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Background and Objective. Mining the genes related to maize carotenoid components is important to improve the carotenoid
content and the quality of maize. Methods. On the basis of using the entropy estimation method with Gaussian kernel probability
density estimator, we use the three-phase dependency analysis (TPDA) Bayesian network structure learning method to construct
the network of maize gene and carotenoid components traits. Results. In the case of using two discretization methods and setting
different discretization values, we compare the learning effect and efficiency of 10 kinds of Bayesian network structure learning
methods. The method is verified and analyzed on the maize dataset of global germplasm collection with 527 elite inbred lines.
Conclusions. The result confirmed the effectiveness of the TPDA method, which outperforms significantly another 9 kinds of
Bayesian network learning methods. It is an efficient method of mining genes for maize carotenoid components traits. The

parameters obtained by experiments will help carry out practical gene mining effectively in the future.

1. Background

Vitamin A plays critical roles in many physiological pro-
cesses of organisms, such as immune functions. About
250,000-500,000 children in the world suffer from blindness
each year owing to vitamin A deficiency [1], which is an
urgent problem to be solved at present. Maize is one of
the crops that are rich in vitamin A. The carotenoid com-
ponents (such as alpha-carotene, beta-carotene, and beta-
cryptoxanthin) can be converted into vitamin A in the
human body. Mining the genes related to maize carotenoid
components and improving the content of vitamin A through
genomic methods are some of the economic and effective
ways to solve the problem of vitamin A deficiency.

It is well known that the quality of vitamin A (such
as carotenoids) is related to the variation of the DNA
sequence (including the epigenetic variation). DNA sequence
variation is usually caused by affecting gene transcription
(including transcription or not and the level of transcriptional
expression), protein translation, and metabolites synthesis or

degradation. Ultimately, we can see the visible phenotypic
changes. Gene transcription is one of the key steps in the phe-
notype variation. In recent years, with the mature and rapid
development of many high throughput technologies, several
types of biological data are produced through biological
experiments, including the data of genomics, transcriptome,
and phenotypic. How to use the bioinformatics methods
to mine the genes for carotenoid components from these
massive data is important to improve the carotenoid content
and the quality of maize.

2. Related Work and Our Approach

2.1. Related Work

(1) Linkage Analysis and Genome-Wide Association Analysis
(GWAS). The linkage analysis method has been widely used
to locate the genetic loci of the carotenoid components in
maize. But the accuracy of this method is not high, generally
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between 10~30 cM, and QTL fine mapping is quite time-
consuming. Later the genome-wide association analysis has
become an important method for gene mining. Owens et al.
have used this method to locate the genes about the synthesis
and maintenance of carotenoids [2]. But this method can
only detect the correlation of the single locus and phenotypic
traits at a time [3]. In recent years, expression Quantitative
Trait Loci (eQTL) was also used for gene location. Fu et
al. have found 55 genes that might be related to carotenoid
biosynthesis [4].

(2) Mathematical and Statistical Methods. In recent years,
some mathematical and statistical methods are used to study
the genetic loci for specific phenotypic traits, such as using
linear regression method for the detection of cancer sites
[5], using structural equation model to detect the effects of
body size and obesity in mice [6], using ordinal regression
for the detection of multiple phenotypic loci 7], and using
logistic regression to detect the interaction between SNP
(Single Nucleotide Polymorphism) loci associated with dis-
eases [8, 9]. Dimensionality Reduction Multifactor (MDR)
can detect the interaction between multiple genetic loci and
their association with phenotypic traits [10]. This method has
been successfully used to study the genetic loci for complex
diseases, such as breast cancer, cardiovascular, and diabetes
mining [11, 12].

(3) Bayesian Network and Other Machine Learning Methods.
At present, machine learning related methods are more and
more used in the study of genetic loci about disease and some
other complex phenotypic traits. Clustering is a widely used
method, such as hierarchical clustering method [13]. Some
research work uses support vector machine and random
forest method, like using support vector machine for the
cancer classification of gene selection [14], using the random
forest for the mining of gene locus about elderly blindness
diseases and detection of feature gene (Kursa et al. 2014), and
so on. Other methods include combining decision trees and
particle swarm optimization to select cancer related genes
[15], as well as ant colony optimization method [16].
Bayesian method uses the prior knowledge and can
realize the accurate computation, and it is more and more
used in the research of gene locus mining, for example,
using Bayesian theory to mine the disease associated loci [17],
identifying pig nipple number related genes [18], detecting
gene loci associated with breast cancer [19], and detecting the
interaction between specific phenotypic traits loci (Zhang et
al. 2007), [20]. Bayesian network is a probabilistic graphical
model that represents a set of random variables and their
conditional dependencies via a directed acyclic graph (DAG).
It is more and more used in the research of gene locus mining.
The Bayesian network structure learning method mainly
includes the dependence analysis based method and search
scoring based method. At present, the search scoring based
method is mainly used in the gene mining research work. For
example, using heuristic search of k2 algorithm to construct
the network of gene locus and autologous stem cell transplant
disease [21], using heuristic search method to get the obesity-
related genetic variants [22], mining the genes related to
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smoking disease using the minimum description length
principle (MDL) scoring search method [12, 23], mining the
genes related to wheat multiple quantitative trait using the
Bayesian information criterion (BIC) scoring search method
[24], discovering Alzheimer genetic biomarkers using tree
augmented naive Bayes method [25], and using the scoring
method for the detection of loci associated with human
complex diseases (Han et al. 2013).

In the part above, we have elaborated several kinds of
methods used for gene locus mining. These methods have
different advantages and disadvantages, respectively, and we
summarize them in Table 1.

2.2. Analysis and Our Approach. As has been described
above, Bayesian network is an effective way for gene locus
mining. The existing Bayesian network research work mainly
uses the search scoring based method to construct the
network of phenotypic traits and genes. But this method
has the following two problems: (1) low learning efficiency
and easy to cause local search. The search scoring based
Bayesian network structure learning method often uses the
local or random search strategy, and it is a combinatorial
explosion problem with the increase of the node number.
(2) Poor flexibility and low calculation accuracy. Most of
the search score based methods are not flexible enough; for
example, it cannot deal with the phenotypic traits as the root
or leaf nodes in the network. This will increase the complexity
of conditional independence judgement, thus affecting the
conditional probability accuracy between phenotypic traits
and gene nodes [26].

Compared with the search scoring based method, the
efficiency of the dependence analysis based method is rela-
tively high, and it can obtain the global and optimal solution.
The three-phase dependency analysis algorithm (TPDA) is
a commonly used dependence analysis based method [27].
This algorithm uses the global search mode, and it can quickly
determine the correlation between nodes by computing the
mutual information or conditional mutual information. Its
learning efficiency is higher than the search scoring based
method. In addition, the TPDA method uses the strategy
of separating the conditional independence test and the
network structure judgement. It needs to do a large number
of conditional probability calculations, which is suitable for
sparse graph processing. In this work, the correlation between
maize carotenoid components and related genes is sparse [28,
29]. Therefore, we plan to use the three-phase dependency
analysis Bayesian network structure learning method to
construct the network including maize genes and carotenoid
components. This algorithm uses the conditional mutual
information and open path judgement to do the conditional
independence test. It leads to the result being not reliable due
to the high order conditional independence test. According to
the normal distribution of the transcriptome data and pheno-
type data, we intend to use the entropy estimation approach
of Gaussian kernel probability density estimator to calculate
the mutual information between nodes [30]. This method
can effectively solve the result unreliable problem caused by
high order conditional independence test. In addition, we
use 5 kinds of carotenoid component phenotypic traits and 4
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TaBLE 1: The advantages and disadvantages of all the methods.

ID Methods Advantages and disadvantages
] Linkage analysis method genome-wide  Advantages: detecting the relationship between genetic loci and phenotypic trait
association analysis Disadvantages: low accuracy; time-consuming; high false positive rate; high cost
) Expression Quantitative Trait Loci Advantages: mining the relationship between genetic loci and quantitative trait
(eQTL) Disadvantages: high false positive rate; high cost
Advantages: high efficiency; low cost
3 Mathematical and statistical methods Disadvantages: low accuracy; can not deal with the data with noise and nonlinear
relationship; high computational complexity
4 Dimensionality Reduction Multifactor =~ Advantages: detecting the epistasis interaction; low cost
(MDR) Disadvantages: high calculation complexity
Advantages: establishing the global relationship; low cost
5 Clustering method Disadvantages: cannot deal with data with nonlinear relationship; cannot detect the
correlation between genes and phenotype
Support vector machine random forest Advantages: low cost; high efficiency
6 method Disadvantages: the correctness depends on the quality of training set, but the
training set is often hard to obtain
7 Bayesian method Afivantages: using the prior knovs.lled-ge; realize the accurate calculation; low ?ost
Disadvantages: lack of network visibility; can not detect the epistasis interaction
Advantages: processing data with noise and non-linear relationship; supporting
8 Bayesian network different data types; high precision; low cost; detecting the epistasis interaction

Disadvantages: low learning efficiency; easy to cause local search

reported genes of maize association population material to do
the experiment verification and analysis. Experiment results
show that the three-phase dependency analysis Bayesian
network structure learning method can effectively mine the
genes related to maize carotenoid component traits. It can
provide the useful resource information for the genetic basis
analysis of maize complex quantitative traits.

3. Methods

3.1. Bayesian Network. A complete Bayesian network
includes the following three parts: nodes, edges between
nodes, and the conditional probability of all the nodes.

Definition I (Bayesian network). Itis defined as a tuple of B =
{S, P}.

(i) S = {X, E} denotes the structure of Bayesian network,
and: X = {x;, 0 < i < num} denotes the nodes in B.
E={x; - xXj 0<i<num, 0<j< num} denotes
the edges between nodes.

(ii) P = {p(x; | pa(x;)), x; € X} denotes the conditional
probability table (CPT) of all the nodes in B, and:
pa(x;) = {xp,xp - x; A (xp — x;) € EN x, €
X Ax; € X}, pa(x;), denotes the parent node set of x;.

In the above definition, p(x; | pa(x;)) expresses the
conditional probability of pa(x;). The joint probability dis-
tribution is equal to the product of conditional probability, as
shown in (1). In the equation, pa(x;) is the parent node set of

X;.

pX)=[]p(xi1pa(x)). )

x;€X

Bayesian network structure learning refers to finding a
network with the best fit for the given data set. It includes the
following three steps to construct a network.

(1) Determine the Variables and Domain of the Variables. It
will determine the variables of all the nodes in X of Bayesian
network S = {X, E}.

(2) Structure Learning. It will determine the dependency
relationships between variables, and the directed acyclic
graph is used to express the network structure.

(3) Parameter Learning. It will learn the distribution between
variables and get the conditional probability table (CPT) of
all the variables.

3.2. 'Three-Phase Dependency Analysis Algorithm. The
three-phase dependency analysis algorithm (TPDA) mainly
includes three steps: Drafting, Thickening, and Thinning [27].
The first stage is Drafting. The correlation degree between
any two nodes is calculated through the mutual information
computation. When the mutual information is greater than
the threshold, it means there exists an edge between the
corresponding nodes. The initial network will be constructed
using the above method. The second stage is conditional
mutual information judgement (Thickening). It firstly finds
the cut set C between two nodes when there is an open path
between them. Then the conditional mutual information
about the two nodes and C will be calculated, and it will
judge whether it is conditionally independent or not. If it is
not independent, the corresponding edge will be inserted
into the graph. Then the network of I-MAP will be got. The
third stage is Thinning. For each edge e in the graph, it will



be removed temporarily. Then it finds the minimum cut
set C,;, between the nodes of e and judges whether they
are conditional independent or not. If they are conditional
independent, e will be deleted forever. Otherwise, e will be
inserted into the network again, and get P-MAP finally.

3.3. Our Approach

(1) Discretization Processing. In order to enhance the learning
efficiency; it often needs to do discretization operation on the
expression data. In this work, we mainly use two discretiza-
tion methods: Interval and Quantile. We denote multivalue
discretization result as N-value, like 2-value, 3-value, and so
on.

(2) Initial Bayesian Network Construction (Stage of Drafting).
We regard genes and carotenoid component traits as nodes in
the network and calculate the mutual information of each two
nodes firstly, including the mutual information MI(ge;, ge;)
between gene ge; and ge; and MI(ge;, ct;) between ge; and
component trait ct,. The edge of the node pair whose mutual
information is greater than the threshold will be inserted into
an edge set named S; then we sort all the node pairs in S
according to the value of mutual information. Then all the
node pairs in S are judged to see whether there exists an
open path between the corresponding nodes or not. If an
open path exists, the edge of the node pair will be inserted
into another edge set named R. Otherwise, we will insert
the corresponding edge into the graph, thus constructing the
initial network.

The transcriptome and carotenoid component phenotype
data are often subject to the normal distribution. In this
work, we use the entropy estimation approach of Gaussian
kernel probability density estimator to calculate the mutual
information [30]. For example, we use (2) to calculate the
mutual information MI(ge;, ct;) of gene ge; and carotenoid
component trait cty.

|C (ge:)| - |C (cte)|
|C(gescty)]

In the equation, C represents the covariance matrix of
the expression of ge; and carotenoid component ct; and |C|
represents the determinant of the matrix C. We can calculate
the mutual information MI(ge;, ge;) of gene ge; and ge; using
the same approach. The distribution of the child node is
conditionally depended on the combination of values of the
parent nodes in the Bayesian network [26]. Regarding the
carotenoid component traits as the leaf nodes will greatly
reduce the conditional probability calculation accuracy, we
treat the carotenoid component traits as the root node in this
work.

)

MI (ge;, cty.) = %log

(3) Conditional Independence Test (Stage of Thickening). On
the basis of constructing initial network, we judge the node
pair of R in turn using the conditional independence test.
From the aspects of nontransfer connection, serial (transfer)
connection, and convergence connection, we get the mini-
mum cut set cutset which can D-separate the node pair of R
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in turn. Then we use (3) to calculate the conditional mutual
information between the nodes in which there exists an
open path, thus judging whether the node pair is conditional
independent or not. If the conditional mutual information
is greater than the threshold, it means the condition is not
independent. Then we connect the two nodes using directed
edge and judge the next node pair in R in turn.

CMI (ge;, ct;, | cutset)

1, |C(ge;cutset)| - |C (cty, cutset)| (3)
%% IC (cutset)| - |C (ge;, cty, cutset)|

In (3), ge; represents gene, ct, represents carotenoid
component trait, cutset represents the minimum cut set, C
represents the covariance matrix of the gene expression and
the phenotype data of component trait, and |C| represents the
determinant of the matrix C.

(4) Network Optimization (Stage of Thinning). It will check
each edge e in the network to achieve the further optimization
of the network. Supposing two nodes of e is (node;, node;), if
there exists an open path which connects node; and node;
except for e, then we remove e temporarily and find the
minimum cut set that can D-separate node; and node;. Then
we use (3) to judge whether the node pair is conditionally

independent or not. If it is independent, then we delete e.

Through the above 4 steps, we can construct the network
of maize genes and carotenoid component phenotypic traits.
The genes related to maize carotenoid component traits will
be got and it can provide genetic resource information for the
genetic basis analysis of maize complex quantitative traits.

4. Experiment

4.1. Dataset. We have assembled a global maize germplasm
collection with 527 elite inbred lines (association mapping
panel, AMP) released from the major temperate and trop-
ical/subtropical breeding programs of China, International
Maize and Wheat Improvement Center (CIMMYT), and
the Germplasm Enhancement of Maize (GEM) project in
the US, which were chosen to be the representative of
maize genetic diversity and/or for their promise in maize
improvement. All of the lines were previously assayed by
the 50K Maize SNP array (commercially available from
Mlumina). Deep RNA sequencing was also performed on
368 of the 527 lines using kernels harvested 15 days after
pollination (DAP) [4]. The dataset of our germplasm, tran-
scriptome, and phenotype is shown in Table2. All the
dataset can be got through http://www.maizego.org/ and
http://modem.hzau.edu.cn/ [31].

4.2. Results. The bnlearn is an R package for learning the
graphical structure of Bayesian network, estimating the
parameters and performing some useful Bayesian inference.
This package provides a number of underlying libraries about
Bayesian network learning, including structure learning,
parameter learning, and inference. In addition, this package
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TABLE 2: Our dataset.

Type

Data

Germplasm resources

527 inbred lines for association mapping panel (AMP) with different populations (143 lines for
NSS, non-stiff-stock; 33 for SS, Stiff-stock; 232 for TST, tropical and semitropical; and the left 119
are regarded as MIXED)

28,769" genes’ quantitative expression of maize whole kernel (15 days after pollination, 15 DAP).

Transcriptome Using Illumina high throughput sequencing technology, we get about 1 million 60 thousand high

quantification quality SNP markers and expression of 28,769 genes, which cover about 70% of the predicted
genes in maize genome [4]

Phenotype data 5 kinds of carotenoid component phenotype data of 482 materials in association mapping panel:

a-carotene (AC), B-carotene (BC), Lutein (LUT), Zeaxanthin (ZEA) and f-Cryptoxanthin (Bcry)

Genes filtered as expressed in >50% lines.

TaBLE 3: Results of different thresholds of Interval discretization method.

Parameters
Results (0.01,0.01,0.01) (0.015,0.015,0.015) (0.02,0.02,0.02) (0.025,0.025, 0.025) (0.02,0.01,0.01)
8-value  2-value  8-value 2-value 8-value 2-value 8-value 2-value 8-value  2-value
Number of edges (A) 7 6 4 3 2 2 3 1 4 2
Number of edges (B) 18 13 10 9 6 7 6 4 11 8
Ratio of 4 genes 1.75 1.53 1.0 0.75 0.5 0.5 0.75 0.25 1.0 0.5
Ratio of other 100 genes 0.18 0.1 0.1 0.09 0.06 0.07 0.06 0.04 0.11 0.08
TABLE 4: Results of different thresholds of Quantile discretization method.
Parameters
Results (0.01,0.01,0.01)  (0.015,0.015,0.015)  (0.02,0.02,0.02)  (0.025,0.025,0.025)  (0.02,0.01,0.01)
8-value 2-value  8-value 2-value 8-value 2-value 8-value 2-value 8-value  2-value
Number of edges (A) 6 3 5 3 5 3 2 1 5 3
Number of edges (B) 16 14 13 9 10 9 9 7 14 12
Ratio of 4 genes 15 0.75 1.25 0.75 1.25 0.75 0.5 0.25 1.25 0.75
Ratio of other 100 genes 0.16 0.14 0.13 0.09 0.1 0.09 0.09 0.07 0.14 0.12

is completely free and its code is entirely open and with
good scalability. This package does not support the three-
stage dependency analysis algorithm. We implement this
algorithm using R and denote it as TPDA. In addition,
we use the other 9 kinds of Bayesian network learning
methods (including gs, hc, iamb, mmpc, rsmax, tabu, fastiamb,
interiamb, and mmbhc) to construct the network, to compare
with our TPDA method.

The linkage analysis and association analysis methods
have been used to locate a plurality of Quantitative Trait
Locus (QTL) about maize carotenoid component traits so
far. The following 4 genes related to maize carotenoid com-
ponent traits have been reported: IcyE (GRMZM2G012966),
crtRBI (GRMZM2G152135), PSY1 (GRMZM2G300348), and
CRTISO (GRMZM2G108457) [2, 28, 32-35]. In addition, we
randomly select 100 genes, and then together with a-carotene
(AC), B-carotene (BC), Lutein (LUT), Zeaxanthin (ZEA), -
Cryptoxanthin (Bcry), and above 4 genes composed of 109
nodes, we do the experiment 10 times, and the 10 experiments
data can be seen in the supplementary file (Genel00_1.csv~
Genel00_10.csv) in Supplementary Material available online
at https://doi.org/10.1155/2017/1813494.

As has been described in Section 3.3, we firstly do the dis-
cretization processing operation on the expression and phe-
notype data and further use the Bayesian network learning
method to construct the network. We mainly use two kinds of
discretization methods: Interval and Quantile. And we denote
multivalue discretization result as N-value, like 2-value, 3-
value, and so on. We compare the learning efficiency and
accuracy of 10 kinds of Bayesian network learning methods
(gs, he, iamb, mmpc, rsmax, tabu, fastiamb, interiamb, mmbhc,
and TPDA) when using the discretization methods of Interval
and Quantile. The whole experiment results are shown in
the supplementary files (9 kinds of methods-Interval.csv,
9 kinds of methods-Quantile.csv, TPDA-Interval.csv, and
TPDA-Quantile.csv).

(1) Learning Effect Comparison of Different Thresholds about
TPDA. In the Drafting stage of TPDA, it needs to set the
threshold of mutual information. In the stage of Thickening
and Thinning, it also needs to set the threshold of conditional
mutual information. In the case of using the discretization of
8-value and 2-value, we compare the learning effect of differ-
ent thresholds using Random5 data about the discretization
methods of Interval and Quantile, as seen in Tables 3 and 4. In


https://doi.org/10.1155/2017/1813494

6 BioMed Research International
TABLE 5: Learning efficiency comparison of different thresholds and discretization values.
Parameters
N-value (0.01,0.01,0.01) (0.015,0.015,0.015) (0.02,0.02,0.02) (0.025,0.025,0.025) (0.02,0.01,0.01)
Interval Quantile Interval Quantile Interval Quantile Interval Quantile Interval Quantile
8-value 34.854 17.324 22.618 11.341 16.022 7.631 12.042 5.531 19.81 8.266
7-value 35.336 17.78 23.557 11.351 14.594 7508 8.592 5.34 10.33 8.124
6-value 18.861 17.131 12.791 10.979 8.904 7.553 6.619 5.194 10.17 8.041
5-value 19.644 16.924 13.017 10.885 9.16 7.257 6.717 5.066 10.564 7.871
4-value 18.75 16.282 12.172 10.076 8.564 6.65 6.965 4.743 15.698 7.287
3-value 29.124 15.083 18.52 9.133 11.128 6.022 8.355 4.031 13.326 6.324
2-value 13.624 11.109 791 5.951 5.133 3.735 3.227 2.125 5.577 3.922
the table, the form of (X, Y, Z) refers to the thresholds that are 20 -
set in the three stages, respectively. A refers to the number of 18 ¢ 1
edges between 4 genes and 5 component traits. B refers to the 16 1
14 + g

number of edges between other 100 genes and 5 component
traits. The ratio of 4 genes is calculated by A divided by 4, and
the ratio of other 100 genes is calculated by B divided by 100.

It can be seen that the learning effect is different of the
two discretization methods when setting different thresholds.
The two discretization methods have better learning effect
when setting the thresholds to (0.01, 0.01, and 0.01). The
learning effect of 8-value discretization is better than 2-value
when taking a specific threshold. In addition, we can see the
threshold of Drafting stage has a great influence on the result.
In the case of setting the threshold of Drafting to 0.02, the
learning effect is significantly better than the case of setting
the threshold to 0.025. In all, we can see the TPDA method
has the best learning effect when setting the threshold of (0.01,
0.01, and 0.01) and use the 8-value discretization.

(2) Learning Efficiency Comparison of Different Discretization
Values. In the case of using different discretization values
of Interval and Quantile methods, we compare the learning
efficiency of different thresholds about TPDA, as seen in
Table 5. The learning time is got by calculating the average
values of 10 experiments and measured in seconds.

The learning efficiency of the Quantile discretization
method is higher than the Inferval method when taking
particular threshold. The learning time of the two methods
is becoming less as the threshold increases. In addition, we
can see the learning time is becoming less as the discretization
value becomes small. This is because the calculation times will
be reduced as the discretization value becomes small.

(3) Learning Results Comparison with Different Bayesian
Network Learning Methods. In this experiment, we compare
the learning effect of different Bayesian network learning
methods, and we set the threshold to (0.01, 0.01, and 0.01) of
TPDA method. Experiment results show the other 9 kinds
of Bayesian network learning methods have better learning
effect in the case of using the 2-value discretization; therefore
we use the 2-value discretization to do the comparison and
analysis of the 9 kinds of methods. We calculate the average
of 10 experiment results to ensure the accuracy. The learning
results of Interval and Quantile discretization methods are

gs
hc

Results

TPDA 2-value ===

1amb ;I B R

mmpc e

rSmax B
tabu ;" —
fastiamb E——== . . . ... . .. ..
interiamb %l Lol

—
mmbhc e

TPDA 5-value

Methods

= Number of edges (A)
=3 Number of edges (B)

=3 Ratio of 4 genes
= Ratio of other 100 genes

FIGURE 1: Learning result comparison of Interval discretization
method.

shown in Figures 1 and 2, respectively. A refers to the average
number of edges between 4 genes and 5 component traits. B
refers to the average number of edges between other 100 genes
and 5 component traits.

Through Figures 1 and 2, we can see the learning effect of
the Interval discretization method is better than the Quantile
discretization method on the whole for the 10 kinds of
Bayesian network learning methods. For the TPDA method,
the learning effect of 5-value is better than the case of 2-
value. For the Interval discretization method, the learning
effect of TPDA method is slightly worse than gs and mmpc,
but it is better than the other 7 kinds of methods. For the
Quantile discretization method, the learning effect of TPDA
method is better than other 9 kinds of methods in the case of
using the 5-value discretization. The learning effect of TPDA
method is worse than gs and mmpc and better than the other
7 methods when taking the 2-value discretization. In all, we
can see the TPDA method has better learning effect when
using the Quantile and 5-value discretization method. And
the learning effect of TPDA method is better than other 9
kinds of methods on the whole.
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FIGURE 2: Learning result comparison of Quantile discretization
method.

(4) Learning Effect Comparison of Different Discretization
Values. In the case of setting different discretization values of
Interval and Quantile methods, this experiment compares the
learning effect of gs, hc, iamb, mmpc, rsmax, tabu, fastiamb,
interiamb, mmhc, and our TPDA method. We compare the
average value of 10 experiment results, and the learning effect
is shown in Table 6. The threshold of TPDA is set to (0.01,
0.01, and 0.01). In the form of (X,Y), X refers to the average
ratio of 4 genes about 10 experiments, and Y refers to average
ratio of other 100 genes about 10 experiments.

We can see that the average ratios of about other 100 genes
are greater than 0 in most cases; the reason is that there exist
genes related to maize carotenoid content traits. It can be seen
that the average ratio of 4 genes about TPDA method is larger
than other 9 kinds of methods apparently when using specific
N-value discretization method. The TPDA method has better
learning effect of all the 10 methods. For the specific Bayesian
network learning method, the value of X is larger than Y3 it
indicates that all the 10 kinds of methods can effectively mine
genes related to maize carotenoid content traits. The other
9 kinds of Bayesian network learning methods have better
learning effect when using 2-value discretization. When
the discretization value is larger than 5, the other 9 kinds
of methods cannot learn any effective edge basically. The
TPDA method has better learning effect when using 7-value
discretization approach. In addition, we can see the methods
of gs and mmpc have better learning effect, and the learning
effect of the other 7 kinds of methods is about the same.

(5) Learning Efficiency Comparison of Different Bayesian
Network Learning Methods. In this experiment, we compare
the learning time of gs, hc, iamb, mmpc, rsmax, tabu, fastiamb,
interiamb, mmhc, and TPDA method, and it is measured
in seconds. The results of the Interval and Quantile dis-
cretization method are shown in Tables 7 and 8, respectively.
The threshold of TPDA is set to (0.01, 0.01, and 0.01), and

the learning time is calculated by the average results of
10 experiments. When taking 8-value and 7-value Interval
discretization, the methods of gs, hc, iamb, mmpc, rsmax,
tabu, fastiamb, interiamb, and mmhc cannot learn any edges
between 4 genes and 5 component traits. Therefore, we do
not compute the learning time of 8-value, 7-value of Interval
discretization in Table 7, and 8-value, 7-value, and 6-value of
Quantile discretization in Table 8.

For the two discretization methods, the learning time of
TPDA is much larger than other 9 kinds of methods. This is
mainly due to it needing to do a large number of conditional
independence judgements in the stage of Thickening and
Thinning. The learning time of TPDA method is becoming
less with the decrease of the discretization value. In addition,
we can see the methods of hc and fastimab use the less
time, and the methods of gs, rsmas, and interimab use the
more time. This is consistent with the results that have been
reported in the machine learning area.

On the whole, we can see the TPDA method performed
better than other 9 kinds of Bayesian network learning
methods. It can effectively mine the genes related to maize
carotenoid component traits. In addition, experiment results
show the TPDA method has the best learning effect when
setting the threshold to (0.01, 0.01, and 0.01) and using
the 7-value discretization. The other 9 kinds of Bayesian
network learning methods have better learning effect when
using the 2-value discretization approach. For the 10 kinds
of Bayesian network learning methods, the learning effect of
the Interval discretization method is better than the Quantile
method on the whole. These obtained parameters will help
carry out practical experiment applications effectively in the
future, and thus help mine genes related to maize carotenoid
component traits efficiently and accurately. It can also help
mine the genes of specific traits for different species.

5. Conclusion

How to mine genes related to maize carotenoid components
flexibly and efficiently is a key problem to be solved in
the biology research. In this work, we use the three-phase
dependency analysis algorithm (TPDA) Bayesian network
structure learning method to construct the network of maize
genes and carotenoid component traits, thus realizing gene
mining for maize carotenoid components. The 5 kinds of
carotenoid component traits and 4 reported genes about
maize association population material are used to do the
experiment validation and analysis. Experiment results show
different methods have different learning effect and efficiency
when setting different thresholds and discretization values.
And our TPDA method performed better than other 9
kinds of Bayesian network learning methods. The parameters
obtained by experiments will help carry out practical gene
mining efficiently and accurately in the future. On the whole,
experiment results show the three-phase dependency analysis
Bayesian network structure learning method is an effective
approach for mining the genes related to maize carotenoid
component traits. The learning result can be used to provide
genetic resources and useful information for genetic basis
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TABLE 7: Learning efficiency comparison of different discretization values (Interval).
N-value Methods
TPDA gs hc iamb mmpc rsmax tabu fastiamb interiamb mmhc
6-value 18.861 0.599 0.167 0.611 0.459 0.59 0.212 0.493 0.678 0.489
5-value 19.644 0.692 0.208 0.897 0.463 0.693 0.246 0.652 0.880 0.484
4-value 18.75 0.641 0.257 0.551 0.495 0.659 0.313 0.253 0.571 0.51
3-value 29.124 0.728 0.336 0.416 0.518 0.749 0.409 0.398 0.449 0.543
2-value 13.624 1.332 0.601 0.795 0.563 1.349 0.730 0.474 0.84 0.616
TaBLE 8: Learning efficiency comparison of different discretization values (Quantile).
N-value Methods
TPDA gs hc iamb mmpc rsmax tabu fastiamb interiamb mmhc
5-value 16.924 0.79 0.206 0.887 0.575 0.782 0.255 0.318 0.97 0.588
4-value 16.282 1.077 0.252 1.065 0.576 1.07 0.325 0.248 1.211 0.583
3-value 15.083 1.125 0.321 1.357 0.533 1.125 0.398 0.384 1.944 0.582
2-value 11.109 1.462 0.613 0.814 0.563 1.463 0.739 0.431 0.925 0.666
analysis of maize complex quantitative traits. It can also [6] R.Li, S.-W. Tsaih, K. Shockley et al., “Structural model analysis

provide strong support for gene function mining and genetic
breeding for maize.
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