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Abstract: Due to (i) the simultaneous presence of Helicobacter pylori (ulcer-induced bacteria) and
Candida albicans in the stomach and (ii) the possibility of prokaryotic–eukaryotic endosymbiosis
(intravacuolar H. pylori in the yeast cells) under stresses, we tested this symbiosis in vitro and in vivo.
To that end, intravacuolar H. pylori were induced by the co-incubation of C. albicans with H. pylori
under several stresses (acidic pH, non-H. pylori-enrichment media, and aerobic environments); the
results were detectable by direct microscopy (wet mount) and real-time polymerase chain reaction
(PCR). Indeed, intravacuolar H. pylori were predominant under all stresses, especially the lower
pH level (pH 2–3). Interestingly, the H. pylori (an amoxicillin-sensitive strain) inside C. albicans
were protected from the antibiotic (amoxicillin), while extracellular H. pylori were neutralizable, as
indicated by the culture. In parallel, the oral administration of intravacuolar H. pylori in mice caused
H. pylori colonization in the stomach resulting in gastritis, as indicated by gastric histopathology and
tissue cytokines, similar to the administration of free H. pylori (extra-Candida bacteria). In conclusion,
Candida protected H. pylori from stresses and antibiotics, and the intravacuolar H. pylori were able to
be released from the yeast cells, causing gastric inflammation with neutrophil accumulations.

Keywords: peptic ulcer disease; gastritis; Helicobacter pylori; Candida albicans; intravacuolar H. pylori;
bacteria-like body; stress conditions

1. Introduction

Peptic ulcer disease and gastritis are inflammations of the mucosal and muscular
layers [1,2] of the stomach and proximal duodenum that lead to several findings, including
stomachache, indigestion, nausea with loss of appetite, malnutrition, positive stool occult
blood, and hematemesis (in severe cases) [2–4]. Indeed, peptic ulcer is a worldwide health
care problem, with the highest incidence in developing countries [5]; it is caused both by
Helicobacter pylori (H. pylori) infection (50% of cases) and by the chronic use of non-steroidal
anti-inflammatory drugs (NSAIDs) (25% of patients) [6,7]. Notably, the possible fecal-oral
and oral–oral transmissions of H. pylori that occur among populations with poor socioeco-
nomic conditions lead to a higher incidence of gastritis in developing countries [5]. H. pylori
(previously named Campylobacter pylori) is a gram-negative spiral (helical) bacterium [8]
that causes several lesions in the human gastrointestinal (GI) tract, including asymptomatic
gastritis (85%), chronic gastric inflammation (15%), and gastroduodenal ulcer disease (less
than 1%) that are associated with gastric carcinoma and intestinal metaplasia [9,10]. Interest-
ingly, H. pylori are transmittable from person to person not only through saliva but also by
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fecal contamination in food and water (fecal-oral transmission), which can cause outbreaks
in some communities [11]. After ingestion, H. pylori use tail-like flagella to move around
and burrow into the epithelium (stomach and proximal duodenum) and produce urease to
neutralize the gastric acidic conditions that change urea to ammonia; H. pylori also secrete
exotoxins, such as proteins from cytotoxin-associated gene A (CagA) and vacuolating cyto-
toxin A (VacA), inducing gastric epithelium cell cytotoxicity and mucositis lesions [6,12,13].
Then, gastric epithelial cells are exposed to acid, which results in further cell damage
and inflammatory responses from macrophages, neutrophils, lymphocytes, and plasma
cells; these inflammatory responses are the main component of peptic ulcer lesions [14–17].
Recent studies have revealed that interference with the flagella functions and urease pro-
duction of H. pylori neutralizes bacterial virulence through the inhibition of the bacterial
colonization [18]. According to the conventional culture-dependent method, H. pylori are
not the only microorganism in the human stomach; fungi (especially Candida albicans) are
also common microbiota in the human GI tract. Accordingly, the presence of C. albicans was
identified (approximately 102 CFU/mL) in the gastric contents of 70% of healthy adults [19].
Indeed, next-generation sequencing analysis, based on the presence of 18s ribosomal RNA
(rRNA) and the internal transcribed spacer (ITS) gene, indicates that Candida spp. is an
important microorganism in the human stomach [19]. Hence, interactions between H. pylori
and Candida are possible.

Additionally, C. albicans, which are yeast-formed fungi in the phylum Ascomycota [20],
are the main component of the fungal microbiota in several parts of the human body, includ-
ing the oral cavity, skin, GI tract, genitourinary system, and vagina; they are categorized
as opportunistic pathogens that cause invasive candidiasis (IC) in immunocompromised
hosts [21]. Interestingly, C. albicans are able to proliferate in a highly acidic environment,
such as the stomach (pH ranging from 1.5 to 3.5) [19], which possibly worsens stomach
mucosal lesions. Moreover, (1, 3)-beta-D-glucan (BG), the major polysaccharide compo-
nent in the yeast cell wall that is released during the growth and death of fungi [22], is
one of the important pathogen-associated molecular patterns (PAMPs) that can enhance
pro-inflammatory effects through macrophage and neutrophil stimulation [23–30]. Unsur-
prisingly, the oral administration of C. albicans enhances systemic inflammation and disease
severity in several models through the activation of BG against innate immunity [31–37].
Despite the intensive study of bacterial–fungal interaction, especially Candida spp., in
respiratory systems and catheter infections [38,39], there are few data on Candida–bacterial
interactions in the stomach. Recently, H. pylori-specific genes were demonstrated inside the
vacuoles of Candida spp. (intravacuolar H. pylori), and it was proposed that yeast cells were
a vehicle for transmitting H. pylori and protecting them from stressful environments [40–42].
Although the synergy of C. albicans with H. pylori (outside yeast cells) [43] and other bac-
teria [44,45] in enhancing the severity of inflammation via inter-kingdom co-operation is
demonstrated partly through the promotion of bacterial colonization by Candida’s epithelial
adhesion property, data regarding the pathophysiology and clinical impacts of H. pylori
inside Candida yeast cells are still very scarce. Here, we initiated intravacuolar H. pylori
in vitro and tested the clinical impacts in vitro and in a mouse model.

2. Results
2.1. Induction of Intravacuolar H. pylori in Candida Yeast Cells

The endosymbiosis of H. pylori in yeast cells was indicated by the presence of H. pylori
in Candida cytosols, referred to as “intravacuolar H. pylori”, as previously mentioned [45,46].
As such, H. pylori and C. albicans were co-incubated under different conditions, including
the bacteria–Candida ratio, pH of the media, and duration of incubation); the result was the
identification of H. pylori inside Candida yeast cells, as illustrated by bacteria-like bodies
(BLBs) (dense black dots in a state of movement) inside the yeast cells [40,41,43,47–50],
using bright-field microscopy (Figure 1). With continuous time-frame illustrations, the
movements of the dense black dots could be observed (Figure 1), supporting the possible
existence of BLBs inside the yeast cells. Interestingly, BLBs were detectable after the
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H. pylori–C. albicans co-incubation but not in the C. albicans culture alone (Figures 1 and 2A).
The higher density of H. pylori in BLBs may be responsible for the dense, black-colored dots
observed in the cytosol of the co-incubated culture (Figure 2A lower), whereas the lower
density of Candida’s organelles may explain the non-colored cytosol of the Candida culture
without bacteria (Figure 2A middle). The highest abundance of intravacuolar H. pylori
was demonstrated in a 1:100 ratio of H. pylori to Candida (1 × 108 and 1 × 106 CFU/mL of
H. pylori and C. albicans, respectively) in Sabouraud dextrose broth (SB) media at pH 2 after
3 h incubation. There was a decrease in intravacuolar H. pylori in the sub-cultures starting
from the 2nd generation (Figure 2B,C). At pH 2, intravacuolar H. pylori were detectable
for all H. pylori: Candida ratios after a 5 h incubation, but only at the 1:100 ratio after a 3 h
incubation (Figure 2B). At pH 3, intravacuolar H. pylori were detectable only after a 5 h
incubation, and only for the ratios 1:1 and 1:10 (Figure 2B). Meanwhile, at pH 4 and 5,
the 1:10 ratio was only the condition that could induce intravacuolar H. pylori (Figure 2B).
Hence, the stomach (pH 1.5–3.5) is possibly the most suitable organ for the formation of
intravacuolar H. pylori in Candida. This formation may depend on the abundance of Candida
in the stomach and the gastric emptying time. The intravacuolar H. pylori were able to pass
through the daughter yeast cells as there were similar abundances of H. pylori in the 1st
and 2nd generations of the culture; however, H. pylori abundance was reduced in the 3rd
and 4th generations (Figure 2C). Notably, incubation by SB (a Candida-enrichment media)
in aerobic conditions (conditions for enhancing Candida growth) was the environmental
stress for H. pylori.
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Figure 1. Characteristics of bacteria-like bodies (BLBs). The motile property of intravacuolar H. pylori
in the cytosols of Candida yeast cells (BLBs) was demonstrated by the time-frame pictures.
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Figure 2. Characteristics of intravacuolar H. pylori inside Candida yeast cells under a bright-field
microscope, 10 fields/slide (100×magnification), compared with the controls H. pylori and C. albicans
alone (A). The real-time polymerase chain reaction (PCR) based on CagA gene expression demon-
strates intravacuolar H. pylori in different conditions (the H. pylori vs. Candida ratio, pH media, and
duration of incubation) compared with control (B). Intravacuolar H. pylori in each generation after
the sub-culture of Candida yeast cells (C) (n = 9/group). Independent triplicate experiments were
performed. *, p < 0.05; φ, p < 0.05 vs. others; BLBs, bacteria-like bodies; ctrl, control; Gen, generation
of the Candida culture.

2.2. Release of Intravacuolar H. pylori from Candida Yeast Cells

While the endosymbiosis of H. pylori in Candida yeast cells was inducible by several
stresses (high oxygen levels and a non-H. pylori-enrichment media) (Figure 2A–C), we
further tested whether the intravacuolar H. pylori could be released. Without any further
manipulations of the Candida containing intravacuolar H. pylori, the culture of these Candida
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yeast cells in urea-based agar demonstrated urease activity (i.e., turning the color of the
media from yellow into pink) at 3 and 5 days after the culture (Figure 3A) with H. pylori
detectable by qPCR (Figure 3B). However, the breakdown of the yeast cell wall (with
sonication) facilitated the release of H. pylori from Candida. There was a higher abundance
of H. pylori released from sonicated Candida yeast cells with intravacuolar H. pylori; bacterial
abundance after a 3-day-culture in urea-based agar using the sonicated H. pylori-containing
Candida cells was higher than it was in the non-sonicated samples, as determined by the
color of the agar (urease test) and qPCR assay (Figure 3C,D).
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Figure 3. Characteristics of intravacuolar H. pylori released from Candida yeast cells. The activities
of intravacuolar H. pylori inside C. albicans were demonstrated by culture on urea-based agar and
quantitative real-time polymerase chain reaction (qPCR) after the culture (1, 3, and 5 days) (A,B). The
results of 3 days of urea-based agar culture using sonicated samples (ruptured cells) vs. non-sonicated
(unruptured cells) when compared with the H. pylori control or Candida control (C,D). Independent
triplicate experiments were performed. *, p < 0.05; φ, p < 0.05 vs. others, as calculated by ANOVA
with Tukey’s analysis.
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2.3. Intravacuolar H. pylori Was Protected from Antibiotics and Stress Conditions

Because a possible benefit of the H. pylori endosymbiosis inside C. albicans may be
protection from antibiotics and stresses, the culture conditions of Candida using SB (the
non-enrichment media of H. pylori) in aerobic conditions (a stress factor for H. pylori) with
or without amoxicillin (a representative antibiotic) were tested against Candida containing
H. pylori. Amoxicillin had no effect on Candida containing H. pylori as the antibiotic could
not reduce the yeast colonies (Figure 4A upper), even though the selected strain of H. pylori
was sensitive to aerobic conditions (H. pylori in Columbia blood agar in aerobic conditions)
(Figure 4A middle) and to amoxicillin (no bacterial colony in Columbia blood agar in mi-
croaerophilic conditions) (Figure 4A lower). Notably, H. pylori were sensitive to amoxicillin
in either low or high concentrations (Figure 4A lower). Likewise, the bacterial abundance
of H. pylori based on CagA gene expression demonstrated the highest H. pylori abundance
in Candida with intravacuolar H. pylori without amoxicillin, despite an aerobic environment
(an environment toxic to H. pylori) (Figure 4B). In Candida containing intravacuolar H. pylori
with amoxicillin, H. pylori abundance was lower than in the non-antibiotic group, but there
was a non-difference between high versus low concentrations of amoxicillin (Figure 4B).
Meanwhile, H. pylori were non-detectable in the samples of free H. pylori (H. pylori alone)
under aerobic conditions and microaerophilic conditions with amoxicillin (Figure 4B). The
reduced H. pylori abundance in amoxicillin-incubated Candida containing H. pylori may
reflect the effect of amoxicillin on spontaneously released H. pylori.
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Figure 4. The protection of H. pylori by Candida. Representative pictures of the culture plates of
second-generation intravacuolar H. pylori inside C. albicans co-incubated on SDA for 24 h with or
without amoxicillin at 0.06 and 8 ug/mL (A upper); in addition, the culture plates of extracellular
H. pylori in Columbia blood agar after 24 h of aerobic conditions (A middle) and microaerophilic
conditions with amoxicillin (A lower) are shown. Additionally, H. pylori bacterial abundance based
on CagA gene expression in these conditions is also shown (B). Independent triplicate experiments
were performed. *, p < 0.05 vs. non-intravacuolar H. pylori; φ, p < 0.05 vs. others, as calculated by
ANOVA with Tukey’s analysis.
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2.4. Candida Containing Intravacuolar H. pylori Caused Peptic Ulcer Disease

Although H. pylori contained inside Candida yeast cells have been previously re-
ported [40–42], the clinical importance is still not clear. To test the clinical impacts of
intravacuolar H. pylori in Candida yeast cells, a gastritis mouse model was conducted
using the daily oral administration of vehicle control, H. pylori alone, C. albicans alone,
and Candida containing intravacuolar H. pylori for 12 weeks (Figure 5A, schema). Results
showed that H. pylori administration induced transient weight loss, especially at 2–6 weeks
of administration; then, body weight increased to a level similar to pre-administration
weight (Figure 5B). Meanwhile, there was no weight change in the other groups (control,
Candida alone, and Candida containing H. pylori) during the 12 weeks of the experiment
(Figure 5B). Despite the improved body weight at 12 weeks after H. pylori administration,
colonization by H. pylori was detected in the stomach, as indicated by urease activity (a
pink color change in urea-based agar) and CagA gene expression in samples taken from
the mouse stomach (Figure 5C,D). Likewise, H. pylori were also detected in the stomach
of mice after 12 weeks of the administration of Candida containing intravacuolar H. py-
lori (Figure 5C,D). In parallel, H. pylori-administered mice demonstrated gastritis with
inflammatory responses (Figure 6A–E), as indicated by the prominent histological scores
based on inflammatory cell infiltration and epithelial damage (Figures 6A,B and 7A,B)
and increased inflammatory cytokines (IL-6 and TNF-α, but not IL-10) in the stomach
(Figure 6C–E). On the other hand, the administration of Candida containing H. pylori caused
less extreme histological scores and levels of tissue cytokines in the stomach than the admin-
istration of H. pylori alone after 12 weeks of the experiment (Figure 6A,B). There were no
gastritis lesions in mice with daily fasting with 1xPBS (control) or Candida administration,
although the levels of stomach pro-inflammatory cytokines (IL-6 and TNF-α) were higher
in fasting mice with PBS or C. albicans than in the non-fasting control mice (normal mice)
(Figure 6C–E); nevertheless, the levels observed in the fasting mice were lower than those
of mice administered with either H. pylori or Candida containing H. pylori (Figure 6C–E).
There was an abundance of inflammatory cells in the gut (submucosa and mucosa) in mice
with either H. pylori alone or Candida containing H. pylori compared to the absence of injury
in other groups (Figure 6A,B), despite a tendency toward more prominent submucosal
neutrophils and epithelial mononuclear cells (Figure 7).Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 20 
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of the experiments indicates the once-daily oral administration of 1× phosphate buffer solution (PBS)
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control, C. albicans alone, H. pylori alone, or Candida containing H. pylori for 12 weeks (A). The time-
points of weight loss (%) of the mice in each group (B) and the abundance of H. pylori in the stomach
at 12 weeks post-experiment, as indicated by the representative pictures of the urea-based culture
(C) and CagA-gene expression (D) are shown (n = 6–9/group). #, p < 0.05 vs. control; φ, p < 0.05 vs.
others, as calculated by ANOVA with Tukey’s analysis.
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Figure 6. Representative pictures of histological scores; inflammatory and epithelial defects in mice
stomachs (A,B) at 12 weeks after fasting and the administration of H. pylori, C. albicans (control), or
Candida containing intravacuolar H. pylori are demonstrated by histological scores (A,B) and levels of
gastric cytokines (IL-6, TNF-α, and IL-10) (C–E) (n = 10/group). *, p < 0.05; #, p < 0.05 vs. H. pylori
control and intravacuolar H. pylori groups; φ, p < 0.05 vs. others, as calculated by ANOVA with
Tukey’s analysis.
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Figure 7. Representative pictures of the hematoxylin and eosin (H and E) staining of mouse stomachs
at 12 weeks with fasting control, H. pylori administration, and Candida containing intravacuolar
H. pylori gavage demonstrate neutrophil infiltration (yellow arrows) and mucosal mononuclear cells
(red arrows) in the H. pylori and intravacuolar H. pylori groups but not in the fasting control group.
The histological pictures of control mice and those who received Candida administration alone are not
shown due to the non-difference compared to the fasting control group. The injury scores of these
pictures are displayed in Figure 6A,B. A more prominent submucosal accumulation of neutrophils
(polymorphonuclear cells with eosinophilic color staining) (yellow arrows) and epithelial mononu-
clear cells (red arrows) was observed in the H. pylori group than in the intravacuolar H. pylori mice.
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3. Discussion

Intravacuolar H. pylori inside C. albicans were protected from antibiotics (and environ-
mental stresses) and could cause gastritis after the release of H. pylori from the yeast cells,
illustrating the importance of natural bacteria–fungi symbiosis.

3.1. The Transfer of H. pylori Inside the Vacuoles of Candida Yeast Cells

H. pylori are vulnerable to a non-acidic micro-environment, and they cannot be iso-
lated from food, water, or non-stomach specimens (saliva and feces). Indeed, the gastric
epithelium and immune cells (macrophages and dendritic cells) are the only eukaryotic
cells that host H. pylori (the facultative intracellular bacteria) [41]. As such, viable intra-
cellular prokaryotes inside eukaryotes are a prokaryotic adaptation to a wide range of
environmental stresses [41]. H. Pylori can be established not only in eukaryotic human
cells but also in eukaryotic microorganisms (e.g., Candida spp.) as a form of “prokaryotic–
eukaryotic endosymbiosis” [41,45,47] in which the endosymbiotic bacteria are localized
inside the membrane-bound vacuole [40,41,47,48]. Likewise, several examples of the
endosymbiosis of endobacteria inside fungi have been described [51]. For example,
Rhizopus microcarpus, a plant pathogen fungus, provide micronutrients, such as phosphate,
to Burkholderia rhizoxinica that stay inside the fungi [51]. Perhaps H. pylori’s specific ergos-
terol interacts with the yeast vacuole to allow the viability of “intravacuolar H. pylori” [41].
Because Candida yeast is exceptionally resistant to stressful conditions [52,53], the yeast
cell can be used as an alternative host to protect H. pylori from stress outside the stomach,
offer nourishment, and serve as a conduit for the bacterium’s spread within human popu-
lations and in the environment [41]. Indeed, the mutual cooperation between Candida spp.
and H. pylori was previously mentioned; the exosymbiosis between the extracellular form
of Candida yeast and H. pylori results in the synergistic production of an interkingdom
biofilm [45]. However, the endosymbiosis of intravacuolar H. pylori inside yeast cells may
be even more complex than the synergy observed in biofilm production because it indicates
an evolution in the symbiosis between the structures of these organisms.

Here, within the culture media of fungi that were too acidic for H. pylori, had fewer
nutrients, or were non-microaerophilic, H. pylori could form bacteria-like bodies (BLBs)
inside C. albicans vacuoles, as supported by a previous publication [46]. Notably, the differ-
ences between the BLBs and the non-specific components of the yeast cell’s cytosol were
the movement and the density of the particles, as indicated in Figures 1 and 2A. While
C. albicans can easily adapt to acidic pH levels by secreting acids out of the cell after approxi-
mately 50 h of incubation [46], H. pylori are more vulnerable to extreme acidity, despite their
ability to enhance pH using urease [54,55]. Moreover, fungi can also adapt to alkali envi-
ronments; some pathogenic fungi secrete acids that are used for the induction of host tissue
injury [56]. Interestingly, the H. pylori-specific gene (CagA) was detectable in C. albicans
with intravacuolar H. pylori; this finding supports the likelihood of interaction between
these two microorganisms. Due to the effectiveness of the protection, H. pylori’s presence
inside C. albicans may be another mechanism explaining the persistence of H. pylori in the
human GI tract [41,47]. Because the CagA gene was detectable in subsequent generations
of C. albicans, showing vertical transmission into the daughter cells where it continued
to express proteins of H. pylori [41], the yeast cell may be both a protective vehicle and
a transmission method. Despite the use of antibiotics, including amoxicillin, together
with a proton pump inhibitor for H. pylori eradication [57–59], and despite the amoxicillin
susceptibility of the selected H. pylori in our experiments, amoxicillin could not inhibit the
intravacuolar H. pylori, as indicated both by a culture on urea-based agar and by CagA ex-
pression. However, Candida may not protect intravacuolar H. pylori against the function of
other antibiotics as some antibiotics may be able to diffuse inside the yeast cells. Neverthe-
less, the protection against amoxicillin provides proof of the concept of antibiotic protection
inside yeast cells. Our data suggest that the intravacuolar H. pylori inside C. albicans were
protected from antimicrobials. Hence, the development of intravacuolar H. pylori was
very helpful for H. pylori in terms of resistance to treatments, extra-stomach transfers,
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person-to-person transmission, and environmental spread. Likewise, H. pylori can trans-
form from a spiral-shaped bacillary form into a coccoid form in stress environments, similar
to other Gram-negative bacteria; in this form, they are nonculturable and referred to as
VBNC (viable but nonculturable) bacteria, with fewer activities than the spiral form, but
they may revert to active regrowth conditions [60]. While H. pylori’s transformation into
a coccoid form is a well-known mechanism to adapt to stresses before a regrowth that
is often mentioned as an underlying mechanism for the detection of Helicobacter in the
environment [60], intravacuolar H. pylori is possibly another strategy for survival in harsh
environments. However, the putative infectious capability and the regrowth ability of this
form of H. pylori are still controversial. Here, we also demonstrated that the development of
intravacuolar H. pylori depended on pH and the abundance of Candida, as a higher fungal
abundance at lower pH levels facilitated the intravacuolar form of Helicobacter. Hence, an
evaluation of Candida abundance in the gut and the use of fungicidal drugs in the patients
in whom H. pylori eradication has failed might be helpful. Moreover, our data also suggest
that H. pylori inside Candida can be spontaneously released from the yeast cells on the 2nd
and 3rd days of the symbiosis with biological activity intact (positive urease test). The
prospect of additional studies on this topic is interesting.

3.2. Intravacuolar H. pylori Inside C. albicans as a Cause of Gastritis

Although the administration of C. albicans alone does not cause gastritis, the worsening
of H. pylori-induced gastritis by Candida through synergistically elevated gastric inflam-
mation has been previously described [13,43,45]. Likewise, Candida alone did not induce
stomach injury in our study, but gastritis was demonstrated in the mice orally administered
both with intravacuolar H. pylori (the bacteria inside Candida) and with H. pylori alone,
as indicated by inflammatory lesions, CagA expression, a urea-based culture, and tissue
cytokine levels in the stomach. Notably, the spontaneous bodyweight regains observed
in the H. pylori mouse model [61,62] and the absence of weight gain in mice during the
fasting experiments have been previously mentioned [63]. Our data suggest that Candida
yeast is a reservoir of H. pylori and that the bacteria can be released outside the yeast cells
and regrow in the stomach epithelium. Although the mechanisms of H. pylori’s release
from the yeast cells are still unknown, vesicular release has been identified as a new fungal
secretory pathway that might play a role here [64]. As such, some yeast fungi, including
C. albicans, Cryptococcus neoformans, and Saccharomyces cerevisiae, can produce vesicles con-
taining RNA or microRNA (miRNA) (the non-coding RNA sequence with gene regulatory
effects) [65–67] that can alter the gene expression of target cells [68]. In addition, the fungal
cell wall has a dynamic structure with flexible viscoelastic qualities that allow the release
of vesicles [69], as well as fungal–host communication with some specific environmental
factors (pH, temperature, presence of serum, and lack of some amino acids) that trigger the
production and release of vesicles [70]. Thus, these data suggest that the large vesicles of
intravacuolar H. pylori possibly pass through the cell wall of C. albicans yeast cells. With
the release of intravacuolar H. pylori, Helicobacter bacteria can induce gastritis through
decreases in mucus and mucosal blood flow, prostaglandin synthesis, cell healing processes,
and gastric emptying time, similar to regular H. pylori [7,8,12,71]. Notably, the abundance
of H. pylori in the stomach of H. pylori-administered mice was higher than in mice with
Candida containing intravacuolar H. pylori (Figure 5C,D), suggesting that some intravac-
uolar Helicobacter could not be released from the Candida yeast cells. In contrast, Candida
administration alone did not cause ulcers. The severity of the gastritis caused by H. pylori
alone versus that caused by H. pylori inside Candida was not different, indicating a lack of
synergy between H. pylori and the Candida hosting it; this finding differs from previous re-
ports of enhanced pro-inflammation with the co-presence of H. pylori and Candida [13,43,45].
Perhaps the Candida yeasts that host H. pylori lose their pro-inflammatory properties after
the release of H. pylori. We hypothesize that the release of H. pylori from C. albicans vesicles
enhances the pro-inflammatory response of enterocytes (Figure 8A,B) that activate the
gastric inflammation of mucosa through Toll-like receptors, especially TLR4 and TLR2,
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with several adapter molecules (MyD88, IRAK1, IRAK4, and NF-κB) [72]. Hence, our data
suggest that Candida yeast cells could be the eukaryotic hosts that protect the prokaryotic
bacteria from antibiotics and stressful environments and that the hosted bacteria are ready
to be spontaneously released or let out by the breakdown of the yeast cells and/or other
mechanisms. More mechanistic studies on this topic would be interesting.
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For the clinical translation, the spontaneous development of intravacuolar H. pylori
inside Candida yeast cells may depend on the ratio of the abundances of Candida and
H. pylori in each patient; such development would possibly induce resistance to the stan-
dard treatment. Currently, the causes of treatment failure for H. pylori focus on (i) increased
antibiotic resistance [73] through the genes that affect the alteration of proton pump in-
hibitor pharmacokinetics and/or the host cytochrome CYP2C19 and (ii) host factors, such
as poor adherence, insufficient duration of therapy, and smoking [74–76]. On the other
hand, our data support another underlying mechanism of treatment failure through an
increased abundance of fungi in the stomach. Indeed, advanced age and the consumption
of proton pump inhibitors correlate with fungal colonization in the stomach, which may be
associated with H. pylori-positive status and dyspepsia [13]. Hence, reducing the abundance
of Candida (anti-fungal treatments) together with H. pylori treatment (triple therapy) may
improve the outcome of treatment and reduce the recurrent rate of gastritis, especially
in cases of treatment failure. Unfortunately, the correlation between Candida abundance
and the treatment resistance of H. pylori is still unknown. In contrast, an interkingdom
correlation between Candida and H. pylori may be clinically possible because the generation
of intravacuolar H. pylori was easily induced by the co-incubation of both organisms in a
fungal culture media, and the intravacuolar H. pylori could pass through the daughter yeast
cells, protected from antibiotics, and possibly caused resistance to the standard treatment.
More studies are warranted.

4. Materials and Methods
4.1. Inducing Intravacuolar H. pylori in Candida Yeast Cells

H. pylori ATCC 43504 (Manassas, VA, USA) was cultured on Columbia agar (HiMedia,
Mumbai, India) supplemented with 5% sheep blood and 7% horse serum (Invitrogen,
Waltham, MA, USA) under microaerophilic conditions (5% O2, 15% CO2, and 80% N2) at
37 ◦C for 3 days. In parallel, C. albicans ATCC 90028 (Microbiologics, Saint Cloud, MN,
USA), a fluconazole-susceptible strain (minimal inhibitory concentration 0.25–1 µL/mL),
was cultured on Sabouraud dextrose agar (SDA) (Oxoid, Basingstoke, Hampshire, UK) in
aerophilic conditions at 37 ◦C for 2 days before using. Then, H. pylori at 1 × 106, 1 × 107,
and 1× 108 CFU/mL and 1× 106 CFU/mL of C. albicans were co-incubated with shaking in
Sabouraud dextrose broth (SB) (Oxoid) at pH 2, pH 3, pH 4, and pH 5 for 3 h and 5 h. Then,
the bacteria-like bodies (BLBs) inside Candida yeast cells were observed under a bright-field
microscope (100×magnification), and 100 µL of these co-incubated microorganisms were
plated on SDA with chloramphenicol (Oxoid) and incubated at 37 ◦C for 3 days for the
C. albicans growth.

4.2. Determination of Intravacuolar H. pylori Inside the Candida Yeast Cells

Candida yeast cells in each experimental group were sub-cultured to produce other
generations in SDA with chloramphenicol, and a specific H. pylori gene inside each Candida
generation was examined, following a previous protocol [77]. In brief, 1 × 106 CFU/mL of
Candida yeast cells were sonicated with a Beadbeater (OK 74005) (BioSpec Products Inc.,
Bartlesville, OK, USA) for 15 s to destroy the fungal cell wall, and phenol-chloroform was
used for the extraction of DNA from the samples. Real-time polymerase chain reaction
(PCR) assays were run on a QuantStudio 5 Real-Time PCR (qPCR) system (Thermo Fisher
Scientific, Waltham, MA, USA) using a CagA gene primer to identify H. pylori inside
C. albicans with the following primer sequence: forward, 5′-AGT AAG GAG AAA CAA
TGA-3′ and reverse, 5′-AAT AAG CCT TAG AGT CTT TTT GGA AAT C-3′ [77]. The
H. pylori gene expression was calculated and translated into H. pylori cell-abundance by
the gene reference from the National Center for Biotechnology Information (NCBI; NIH,
Bethesda, MD, USA). To demonstrate the release of intravacuolar H. pylori from the Candida
yeast cells, the second generation of Candida yeast cells from the sub-culture passages was
incubated in aerophilic conditions at 37 ◦C for 5 days using a urea agar-based culture media
(400,086) (HiMedia, Mumbai, India) to demonstrate the activities of intravacuolar H. pylori.
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To see whether damaged yeast cell walls can release more H. pylori than non-damaged
yeast cells, the CagA gene in the second generation of Candida yeast cells with or without
sonication was extracted by a Beadbeater machine for whole DNA, and the presence of the
CagA gene was determined by a qPCR system (Thermo Fisher Scientific).

4.3. Antimicrobial Incubation and Stresses against Intravacuolar H. pylori

To explore the possible benefits of the endosymbiotic H. pylori inside C. albicans in
terms of protection from antibiotics and environmental stresses, amoxicillin, and an aerobic
(high-oxygen) condition, which is a stress factor for microaerophilic H. pylori (i.e., it has the
ability to grow in 5–15% oxygen), were tested. As such, the second generation of Candida
yeast cells was cultured into SB with or without amoxicillin (0.06 and 8 ug/mL) (Tianjin
TEDA Steyuan Pharm Co., Ltd., Shijiazhuang, Hebei, China) in aerophilic conditions
(21% oxygen) at 37 ◦C overnight. Then, 100 µL of each sample was plated onto SDA
and incubated in aerophilic conditions at 37 ◦C overnight. After that, the whole DNA
was extracted to identify CagA gene expression in each experimental group using a qPCR
system (Thermo Fisher Scientific).

4.4. Animal and Peptic Ulcer Model

The animal study (SST 018/2562) was approved by the Institutional Animal Care
and Use Committee of Chulalongkorn University’s Faculty of Medicine following the
animal care and use procedure of the National Institutes of Health (NIH). Male 8-week-
old C57BL/6 mice weighing 20–25 g was purchased from Nomura Siam International,
Pathumwan, Bangkok, Thailand. The mice were housed in a temperature-controlled
environment (24 ± 2 ◦C), with 50% relative humidity and a 12 h light–dark cycle (light
from 7:00 a.m. to 7:00 p.m.). All mice received food and water ad libitum. Animal
procedures were performed in adherence with U.S. National Institutes of Health guidelines
and followed the 8th Edition of the Guide for Care and Use of Experimental Animals,
published by the National Research Council of the National Academies (2011; available
at https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratoryanimals.
pdf, accessed on 12 November 2021), as well as the Animal Research: Reporting of In Vivo
Experiments (ARRIVE) guidelines.

A peptic ulcer model of H. pylori infection was modified from a previous study [78].
Briefly, H. pylori at 3.7 × 106 CFU/mL, C. albicans at 1 × 108 CFU/mL, or C. albicans with
intravacuolar H. pylori at 1 × 108 CFU/mL (with approximately 3.7 × 106 CFU/mL of
intravacuolar H. pylori inside the C. albicans) in 1 mL of 1x phosphate buffer solution
(PBS) was once daily orally administered using a stainless-steel feeding tube (18-gauge
size and 1.5 inches in length, with a rounded tip attached to a 1 mL syringe). Notably,
all groups of mice fasted for 5 h before microorganismal administration. All mice were
observed and sacrificed 12 weeks after the beginning of the experiment. Then, the stomach
was divided longitudinally through the greater and lesser curvature into several parts,
washed with 1xPBS, weighed, and used for determining inflammatory responses and
fungal–bacterial interactions.

4.5. Mouse Gastric Analysis

Mouse stomachs were divided into 4 small pieces for performing (i) a H. pylori culture,
(ii) an analysis of CagA gene expression, (iii) the measurement of gastric cytokine levels,
and (iv) a histopathology analysis (fixed in 10% formaldehyde). To determine H. pylori
abundance in mouse stomachs, the gastric tissues (0.01 g per sample) were cultured on
urea-based agar and incubated at 37 ◦C overnight before colony enumeration. In addition,
the CagA gene was identified by qPCR (Thermo Fisher Scientific) from gastric tissues (1 mL
PBS per g tissue) that were sonicated with the setting of pulse-on for 20 s and pulse-off
for 5 s in 30 min on ice using the Sonics Vibra Cell machine (VCX 750) (Sonics & Materials
Inc., Newtown, CT, USA) until a homogeneous solution was formed. The supernatant,
after the centrifugation, was used for the detection of gastric cytokines (TNF-α, IL-6, and

https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory animals.pdf
https://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-of-laboratory animals.pdf
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IL-10) and CagA expression by ELISA assays (Invitrogen, Waltham, MA, USA) [79,80]
and PCR, respectively. For histology, the stomach tissues were rinsed with PBS, fixed in
10% (weight by volume (W/V)) formaldehyde, embedded in paraffin, and stained with
hematoxylin and eosin (H and E) color in 5.0 mm thickness sections. The histological
analyses of 200× magnification slides were performed by 2 observers who were blinded to
the experiments; the analyses used semi-quantitative scores based on inflammatory cell
infiltration (macrophages and neutrophils), mucosal damage, and ulceration on a scale of 0
to 4 as modified from a previous publication [81].

4.6. Statistical Analysis

All data were analyzed by Statistical Package for Social Sciences software (SPSS 22.0,
SPSS Inc., Chicago, IL, USA) and Graph Pad Prism version 7.0 software (La Jolla, CA, USA).
Results were presented as mean ± standard error (SE). The differences between multiple
groups were examined for statistical significance by one-way analysis of variance (ANOVA)
with Tukey’s analysis. The survival analysis and time-point data were determined by the
log-rank test and repeated measures ANOVA, respectively. A p-value < 0.05 was considered
statistically significant.

5. Conclusions

In conclusion, intravacuolar H. pylori benefit from increased transmissibility, and the
fungal host protects the bacteria from stressful micro-environments, including antibiotics.
Our mouse model provides evidence that intravacuolar H. pylori were able to induce
gastric infection, inflammatory cell infiltration, and tissue damage. Future studies on the
role of intravacuolar H. pylori in yeast cells are needed to extend our understanding of
intravacuolar H. pylori colonization in humans in order to optimize and individualize
health strategies.
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