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A selenium-catalysed para-amination of phenols
Dingyuan Yan1, Guoqiang Wang2, Feng Xiong1, Wei-Yin Sun1, Zhuangzhi Shi 1,

Yi Lu1, Shuhua Li 2 & Jing Zhao 1

Antioxidant enzyme glutathione peroxidase (GPx) decomposes hydroperoxides by utilizing

the different redox chemistry of the selenium and sulfur. Here, we report a Se-catalysed para-

amination of phenols while, in contrast, the reactions with sulfur donors are stoichiometric. A

catalytic amount of phenylselenyl bromide smoothly converts N-aryloxyacetamides to N-

acetyl p-aminophenols. When the para position was substituted (for example, with tyrosine),

the dearomatization 4,4-disubstituted cyclodienone products were obtained. A combination

of experimental and computational studies was conducted and suggested the weaker Se−N

bond plays a key role in the completion of the catalytic cycle. Our method extends the

selenium-catalysed processes to the functionalisation of aromatic compounds. Finally, we

demonstrated the mild nature of the para-amination reaction by generating an AIEgen 2-(2′-
hydroxyphenyl)benzothiazole (HBT) product in a fluorogenic fashion in a PBS buffer.
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Selenium is an essential biological trace element discovered
by Jöns Jacob Berzelius in 1818 1. The selenium analogue of
cysteine, known as selenocysteine2–4 (Sec), is the main

biological form of selenium. The most studied selenoenzyme
glutathione peroxidase (GPx) has an Sec residue in its active site
that is responsible for decomposing hydroperoxides (Fig. 1a)5,6.
Besides, the flavin-containing redox enzyme thioredoxin reduc-
tase (TrxR)7–9 and the deiodinating enzyme iodothyronine
deiodinase (ID)10,11 represent other key selenium-containing
enzymes in biocatalysis.

Selenium-containing small molecules, such as ebselen and its
analogues, have also exhibited important antioxidant activity as
GPx mimics12–15. Organoselenium-catalysed reactions have been
widely employed in a number of different reactions16–18, and
substantial progress has been made by Breder19–21, Wirth22–24,
Denmark25,26, Yeung27 and Zhao28–31 in recent years. Notably,

selenium has emerged as appropriate alternatives to precious metals
as catalysts for the construction of C–N bonds32–34. Breder et al.
discovered an elegant selenium-catalysed amination of allyl and
vinyl using N-fluorobenzenesulfonimide as oxidant and nitrogen
source35. Furthermore, Zhao et al. accomplished a powerful pyr-
idination of 1,3-dienes using (BnSe)2 as a catalyst36 (Fig. 1b).
However, no selenium-catalysed processes for the functionalisation
of aromatic compounds have been developed. One challenge might
be the electrophilic selenium catalysts react with the aryl rings
directly, leading to the deactivation of catalyst37,38. We thought that
a more nucleophilic site, to accommodate with selenium catalyst
temporarily, might be helpful for competing with the deactivation.
We herein report a strategy to first form an intermediate with an
adjacent, redox versatile Se–N bond which undergoes two succes-
sive sigmatropic rearrangements to generate the para-amination
product and regenerate the selenium catalyst (Fig. 1c).
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Results
Model reactions and substrate scope. We started by treating N-
phenoxyacetamide (1a) with 1.0 equiv. of N-phenylsela-
nylphthalimide (C1); we observed the para-aminated phenol
(2a, acetaminophen) in 47% yield. To our delight, when cata-
lytic amount of C1 (10 mol%) was used, 2a can be obtained in
38% yield (Supplementary Table 1, entries 1−3). This result
compelled us to explore other organoselenium reagents that
might catalyse this reaction. No product was detected when
diphenyl diselenide (C2) and diphenylselane (C3) were used

(Supplementary Table 1, entries 4 and 5). Both PhSeCl (C4)
and PhSeBr (C5) proved to be efficient catalysts in 2,2,2-tri-
fluoroethanol (TFE) with 60 and 79% yields, respectively
(Supplementary Table 1, entries 6 and 7). Screening of a variety
of solvents (including MeOH, DMSO, THF, MeCN, EA) indi-
cated that 1,4-dioxane was the best solvent (93% NMR yield
and 90% isolated yield of the desired product, Supplementary
Table 1, entries 8−13). Ultimately, the optimal reaction con-
ditions employed 10 mol% PhSeBr (C5) in 1,4-dioxane at room
temperature in air.

Table 1 Substrate scope of Se-catalysed para-amination of phenolsa

aStandard conditions: 1 (0.20mmol), PhSeBr (10 mol%), 1,4-dioxane (2.0 mL), at ambient temperature for 8 h. Isolated yield
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The optimized reaction conditions proved to be effective with a
number of other substituents on N-phenoxyacetamides (Table 1).
N-phenoxyacetamides with electron-rich or electron-deficient
substituents reacted smoothly to give the desired para-C–H
amination products (2a−k) in moderate to excellent yields (62
−92%). Electronic effects did not significantly influence the
outcomes of the reactions. N-phenoxyacetamides bearing fluoro-,
bromo-, and chloro-substituents (2d−e, 2g−h, 2j) were success-
fully subjected to this simple protocol with yields from 62 to 83%.
The reaction condition was applicable to yield aminated naphthol
(2l) in 54% yield.

To further expand the scope of this highly para-selective
amination process, we investigated different N-phenoxyamides.
N-phenoxyamide with the Boc-substituent on nitrogen afforded
the corresponding product 2m in 76% yield. When the acetyl
group was replaced by other aliphatic groups such as cyclopro-
panecarbonyl and hexanoyl groups, the reactions proceeded
smoothly to afford the desired products 2n and 2o in 85 and 53%
yield, respectively. Replacing the acetyl group with aromatic
amides or sulfonamide also furnished the desired phenols (2p−t)
in good yields (64−87%). When we applied the method to the
late-stage modification of an antifungal drug Triclosan, the
desired para-aminated product (2u) was isolated successfully in
83% yield.

The oxidative amination/dearomatization reaction. When the
para-methyl-substituted substrate was employed, we obtained the
dearomatization product 3a in 78% yield (Table 2). Efficient
oxidative amination of phenols was also obtained when ethyl,
propyl was present at the para site under standard reaction
condition. However, we did not detect any of the dienones when
methyl was replaced with bulkier substituents, such as isopropyl
and tert-butyl groups. In those cases, only the corresponding
phenols were isolated. Replacing the acetyl group with the pro-
pionyl or isobutyryl group on nitrogen gave 3f and 3g in 80 and
61% yield, respectively. Finally, protected tyrosine underwent
oxidative amination to give 3h in 56% yield under standard
conditions.

The stoichiometric sulfur-mediated reaction. The success in
the Se-catalysed synthesis of p-aminophenols or dienones
prompted us to attempt to develop a similar sulfur-catalysed
version which could display good catalytic activity as orga-
nochalcogen catalysis39–43. However, when a solution of 1a
was treated with 10 mol% 2-(p-tolylthio)isoindoline-1,3-dione
(4a) at ambient temperature over a period of 5 h, we detected a
trace amount of para-aminated product (5a) with a preserved
N−S bond. When the amount of 4a was increased to 1.2
equiv., para-aminated product (5a) was obtained in 38% yield.
An extensive screening of bases (e.g. pyridine, CsOAc, 2,6-
lutidine, DMAP, Na2CO3, DBU, DIPEA) was conducted and
revealed that 2,6-lutidine gave the desired para-aminated
product 5a in 53% yield. Further optimization established TFE
as the best solvent for this transformation, providing the para-
aminated phenol in 84% isolated yield (Supplementary
Table 2).

With the optimal reaction conditions established, we
investigated a series of N-phenoxyacetamide substrates
(Table 3). Ortho-substituted N-phenoxyacetamides delivered
the desired para-aminated phenols in good to excellent yields
(5a–5c). When the N-protecting group was replaced by other
aliphatic amides such as cyclopropanecarbonyl and propionyl
groups, the reactions proceeded smoothly to afford desired
products 5e and 5f in 45 and 80% yield, respectively. The
reaction proceeded smoothly with both substrates bearing
electron-donating group (5h) and halogen-containing N-
substituted phthalimides (5i–m).

Mechanistic study. A series of experiments were conducted to
probe the reaction mechanism. The ortho-sulfiliminyl phenol 5g″
could not transfer to para-aminated product 5g under standard
reaction conditions (Supplementary Fig. 1a). We could not detect
any desired product and most of the starting material was
recovered when N-methyl-substituted phenoxyacetamide (1w)
was used under the S/Se-mediated reaction conditions, indicating
the indispensable role of the N–H bond (Supplementary Fig. 1b).
When compounds 1a and d8-1a were used as substrates under S-

Table 2 Substrate scope of Se-catalysed dearomatization reactiona

aStandard conditions: 1 (0.20mmol), PhSeBr (10 mol%), 1,4-dioxane (2.0 mL), at ambient temperature for 8 h. Isolated yield
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mediated reaction conditions, the HRMS data showed that the
para amide transfer via an intramolecular pathway and the mixed
acetamide migration products were not detected. In addition, a
crossover experiment was carried out between equimolar amount
of 1a and d8-1a under Se-catalysed reaction conditions in one
reactor. Only the intramolecular amides transformation of phe-
nols (2a, d7-2a) were obtained (Supplementary Fig. 1c and Sup-
plementary Fig. 13).

Based on the preliminary studies, the mechanism of this
organoselenium-catalysed para-selective C–H bond amination is
proposed in Fig. 2. The electrophilic Se species could react with
the mildly basic N-phenoxyacetamide 1a to give the Se–N

intermediate (INT1-Se) together with the release of one molecule
of HBr. Then, the INT1-Se undergoes two successive [2,3]-
sigmatropic rearrangements44–49 to generate the para-amination
intermediate (INT3-Se), which may readily react with HBr and
then rearomatize to the desired product 2a (for details see
Supplementary Figs 4–11).

DFT calculations. We performed density functional theory
(DFT) calculations to explore the mechanistic details for these S
(and Se)-mediated para-selective nitrogen migration of N-ary-
loxyacetamides (Fig. 3). All calculations were carried out with
the B3LYP functional50,51, augmented with Grimmes D3

Table 3 Substrate scope of S-mediated reactiona

 

aStandard conditions: 1 (0.20mmol), 4 (0.24mmol), 2,6-lutidine (1.0 equiv.), TFE (2.0 mL), at ambient temperature for 5h Isolated yield. TFE, 2,2,2-trifluoroethanol
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dispersion correction52,53, which already proved to be a good
choice for chalcogen-containing systems54,55. For S-mediated
reaction, the reaction between N-phenoxyacetamide 1a and N-
phenylthiophthalimide 4g was used as model reaction. The
Gibbs energy profile is shown in Fig. 3a. First, the reaction of N-
phenylthiophthalimide 4g and 1a generates the S–N inter-
mediate INT1-S. Then, the [2,3]-sigmatropic rearrangement of
INT1-S via TS1-S forms an ortho-S=N substituted dear-
omatized species INT2-S, with a barrier of 9.7 kcal mol−1.
Subsequently, the second [2,3]-sigmatropic rearrangement of
INT2-S yields the para-amination intermediate INT3-S via
TS2-S (with a barrier of 5.0 kcal mol−1, see path 1-S). Finally,
the aromatization of INT3-S generates the desired product 5g.
The whole process is exothermic by 43.9 kcal mol−1, which
indicates that the formation of 5g is reasonable. However, the
barrier for the regeneration of N-phenylthiophthalimide 4g (via
TSSN2) is up to 32.3 kcal mol−1, suggesting the turnover of 4g is
difficult even under basic condition. Therefore, for S-mediated
reactions, a stoichiometric amount of N-phenylthiophthalimide
is required (see Supplementary Fig. 8 for details). For the Se-
catalysed reaction, the Gibbs energy profile of the reaction of 1a
and PhSeBr is shown in Fig. 3b. Although the reaction of
PhSeBr and 1a generating the Se–N intermediate INT1-Se is
endothermic by 12.6 kcal mol−1, INT1-Se may readily undergo
a Se-centred [2,3]-sigmatropic rearrangement to generate an
ortho-Se=N substituted dearomatized species (INT2-Se) via
TS1-Se, with a barrier of 12.7 kcal mol−1. Then, another N-
centred [2,3]-sigmatropic rearrangement of INT2-Se forms
para-amination intermediate INT3-Se via TS2-Se (with a bar-
rier of 4.4 kcal mol−1, see path 1-Se). Rearomatization of INT3-

Se and regeneration of the active catalyst (PhSeBr) from 2a′
affords product 2a readily with large Gibbs energy-driven for-
ces (23.5 and 16.2 kcal mol−1, respectively). In contrast to N-
phenylthiophthalimide, the regeneration of PhSeBr is strongly
exothermic by 14.7 kcal mol−1 with a barrier of only 15.3 kcal
mol−1 (for details see Supplementary Fig. 11). Therefore,
PhSeBr could be used as a catalyst. In addition to path 1, the
direct rearomatization of INT2 via TS2′ to generate the ortho-
S/Se=N substituted phenol (INT2′) is also possible (see path
2-S in Fig. 3a and path 2-Se in Fig. 3b). However, the activation
barriers of path 2 in these two systems are much higher than
that of path 1. The calculated trends for the two reactions are
consistent with the fact that no ortho-Se=N substituted phenol
(or only small amount of ortho-S=N substituted phenol) was
obtained for these two types of reactions. Therefore, path 1
involving two successive [2,3]-sigmatropic rearrangements is
mainly responsible for the two para-selective amination reac-
tions (for details see Supplementary Figs 2–11 and Supple-
mentary Data 1).

Synthetic application. To further explore the mild nature of our
method, an HBT-substrate 1v was subjected to the reaction
condition in a mixed solvent of 95% PBS buffer and 5% 1,4-
dioxane (Fig. 4a). The obtained product 2v exhibits significant
aggregation-induced emission behaviours56–60. The fluores-
cence intensity of the product increased gradually at 538 nm
(Fig. 4b) in the reaction solution, accompanied by a dramatic
change in emission colour from pale blue to bright yellow
(Fig. 4c).
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Discussion
In summary, we discovered an organoselenium-catalysed para-
amination of phenols or dienones under mild conditions. The
methodology features a broad substrate scope and a high para-
selectivity. More importantly, this work reveals a significant
difference between the sulfenylation reagents and organosele-
nium reagents. While experimental and computational studies
suggest that both the sulfur and selenium variants proceed
through a double [2,3]-sigmatropic rearrangement, the sulfe-
nylation reagents behave as coupling partners while organose-
lenium reagents can be employed catalytically. Because of the
larger atomic radius of selenium compared to sulfur, selenium
is more polarizable (“softer”) than sulfur, allowing intrinsic
selenium to be more nucleophilic and electrophilic61,62. Com-
pared to sulfur, the larger hybridized orbitals of selenium
results in weaker σ overlap63. So most bond strength of Se−X is
weaker. The differences between sulfur and selenium developed
here are reminiscent of their behaviours in biology. For
example, the catalytic activity of the native enzyme dramatically
reduces when the Sec residue in the type I ID enzyme was
replaced by a cysteine (Cys) moiety64,65. We expect our present
work to stimulate future studies of selenium as an alternative
catalytic platform to transition metal-catalysed C–H amination
reactions.

Methods
Materials. For NMR spectra of compounds in this manuscript, see Supplementary
Figs 14–73. For the crystallographic data of compound 2n and 5a, see Supple-
mentary Fig. 12 and Supplementary Tables 3–15. For the representative experi-
mental procedures and analytic data of compounds synthesized, see Supplementary
Methods.

Se-catalysed standard reaction conditions. N-phenoxyamides (1) (0.20 mmol),
PhSeBr (10 mol%), were weighed into a 10 mL tube, to which was added 1,4-
dioxane (2.0 mL). The reaction vessel was stirred at room temperature for 8 h.
Then the mixture was concentrated under vacuum and the residue was purified by
column chromatography on silica gel with a gradient eluent of petroleum ether and
ethyl acetate to afford the corresponding product 2 or 3.

S-mediated standard reaction conditions. N-phenoxyacetamides (1) (0.20
mmol), N-substituted thiophthalimides (4) (0.24 mmol) and 2,6-lutidine (1.0 eq.)
were weighed into a 10 mL tube, to which was added TFE (2.0 mL). The reaction
vessel was stirred at room temperature for 5 h in air. The mixture was then con-
centrated under vacuum and the residue was purified by column chromatography
on silica gel with a gradient eluent of petroleum ether and ethyl acetate to afford
the corresponding product (5).

Data availability
The X-ray crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition
number CCDC 1570955 and CCDC1549814. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The
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