subsets.

DSemSim = [β1 β2 β3 . . . β13]
T (12)

where β1 means its maximum semantic similarity score with the
substrates in the subset S1, β2 for that in the subset S2, and so on.

Multi-Label Classification Methods
Network Based Label Space Partition
The NLSP is a newly proposed multi-label learning method
and has achieved top performance in many predictive tasks
(Szymanski et al., 2016). This method has also recently reached
the top performance in the drug classification and enzyme-
substrate selectivity prediction tasks by our group (Shan et al.,
2019; Wang et al., 2019). Inspired by these current advances,
we adopted the data-driven NLSP method for the prediction of
specificity of membrane transporter substrates. NLSP divides the
predictive modeling into training and classification phase

The training phase is divided into four parts. We firstly
establish a label co-occurrence graph on the training set, which
can be weighted or not. Then we detect the community on
the label co-occurrence graph. There are various community
detection algorithms. In this study, we utilized the largest
modularity using incremental greedy search (Blondel et al.,
2008) method and multiple async label propagation (Raghavan
et al., 2007) to fulfill this task. Thirdly, for each community, a
corresponding training set is generated by selecting the original
dataset with label columns presented in the community. Finally,
for each community, a base predictor is learnt on the training
set. In this study, we compared the performance of five types of
base predictors:

1. Extremely randomized trees (ERT) (Geurts et al., 2006) is
a tree-based ensemble method that adds more randomness
compared to random forests by the random top-down

splitting of trees instead of computing the locally optimal cut-
point for each feature under consideration. This increase in
randomness reduces the variance of the model a bit, at the
expense of a slightly greater increase in bias.

2. Random forests (RF) (Breiman, 2001; Manavalan et al.,
2014, 2018b; Lv et al., 2019; Ru et al., 2019) is a tree-based
ensemble method that combines the probabilistic predictions
of a number of decision tree-based classifiers to improve the
generalization ability over a single estimator.

3. Support vectormachine (SVM) (Chang and Lin, 2011; Xiong
et al., 2011, 2012; Sun et al., 2014; Manavalan and Lee, 2017;
Manavalan et al., 2018d; Zhang et al., 2018; Meng et al.,
2019) is a widely used classification algorithm which tries to
find the maximum margin hyperplane to divide samples into
different classes. Incorporated by kernel trick, this method
could handle both linear and no-linear decision boundary.

4. Extreme gradient boosting (XGB) (Chen and Guestrin,
2016) is a newly proposed boosting method, which has
achieved state-of-the-art performance on many tasks with
tabular training data (Chen et al., 2018). Traditional gradient
boosting machine is a meta algorithm to build an ensemble
strong learner sequentially from weak learners such as
decision trees s, while XGB is an efficient and distributed
implementation of gradient boosting machine.

5. LightGBM (LGB) (Ke et al., 2017; Xu et al., 2017; Liao et al.,
2018) is another cutting-edge implementation of gradient
boosting decision trees. Two innovative techniques, gradient-
based one-side sampling and exclusive feature bundling are
incorporated in the model training process, which has proven
to achieve almost similar accuracy as XGB with up to over 20
times speed-up.

In the classification phase, we just perform predication on all the
communities identified in the training phase and fetch the union
of assigned labels. For more technical details refer to Szymanski
et al. (2016).

Benchmark Methods
Inspired by the recent study (Cheng et al., 2017), we compared
NLSP-base methods with another three cutting-edge multi-
label classification methods, ML-kNN (Zhang and Zhou, 2007),
MLTSVM (Chen et al., 2016) and RAkELd-based methods
(Tsoumakas et al., 2011). ML-kNN is a lazy learning model based
on traditional kNN (Fukunaga and Hostetler, 1973). For a new
data instance, it firstly finds the top-k closest samples in the
training set. Secondly, it calculates the number of each label in the
k samples. Thirdly, based on the aforementioned label number,
it estimates the label probability by naïve Bayes method. Finally,
the label probability is generated by maximum a posteriori
estimation. MLTSVM is a variation of twin support vector
machine designed for multi-label scenario proposed by Chen
et al. (2016). As for twin support vector machine (Khemchandani
and Chandra, 2007), it relaxes the parallel constrain of separating
hyperplane in SVM thus boosting the training speed (Joachims,
1998). RAkELd (RAndom k labELsets) is proposed by Tsoumakas
et al. (2011) to overcome the overfitting problem of LP method.
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RAkELd divides the label space into k disjoint subsets and
trains an ensemble of LP classifiers on each subset. Experiments
shows that RAkELd improves the performance over LP by a
considerable margin and is among the best-performing methods
especially for application domains with large number of labels
(Tsoumakas et al., 2011).

Model Evaluation Method
The widely applied model validation methods are k-fold cross-
validation, leave-one-out cross-validation (or called as jackknife
test), and independent tests (or called as holdout method) (Chou
and Zhang, 1995; Kohavi, 1995; Niu and Zhang, 2017; Han et al.,
2018; Zhang et al., 2018; Aparo et al., 2019). Jackknife test uses
a single instance from the sample set as the validation data,
and the remaining samples as the training data. This process
is iterated until each sample in the sample set is used as the
validation case.

As for k-fold cross-validation (CV), the sample set is
segmented randomly into k exclusive subsets with equal size.
One subset of the k subsets is selected as the validation data,
and the remnant k-1 subsets are as training data. This process
is then repeated k time, until each of the k subsets used as
the validation data for one time. A single estimation metric
is finally generated by averaging the results from k folds.
Typically for the classification task, the CV is often performed
in stratified manner, which partitions a dataset so that the
proportion of samples of each class in each fold equals to that
in the whole dataset. Stratified CV is proven to improve CV
in terms of bias and variance (Kohavi, 1995). But the Stratified
CV for multi-label learning task is male-defined. Experiments on
multi-label learning task either utilize presplit training/test set
accompanying a benchmark dataset or the unstratified version
of cross-validation and holdout method (Madjarov et al., 2012;
Zhang and Zhou, 2014). This situation will possible lead to
a scenario where the test set is absent of even single positive
example of rare labels, causing the zero-divisor problem of
various multi-label evaluation metrics. Commonly, researchers
avert this problem via the removal of all the rare labels (Heider
et al., 2013; Riemenschneider et al., 2016; Xing et al., 2019),
which is suboptimal because the rare events are often of greater
importance compared to common ones (Taleb, 2007). Two
possible interpretations of multi-label stratification exist. One
treats the distinct labelsets as unique classes, while another
considers each label independently of the rest. The number of
distinct labelsets often grow exponentially with the number of
labels, which means the first interpretation is not applicable of
the task at hand. The next interpretation was thus utilized in
this article. Inspired by the study of Sechidis et al. (2011), we
utilized 10 times repeated 10-fold iterative stratification cross-
validation to validate our best performing multi-label method
in a label-wise manner. The basic idea of this method is to
iteratively sample each label, respectively in a greed manner.
In the whole process, the rare labels are treated in priority to
avoid zero-divisor problem and grasp instances with greater
importance. The pseudocode of iterative stratification is given
by Algorithm 1.

Algorithm 1: Iterative Stratification (D, n, r1, . . . , rk )

Input: A dataset, D, consists of a set of labels L =
{

l1, .., lq
}

,

designated number of folds k, required proportion of samples in each

fold, r1, . . . , rk (e.g. in 5-fold CV, k = 5, rj = 0.2, j = 1 . . . 5)

Output: Exclusive subsets S1, . . . ,Sk of D

1 // Generate the required number of samples at each fold

2 for j← 1 to k do

3 cj ← |D|rj

4 // Generate the required number of samples of each label at each fold

5 for i← 1 to |L| do

6 // Calculate the samples of each label in the initial set

7 Di ← {(D, L) ∈ D : li ∈ L}

8 for j← 1 to k do

9 cj ← |D
i |rj

10 while |D| > 0 do

11 // Identify the label with the fewest (but at least one) remaining

samples,

12 // Break ties randomly

13 Di ← {(D, L) ∈ D : li ∈ L}

14 l← argmini
(

|Di|
)
⋂

{i :Di 6= ∅}

15 foreach (D, L) ∈ Dl do

16 // Identify the fold(s) with the largest number of required samples

for this label

17 // Break ties by considering the largest number of required

samples, break further ties randomly

18 M← argmaxj=1...k (c
i
j )

19 if |M|= 1 then

20 m ∈ M

21 else

22 M′ ← argmaxj∈M (cj )

23 if |M′| = 1 then

24 m ∈ M′

25 else

26 m← randomElementOf (M′)

27 Sm ← Sm
⋃

{(D, L)}

28 D← D{(D, L)}

29 // Update desired number of examples

30 foreach li ∈ L do

31 cim ← cim − 1

32 cm ← cm − 1

33 return S1, . . . ,Sk

Performance Metrics for Multi-Label
Learning
Multi-label classification algorithms have widely been used in
various bioinformatic applications (Zou et al., 2013; Yuan et al.,
2016; Wan et al., 2017; You et al., 2018, 2019). Inspired by a set of
five metrics established by Chou (2013) and the recommendation
of Madjarov et al. (2012), we used the following five metrics to
evaluate our multi-label learning model:
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where N denotes the total number of samples, M stands for
the total number of labels,

⋃

represents union in set theory
and

⋂

represents intersection in set theory, Lk denotes the true
label set of k-th sample, L∗

k
means the predicted label vector

of k-th sample, ⊖ is the symmetric difference between two
sets, and

∆ (Lk, Lk∗) =

{

1, if all the labels in Lk equal Lk∗

0, otherwise
(14)

These above metrics have been widely used in bioinformatic
applications (Cheng et al., 2017).

Performance Metrics for Single-Label
Learning
Apart from the metrics in the multi-label framework, we also
utilized the following metrics to asses our methods in a label-wise
manner (He et al., 2018; Manavalan et al., 2018a,c, 2019; Qiao
et al., 2018; Xiong et al., 2018, 2019; Xu et al., 2018; Zhang et al.,
2018a,b,c, 2019a,b,c; Bian et al., 2019; Su et al., 2019; Wei et al.,
2019; Zeng et al., 2019; Zhu et al., 2019; Zou et al., 2019).







































































Accuracy =
TP + TN

TP + TN + FN + FP

Specificity =
TN

TN + FP

Sensitivity =
TP

TP + FN

F1 =
2

1
TP

TP + FP

+
1

Sensitivity

CCR =
Sensitivity+ Specificity

2

(15)

where TP, TN, FN, TN are true positives, true negatives,
false positives and false negatives for the prediction of each
label respectively. In addition, the area under the receive
operating characteristic curve (AUROC) were also calculated by
trapezoidal rule.

CONCLUSION

Accurate prediction of the specificity of substrates for a panel
of membrane transporters is of pivotal importance both in
the ADMET profiling of drugs and the therapeutics of various
cancers. The active drug efflux mediated via transporters lies
in the junction of pharmacokinetics and pharmacodynamics.
Novel chemicals are impossible to take any effect on cancers
if they can be transported out of malignant cells even with
satisfactory pharmacokinetic properties and potent in vivo anti-
cancer activity. In addition, cancer stem cells are characterized
by the expression of various transporters, which provides a
vicious mechanism enabling cancer recurrence even many years
after initial therapy. Identifying compounds without affinity to
membrane transporters are prerequisite to the eradication of

latent cancer stem cells. The aim of this study is to develop multi-
label classification models to predict the classes of transporters
given a substrate compound. This method utilized a hybrid
of similarity-based features based on structural fingerprints
and chemical ontologies. It was shown that the integration
of 2D fingerprint and semantic similarity was a feasible and
effective way to identify the specificity of a transporter substrate
molecule. Various multi-label classification models such as ML-
kNN, MTSVM, RAkELd and NLSP were tested and compared
on the benchmark dataset. NLSP-RF was finally selected for
constructing the prediction model. To our best knowledge,
this article is the first study to apply the multi-label system
into the task of predicting of the specificity of membrane
transporter substrates.

However, due to the imbalanced nature of classes on
the benchmark dataset, our multi-label prediction system
preforms unsatisfactory on the proteins of MRP2, MRP3,
MRP4, SO1A2, and SOB1B1 in view of F1 score. In the
next step, we will make efforts to address the imbalanced
datasets via high throughput screens to boost the prediction
performance on the specificity of membrane transporter
substrates and deploy the optimized final model on a
dedicate webserver for clinical and pharmacological usage. Our
ultimate objective is to develop pan-transporter inhibitors for
anti-cancer therapeutics.
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