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ABSTRACT Gene duplication plays an important role in the evolution of genomes and interactomes.
Elucidating how evolution after gene duplication interplays at the sequence and network level is of great
interest. In this work, we analyze a data set of gene pairs that arose through whole-genome duplication
(WGD) in yeast. All these pairs have the same duplication time, making them ideal for evolutionary
investigation. We investigated the interplay between evolution after WGD at the sequence and network
levels and correlated these two levels of divergence with gene expression and fitness data. We find that
molecular interactions involving WGD genes evolve at rates that are three orders of magnitude slower than
the rates of evolution of the corresponding sequences. Furthermore, we find that divergence of WGD pairs
correlates strongly with gene expression and fitness data. Because of the role of gene duplication in
determining redundancy in biological systems and particularly at the network level, we investigated the role
of interaction networks in elucidating the evolutionary fate of duplicated genes. We find that gene
neighborhoods in interaction networks provide a mechanism for inferring these fates, and we developed an
algorithm for achieving this task. Further epistasis analysis of WGD pairs categorized by their inferred
evolutionary fates demonstrated the utility of these techniques. Finally, we find that WGD pairs and other
pairs of paralogous genes of small-scale duplication origin share similar properties, giving good support for
generalizing our results from WGD pairs to evolution after gene duplication in general.
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Gene duplication is a major evolutionary event both for the genome
sequence and for the protein2protein interaction (PPI) network
growth. It is considered to be a major contributor to shaping and
refactoring the functionalities of the organism and thus has been
widely studied especially in terms of its role in evolution. After the
seminal work of (Ohno 1970), more and more analyses have been
conducted and more models have been developed for gene duplica-
tion on the basis of ever-increasing data sources (Dittmar and Liberles
2010). Among all the studies, some focused on gene duplication from
sequence level, and to estimate, for example, probabilities, timings,
and rates of duplication events (Pál et al. 2005; Pinney et al. 2007;
Paps et al. 2009). Some focused at the role of duplication in network

evolution and proposed graph-theoretic models of network growth,
such as the duplication-attachment model (Wiuf et al. 2006) and
duplication-divergence model (Bhan et al. 2002; Zhang et al. 2006;
Ratmann et al. 2007). Several other studies also have explored how
duplicated genes maintain, lose, or modify their functions (Jukes and
Cantor1969; Gibson and Goldberg 2008; Innan and Kondrashov
2010; Li et al. 2012).

From a network (e.g., protein2protein interaction, or PPI, net-
work) perspective, gene duplication results in the birth of new gene
copy whose connections in the network are identical to those of the
ancestral copy immediately before duplication. After gene duplication,
because of the accumulation of different mutations on each of the
duplicated pair, gain and loss of PPI connections in the network
would be expected. However, little is known about how mutations
at the sequence level of a duplicate gene pair would affect the evolu-
tion of an interaction network. Qian et al. (2011) experimentally
examined 87 potential interactions between Kluyveromyces waltii pro-
teins, whose one-to-one orthologs in the related budding yeast Sac-
charomyces cerevisiae have been reported to interact. In their study,
duplicated genes are avoided to obtain the one-to-one correspondence
in two different species. In other words, while this study considered
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network evolution and its rate, it focused on orthologs and deliberately
excluded paralogs.

Given the central role that duplication plays in the evolution of
interaction networks, it would be interesting to understand how
networks shed light on the evolution of gene duplicates, and how to
estimate evolutionary rates of network evolution by using duplicated
genes. To investigate these issues, we focus on the whole-genome
duplication (WGD) in yeast. An ancestor of S. cerevisiae underwent
a WGD event (Wolfe and Shields 1997; Kellis et al. 2004). Only
approximately 10% of WGD gene pairs (550 pairs) are still present
in the extant S. cerevisiae genome (Kellis et al. 2004). Because the
duplication of these survived WGD gene pairs occurred at the same
time and their sequence evolved at potentially different rates, these
WGD gene pairs can be used as ideal subjects to learn how the
evolution rate varies among different gene duplication pairs at both
sequence level and network level.

Here, we investigated the evolutionary rates of the different WGD
pairs and found some variations in these rates, although within a small
range. Correlating these rates with sequence, network, and fitness
data, we found that gene expression and fitness correlate strongly with
evolutionary rates of WGD duplicates. As essentiality and redundancy
of genes interplay with expression and fitness effects, we set out to
understand this interplay using WGD pairs. We first established rates
of gain/loss of network interactions by using sequence divergence. We
also developed a model of correlation between sequence divergence
and network divergence, which captures the synchronized evolution
at the sequence and network levels. Then, we used network local
topologies (neighborhoods of WGD pairs) as proxies for functional
similarity and divergence. On the basis of this connection between
local topologies and functional similarities, we developed an expectation-
maximization algorithm and learned the evolutionary fates of
WGD pairs and correlated them with epistatic effects. Our results
reveal the extent of conserved functionalization (CF), subfunction-
alization (SF), and neofunctionalization (NF) that ensued after WGD.
Furthermore, epistatis analyses correlated well with the inferences
made.

Our results demonstrate the power of WGD as “calibrated” data
points to investigate network evolution and the use of networks and
their topologies to shed light on evolution after gene duplication, and
in particular, after WGD. We find gene pairs that arose due to WGD
have similar properties to those of gene pairs that arose due to small-
scale gene duplication events. This observation further generalizes our
results from evolution after WGD to evolution after duplication.

METHODS

An EM algorithm for determining the fate of WGD
gene pairs
From a network perspective, the fate of a WGD gene pair can be
inferred from the shared neighborhoods of the pair. To achieve this
task, we developed an expectation-maximization (EM) that is inspired
by the work of Zeng and Hannenhalli (2013). The original method of
Zeng and Hannenhalli (2013) characterizes function by tissue-specific
gene expression level, whereas we characterize function by normalized
neighborhood sizes. The approach of Zeng and Hannenhalli (2013)
does not work here because they use sequence similarity of paralogs to
construct a phylogenetic tree whose branch lengths serve as a surrogate
of time since duplication. We, instead, target WGD pairs in which all
the genes were duplicated at the same time.

Our EM algorithm works as follows. Let the neighborhood of
paralog genes g1 and g2 be both N0 right after duplication, and be

N(g1) and N(g2) be the neighborhoods at present. Let the size for
normalization be ttl = |N(g1) [ N(g2)| and define

x ¼
��N

�
g0
���

ttl
a ¼

��N
�
g1
���

ttl
b ¼

��N
�
g2
���

ttl
sh ¼

��N
�
g1
� \ N

�
g2
���

ttl
:

Under pure CF, we expect a = b = x = sh = 1; under pure SF, we
expect a + b = x = 1, sh = 0; and, under pure NF, we expect a = x (or
b = x) and a + b = 1 . x, sh = 0. We further normalize the three
values by their maximum value as follows:

x ¼ x
maxðx; a; bÞ; a ¼ a

maxðx; a; bÞ; b ¼ b
maxðx; a; bÞ:

The probabilistic model for classification can be captured as: (1) SF:
a + b = 1; (2) CF: a + 1 = 2x; and, (3) NF: x = a, x# 0.5. For any given
x, y, and z values, it is classified by a plane for the feature points.

Suppose that under CF model, rate of losing one of the two edges
originated from duplication is md, and rate of gaining a new edge is
ma; under SF model, rate of losing one of the two edges originated
from duplication is mD, and rate of gaining a new edge is ma; under NF
model, rate of losing one of the two edges originated from duplication
is mD, and rate of gaining a new edge is mA (assuming neofunctiona-
lizaiton is accompanied by subfunctionalization [SF]). In general,
mD . md and mA . ma.

Let u be the set of parameters, including all the m values listed
previously. Let Z(g1, g2) 2 {CF, SF, NF} be the fate for WGD gene pair
g1 and g2, and sh(g1, g2) be the observed normalized shared neighbor-
hood size (|N(g1) \ N(g2)|/ttl). We then apply the standard EM
framework as follows:

1. Initialize the parameters u to some random values.
2. Compute the best value for Z given these parameter values. That

is, according to the probabilistic model for classification, under
current u value, infer the most probable fate for each WGD gene
pair.

3. Use the computed values of Z to compute a better estimate for the
parameters u.

4. Repeat steps 2 and 3 until converge.

To avoid local maxima, we repeated the process with several
different starting values of u.

RESULTS
All results reported herein are based on WGD pairs of genes and PPI)
data from S. cerevisiae. The PPI data were downloaded from the DIP
database (Xenarios et al. 2000), which has high confidence value for
links (interactions). To validate our results, we also used the low-
throughput links and links supported by more than a single high-
throughput experiment in the BIOGrid database (Stark et al. 2006).
The sequence and gene family data were downloaded from Butler
et al. (2009).

Sequence divergence of WGD pairs
As we set out to use a set of whole-genome duplication pairs, or WGD
pairs for short, we first inspected the variability across WGD pairs in
terms of sequence divergence, mutation rates, and other properties.
Consider two sequences that have diverged for time t, and let r be the
mutation rate per site. Further, assume that the observed normalized
distance between the two sequences is p (that is, p is the proportion
of sites at which the two sequences differ). Assuming equality of
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substitution rates among sites and equal amino acid frequencies, we
have the relationship (Nei and Kumar 2000)

ð12 pÞ ¼ e22rt :

For S. cerevisiae WGD pairs, t is estimated to be approximately 100
million years (Wolfe and Shields 1997). Given that we can compute
p from the WGD pairs, we can compute the mutation rate r for each
pair of WGD gene sequences as

r ¼ 2lnð12 pÞ=ð2�tÞ:
Because t is the same for all WGD gene pairs, in this work we will
compute rt instead:

rt ¼ 2lnð12 pÞ=2: (1)

The distribution of rt values of WGD pairs is given in Figure 1.
As Figure 1 shows, a normal distribution with mean 0.3268 and

SD as 0.1685 gives a good fit for the data. Notice that a big portion of

WGD pairs have rt values that are close to 0, which means a large
portion of WGD pairs do not diverge much from each other. Also
notice that the overall possible value for rt is within a relatively small
range ([0, 0.8]), which means the mutation rate for different WGD
pairs are not very different from each other.

From Figure 1A, we can see that the rt values of WGD pairs can be
fitted to a normal curve except for the peak at rt = 0. Because rt here is
computed based on the equation 1 2 P = e2rt and 1 2 p is the
sequence identity, we plotted the distribution of sequence identity
proportions in Figure 1B for both WGD pairs and other paralogous
pairs (pairs of paralogs that are the result of a small-scale duplication
event). Although non-WGD paralogous pairs have different times of
duplication, the overall trend shows that WGD pairs have much
greater paralog sequence identity, which could mean that either the
mutation rate r is smaller for WGD pairs than for non-WGD pairs, or
that many of the individual small-scale duplication events are more
recent than the WGD event.

One caveat of observing high level of sequence identity for WGD
pairs is that WGD pairs may have gone through a significant amount

Figure 1 (A) Distribution of rt of WGD pairs with normal curve fitting (mean = 0.3268, SD = 0.1685). (B) Distribution of proportion of sequence
identity for WGD pairs and pairs of other paralogs. Because the duplication time of “other paralogs” pairs is unknown, we do not use rt here.

Figure 2 For the set of WGD pairs, the lengths of gene sequences, the number of copies within the families, and the degree of the genes,
respectively, are shown against rt.
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of interlocus gene conversions. At least 10% of WGD pairs in yeast
have experienced gene conversion and the average time length of
concerted evolution is about 58~75 million years (Z. Lin, unpublished
data), which could potentially result in a small shift to the right in
Figure 1A. It is important to note that different non-WGD paralogous
pairs originated from duplication events at different times.

What influences the evolutionary rates of different
WGD pairs?
As we stated previously, it seems that the mutation rates are not very
different for the different WGD pairs. Still, variability exists in the
rates, and the question is: what factors play a role in this variability?
To answer this question, we correlated the divergence rates of WGD
pairs with three metrics: the length of gene sequences, the number of
gene copies in the family, and the degree of the gene in the PPI
network. The results are shown in Figure 2.

We calculated Pearson’s correlations for data in each of the three
panels. The correlation between rt and the gene sequence length is
0.261, with P = 0.0002, which implies that WGD pairs of longer gene
sequences diverge more than pairs with shorter gene sequences. This
finding makes sense because r is the mutation rate per site, and longer
gene sequences accumulate more mutations and result in greater
degrees of divergence between the genes involved in a WGD pair.
The correlation between rt and the copy number is 20.071, with
P = 0.1382, which indicates almost no correlation between the two.
The correlation between rt and the average degree of WGD pairs is
20.135, with P = 0.0005, which implies that WGD pairs with greater
connectivity diverge slower at the sequence level. However, this might

be a case of cause-effect: certain WGD pairs evolve slower, resulting in
the loss of fewer neighbors, and thus greater connectivity. Further-
more, this negative correlation between divergence and connectivity is
reasonable because an increase number of mutations, particularly
those in regions involved in the interactions, would result in an in-
creased (albeit not necessarily at the same rate) loss of interactions.
This agrees with recent findings on how mutation at the genomic
level, combined with neutral evolutionary forces, shape emergent
properties at the network level (Ruths and Nakhleh 2013) and can
explain correlations between network properties and gene duplicabil-
ity (Zhu et al. 2012).

Furthermore, we used the shared neighborhood size as a measure
of gene divergence at the network level and conducted a series of
similar analyses to understand whether there is a correlation between
“network-level divergence” and those properties. For a given gene g,
we denote by Nt(g) the set of all neighbors of gene g in some protein
interaction network of interest at time t during evolution. Consider
two paralogous genes, g1 and g2, where g2 is duplicated from g1 at time
0. We denote by sht(g1, g2) = |Nt(g1) \ Nt(g2)| denote the size of the
shared neighborhoods of g1 and g2 at time t. In this part, because we
are considering pairs of extant WGD pairs, we drop the t in the
subscript. Figure 3 shows the gene length, copy number, and degree
properties of individual genes as they relate to the shared neighbor-
hood sizes of their containing WGD pairs.

We calculated Pearson’s correlations for the data. The correlation
between shared neighborhood size and the gene length is 0.106, with
P = 0.0008, and the correlation between shared neighborhood size and
the average degree of the two genes is 0.558, with P, 2.2e216. These

Figure 3 For the set of WGD pairs, the lengths of gene sequences, the number of copies within the families, and the degree of the genes,
respectively, are shown against sh(g1, g2).

Figure 4 (Left) Expression levels and (right)
fitness levels of single genes as a function of
the rt values of WGD pairs. For a given WGD
pair, the expression levels and fitness levels of
both genes are plotted individually in the cor-
responding rt value for their containing pair.
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results given the impression of a much stronger correlation between
WGD pairs properties and their network divergence than with their
sequence divergence. However, one thing to notice is that the shared
neighborhood size is highly correlated to the node degrees. If we use
shared neighborhood size as a measure of network divergence, then it
is possible that all the observations of shared neighborhood size are
simply artifacts of degrees in the PPI network. To test this hypothesis,
we computed the normalized shared neighborhood size, which is
computed as the shared neighborhood size divided by the number
of neighbors of either of the genes in the pair. The correlation between
normalized shared neighborhood size and the gene length is 0.028,
with P = 0.3963, the correlation between normalized shared neighbor-
hood size and the copy number is 0.046, with P = 0.1612, and the
correlation between normalized shared neighborhood size and the
average degree of the two genes is 20.099 with P = 0.002. In other
words, when we normalize the shared neighborhood size, none of the
former observed correlations remain significant.

Further, we correlated divergence at the sequence level with gene
expression and fitness levels. For gene expression levels, we used the
data from Spellman et al. (1998) and (Tsankov et al. (2010). These
data are obtained by different groups using different experimental
methods, and we apply our analysis to both data sets to validate
our results. For gene fitness levels, the data are obtained from Giaever
et al. (2002), who use five different media under 31 different condi-
tions. We used the normal conditions (condition 18 and 19 in Giaever
et al.2002) and computed the average fitness values in the five media.
Plots of rt values vs. expression and fitness levels of WGD pairs are
given in Figure 4.

The correlation between rt and expression levels is 20.3263, with
P , 2.2e216, indicating that WGD pairs that diverge faster tend to
have lower expression levels. The correlation between rt and the fit-
ness levels is 20.285, with P = 7.16e27, indicating that genes that
diverge faster also tends to have lower fitness levels. These strong
correlations might have to do with the fates of the duplicated genes,
and how redundancy, or lack thereof, created by duplication inter-
plays with fitness effects of the gene pairs. We set out to investigate
this by first establishing a connection between WGD pairs evolution

and the evolution of their respective interactions in a PPI network,
and then learning the fates of duplicated genes from the network
topology.

The rate of PPI evolution as a function of
sequence divergence
Recall the definitions of Nt(g) and sht(g1, g2) given previously. Fur-
thermore, we denote by dt(g1, g2) the distance between the two
sequences of g1 and g2 (in terms of the number of positions they differ
at). It is reasonable to assume that sh0(g1, g2) = N0(g1) = N0(g2) and
that d0(g1, g2) = 0. As time progresses, both the sequences of g1 and g2
as well as Nt(g1) and Nt(g2) begin to diverge, the former due to
mutations at the sequence level and the latter due to gain/loss of
interactions.

Figure 5 The average (left) and maximum (right) shared neighborhood sizes of WGD pairs as functions of the divergence between the pair’s
sequences. The normalized sequence distance is d(g1, g2)/L(g1, g2). The red curves are the results of fitting data to Equation (2). Estimated Lmℓ

0.9261 for the average neighborhood size case and 0.9533 for the maximum neighborhood size case. Estimated Lma is about 0.0001 in both
cases.

Figure 6 Three fates of a duplicated gene from a network per-
spective.
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Suppose after some time T, we have dT = Lp positions, where L = L
(g1, g2) is the length of the aligned portion between the two sequences,
and p is the proportion of sequence difference at this length. We
discard insertions/deletions as the rate of nucleotide substitution is
estimated to be orders of magnitude greater than that of insertion
and deletion (Saitou 1994). Let us assume that of the d differences
at time T, a proportion of mℓ result in the loss of new interactions, and
a proportion of ma result in the gain of new interactions.� That is, mℓ

and ma can be thought of as the proportions of sequence substitutions
that result in the loss and gain of interactions, respectively. Assuming that
mℓ and ma are very small (which is a reasonable assumption), and that in
two duplicate genes, all positions in the sequences have identical mutation
rates, we obtain

shT
�
g1; g2

�¼ að12mℓÞd þ d � ma;

where a =| sh0(g1, g2)| is the initial number of shared neighbors. The
rationale for this equation is as follows. Of d mutations, each of the

two paralogous genes gains a new edge with rate ma, so that the
expected number of newly gained edges is d � ma. For the shared
neighbors, the gain of edges needs to happen for the same neighbor
of both g1 and g2 or regain a lost edge such that it can contribute to
shT(g1, g2).

Replacing d with Lp in the aforementioned formula, we obtain shT
(g1, g2) = a(1 2 mℓ)Lp + Lp � ma. When mℓ is very small, we have
(1 2 mℓ)L �1 2 Lmℓ. Thus, we obtain

shT
�
g1; g2

�¼ að12LmℓÞp þ p � Lma: (2)

As we are interested in obtaining estimates of mℓ and ma from WGD
pairs, we fit the function in Equation (2) to data obtained from
WGD pairs from S. cerevisiae that are the result of the WGD event
that occurred in yeast approximately 100 million years ago. Because
different WGD pairs with the same sequence divergence have dif-
ferent shared neighborhood sizes, we considered both the average
and maximum shared neighborhood sizes for given sequence diver-
gence values. Figure 5 shows the results with the function fitting.

In a recent study by Qian et al. (2011), the authors experimentally
examined 87 potential interactions between K. waltii proteins, whose
one-to-one orthologs in the related budding yeast S. cerevisiae were
reported to interact. Their estimate of the evolutionary rate of protein
interactions was (2.6 6 1.6) · 10210 per PPI per year, which is three
orders of magnitude lower than the rate of protein sequence evolution
measured by the number of amino acid substitutions. In other words,
our analysis here provides a similar results based on a different data
set. It is interesting to combine these results with the recent findings of
(Teichmann and Babu 2004) who showed that about 90% of inter-
actions in transcription regulation networks of Escherichia coli and
S. cerevisiae arose due to gene duplication.

Although our results agree well with the results of Qian et al.
(2011), the approaches taken are very different. Qian et al. (2011).
examined PPI divergence after speciation, whereas we examined PPI
divergence after WGD. In other words, Qian et al. (2011) examined
PPIs between interacting pair (A, B) and their interacting orthologs, or
interlogs, (A9, B9), whereas we examined PPIs between two pairs (A,
C) and (A9, C) where A and A9 are paralogs. The fact that all pairs of
paralogs we consider are the result of the WGD even in S. cerevisiae
allows us to use the event as a calibration point and make use of the
fact that all pairs have exactly the same age.

Figure 7 Distribution of normalized shared neighborhood sizes of
WGD pairs.

Figure 8 Fitness effects of double-knockouts of WGD pairs in the groups (A) CF, (B) NF, and (C) SF. The dashed line corresponds to no epistasis,
whereas the regions above and below the line correspond to buffering and aggravating epistasis, respectively.
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It is important to note that the results in Figure 5 are based on data
from the DIP database of PPI networks. This database records only
high-confidence links and has a relatively high false-negative rate
compared with a false positive rate. We repeated the same analysis
by using data from the BIOGrid database (with only links that are
supported either by low-throughput experiments or by more than
a single high-throughput experiment). The trends we obtained are
similar to those in Figure 5, with the other difference that the data
points and fitted curves are shifted up slightly. The estimated mℓ and
ma values were very close to those estimated using the DIP database.

The fate of WGD gene pairs
After gene duplication, duplicates can have different functional fates,
such as maintaining the same function as the ancestral single-copy
gene, developing a new function, etc. Given our previous results
regarding the use of shared neighborhoods of WGD pairs to estimate
the rate of divergence, we here use the neighborhoods of WGD pairs
as proxies of their functional fates. For CF, the two genes in a WGD
pair maintain exactly the same set of neighbors; in SF, each gene in
a WGD pair maintains a subset of original neighbors, whereas the
union of their neighbors equals the original set. Finally, in NF, one

gene in the WGD pair develops a new set of neighbors while losing all
of the duplicated neighbors. According to this strategy, pure conserved
functionalization would result in a normalized shared neighborhood
size equal to 1, whereas pure subfunctionalization and neofunction-
alization would both result in a normalized shared neighborhood size
of 0. Figure 6 illustrates these three categories.

In Figure 7, we show the distribution of normalized shared neigh-
borhood sizes of WGD pairs. As Figure 7 shows, only a very small
portion of the WGD pairs actually maintain exactly the same set of
neighbors. Approximately 40% of the pairs have totally exclusive
neighbors, and most of the gene pairs (60%) share some neighbors
while also maintaining some different neighbors. This agrees with the
widely known fact that pure SF and NF are rare, and that a large
fraction of gene duplicates undergo rapid SF followed by prolonged
period of NF referred to as the sub-neo-functionalization model (HE

and Zhang 2005).
To estimate the actual proportion of gene pairs whose fate is CF,

SF, or NF (also, sub-neo-functionalization), we developed an EM
algorithm that was inspired by Zeng and Hannenhalli (2013) to esti-
mate the fates from network data (see Materials and Methods for full
details). Using this algorithm, we estimate that approximately 729% of

Figure 9 The PPI degree, gene length, gene expression level, and fitness level of WGD pairs and non-WGD pairs are shown.
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WGD pairs underwent CF, approximately 18221% WGD pairs un-
derwent NF, and that the rest of WGD pairs (70275%) underwent SF.

To further explore how these estimated fates correlate with fitness
data (as we discussed previously), we categorized gene fitness of WGD
pairs by their inferred types. Segre et al. (2005) studied the fitness and
genetic interactions in yeast on a genome scale and grouped pairs of
genes into one of the three categories according to epistasis analysis.
Let w1 and w2 be the effect on fitness of single-knockout of genes g1
and g2, respectively, and let w12 be the effect on fitness of double-
knockout of both g1 and g2. Let e = w12 2 w1 � w2. By inspecting the e
values for the different WGD pairs, each pair can be categorized as
“no epistasis” (e = 0), “aggravating” (e , 0), or “buffering” (e . 0).
We obtained the knockout fitness data from Segre et al. (2005) and
inspected the epistasis status of the three WGD pair groups (CF, NF,
and SF).

For all 550 WGD pairs, only 182 pairs have both PPI data for
inferring duplication type based on our methodology and data from
epistasis analysis. The values of w12 and w1 � w2 for WGD pairs in the
three groups are shown in Figure 8.

For the SF group, 2 pairs have no epistasis, 45 pairs are buffering,
and 77 pairs are aggravating. For the NF group, 0 pairs have no
epistasis, 11 pairs are buffering, and 32 pairs are aggravating. For the
CF group, 0 pairs have no epistasis, 3 pairs are buffering, and 12 pairs
are aggravating. Overall, WGD gene pairs tend to have more of
a buffering epistatic effect, and the trend is more obvious when the
duplication pairs evolve with CF.

Dean et al. (2008) pointed out that most duplicated genes are
functionally redundant. For essential reactions, only 0.2% show neg-
ative epistasis. For nonessential reactions, 4% show negative epistasis.
Our results show that WGD pairs have high proportion with negative
epistasis, which means WGD genes are highly redundant. Also, the SF
group has the lowest ratio of aggravating pairs while CF group has the
highest ratio of aggravating pairs. This indicates that CF group is most
functional redundant among the three groups, which makes sense
given the conserved functionality. Furthermore, these result demon-
strate the utility of using network structure for determining the evo-
lutionary fate of gene duplicates.

DISCUSSION
In this work, we took a network perspective on the evolution of WGD
pairs and investigated WGD pairs in yeast with respect to the yeast’s
PPI network. The calibrated time of all gene pairs in this data set
makes it an ideal data set for understanding evolution of gene dupli-
cations. We correlated divergence of WGD duplicates at the sequence
and network level. Further, we demonstrated strong correlations be-
tween WGD pair divergence and fitness. Finally, using the neighbors
of WGD pairs as proxies for the functions of genes in these pairs, we
developed a method to infer the evolutionary fate of WGD pairs and
then correlated the categories of WGD pairs with different fates with
fitness effects. Our results indicate that network connectivities can
provide a powerful tool to investigate and understand the evolution
of gene duplicates.

Notice that the estimated ma is much smaller than mℓ, which means
that during evolution, the chance to add an edge for one or both gene
in the duplicated pair is about three orders of magnitude smaller than
deleting an edge. This agrees with the hypothesized DMC (duplica-
tion-mutation with complementarity) model (Middendorf et al. 2005)
of network evolution regarding gene divergence after duplication. In
other words, these types of analyses can help inform whether com-
monly used models of network evolution are plausible, as well as
derive new ones.

It is important to point out that network data does not come
without error. Indeed, network data are very erroneous when com-
pared, for example, with sequence data. Although we conducted our
analyses independently with two sources of data (DIP and BioGrid),
and despite the good agreement between the two, we still expect
inaccuracies of network data to be present and affect the results. As
technologies for deriving interaction data continue to improve, it would
be interesting to apply these methods to more accurate network data.

Another factor that could affect our results is gene conversion,
because interlocus conversion events that occurred after WGD sig-
nificantly affect the estimated sequence divergence and, consequently,
the correlations between sequence and network divergence. It is es-
timated that only approximately 10% gene pairs underwent gene
conversion, and it would be interesting to investigate how gene
conversion comes into play between sequence and network divergence.

Finally, a question naturally arises as to whether WGD pairs are
a good representative of gene duplicate pairs in general. To investigate
this question, we inspected four properties of WGD and non-WGD
pairs: PPI degrees, lengths of gene sequences, expression levels, and
fitness values. The results are shown in Figure 9.

The figure clearly shows that with the exception of gene lengths,
WGD and non-WGD pairs agree in terms of other properties. These
results indicate that WGD pairs provide a good sample of gene
duplicates in general. Given the knowledge about their duplication
time, they are the ideal candidates of gene duplications to shed light
on network evolution, and to translate network-based information
from WGD pairs to general duplicate pairs. These results further
highlight the significance of our findings on modeling network
evolution and developing model-based methods for ancestral network
reconstruction (Navlakha and Kingsford 2011; Zhu and Nakhleh 2012).

�Here, we are assuming that gain and loss of interactions are governed
mainly by substitutions at the sequence level.
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