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Metal ions are essential for life on Earth, mostly as crucial components of all living  organisms; 
indeed, they are necessary for bioenergetics functions as crucial redox catalysts. Due to  
the essential role of iron in biological processes, body iron content is finely regulated and 
is the battlefield of a tug-of-war between the host and the microbiota.
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Iron availability in the intestinal lumen could prevent or promote intestinal dysbiosis, although 
current data do not provide a definitive response. Recent data demonstrated that nutritional derived 
polyphenols explicit their anti-inflammatory functions sequestrating iron from immune cells. Here, 
we discuss whether nutritional iron chelators could be able to change the gut microbiota composition 
and prevent the intestinal dysbiosis associated with intestinal chronic inflammatory syndromes.

Iron is lost by cellular exfoliation and occasional bleeding; it is absorbed from nutritional com-
ponents. Heme is the most important source of dietary iron, while non-heme iron can be absorbed 
only in the duodenum and the beginning of the jejunum in pH permissive (acid) conditions. Western 
diets often contain large quantities of foods characterized by a high heme-iron content like meat, 
fish, and poultry, and small quantities of non-heme-iron content like vegetables, fruits, and nuts. 
Furthermore, nutritional substances can affect iron absorption: ascorbic acid is an efficient enhancer 
of non-heme-iron absorption, vice versa, phytic acid is known to be among the major iron absorption 
inhibitors, and iron-chelating substances like quercetin inhibit its absorption, likely due to loss of 
chelated-iron solubility.

Iron deficiency is the most common cause of anemia worldwide and one of the most  common 
 com plications observed in inflammatory bowel disease (IBD) patients due to gastrointestinal  hemorrhages. 
In IBD patients, the guidelines for the management of iron deficiency are not entirely satisfactory because 
following oral iron supplementation patients sometimes report worsening of the IBD  symptoms (1). 
Interestingly, iron supplemented diets can also show protective effects in dextran sodium sulfate (DSS)-
induced colitis models. Constante et al. demonstrated that iron formulation dramatically changed the 
outcome of the DSS-induced colitis, as oral supplementation with ferrous bisglycinate but not ferric 
ethylenediaminetetraacetic acid enhanced the beneficial action of probiotics (2).

HOW tHe iMMUNe ceLLs resPOND tO tHe irON 
DeFicieNcY?

Iron availability may play a non-redundant role in chronic inflammatory syndromes. It may  suppress 
or promote the inflammatory ability of immune cells, and iron-chelating molecules may play a 
pivotal role in this mechanism. Iron sequestration is a strategy used by the host to restrict pathogen 
proliferation. Macrophages play a central role in this process, as they are the most important cell 
involved in removing senescent red blood cells to recycle iron (erythrophagocytosis). Under inflam-
matory conditions, macrophages, but also monocytes and dendritic cells (DCs), retain iron through 
ferritin, an intracellular protein that can bind up to 400 atoms of iron. At the same time, iron export 
is inhibited due to the cascade of events that is triggered by inflammation-mediated increased levels 
of hepcidin. Hepcidin binds to the iron-export protein ferroportin and consequently induces its 

https://www.frontiersin.org/Medicine
https://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2018.00109&domain=pdf&date_stamp=2018-04-18
https://www.frontiersin.org/Medicine/archive
https://www.frontiersin.org/Medicine/editorialboard
https://www.frontiersin.org/Medicine/editorialboard
https://doi.org/10.3389/fmed.2018.00109
https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:transmed@irccsdebellis.it
https://doi.org/10.3389/fmed.2018.00109
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00109/full
https://www.frontiersin.org/Journal/10.3389/fmed.2018.00109/full
https://loop.frontiersin.org/people/67707
https://loop.frontiersin.org/people/423929


2

Chieppa and Giannelli Microbiota Iron Axis

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 109

internalization and degradation. The overall result is a decreased 
level of circulating iron and increased load of cytoplasmic iron in 
macrophages (3). Like other iron-mediated defense mechanisms 
described below, this strategy is efficient at hampering bacterial 
growth but seems counterproductive in the case of intracellular 
pathogens like Salmonella. Indeed, mice characterized by low 
levels of iron in macrophages, due to mutation in the Hfe gene, 
better control Salmonella typhimurium infection (4).

The observation that quercetin-exposed DCs fail to release 
inflammatory cytokines when treated with LPS was recently linked 
to the cellular iron content by Galleggiante et al. (5). By chelating 
iron in the culture media, quercetin promotes iron efflux from 
DCs, whose inflammatory ability consequently becomes impaired. 
Quercetin anti-inflammatory properties disappear when the 
culture media are supplemented with ferrous sulfate, indicating a 
direct link between iron chelation and DCs’ inflammatory abilities.

HOW tHe GUt MicrOBiOtA resPOND 
tO tHe irON stArvAtiON?

It has long been known that iron availability is crucial for 
 bacterial growth, and iron deprivation is an efficient strategy 
to limit bacterial growth. Bactericidal properties of iron-chelating 
phosvitin contained in eggs were (unknowingly) described by 
Shakespeare (6) in the third act of King Lear “I’ll fetch some flax 
and whites of eggs to apply to his bleeding face.” More recently, 
an increased risk of bacterial infections has been observed 
following the administration of non-physiological amounts of 
iron and, in particular, an increased virulence of Escherichia, 
Klebsiella, Listeria, Neisseria, Pasteurella, Shigella, Salmonella, 
Vibrio, and Yersinia (7).

When studied using murine models of colitis, the increased 
oxidative stress was identified as the major cause of disease 
exacerbation following oral iron administration, but several other 
mechanisms may be important, including endoplasmic reticulum 
stress, a microbial community shift and immune cells  activation. 
Furthermore, in  vitro results obtained using the intestinal 
 fermentation model described by Cinquin et al. (8) demonstrated 
a direct link between iron restricted growth condition and the 
growth advantage obtained by Enterobacteriaceae and lactobacilli 
(9). Nonetheless, these in vitro results were in contrast with Dostal 
et al. who observed marginal changes in gut microbiota compo-
sition in rats under low luminal Fe concentrations (10). A likely 
explanation for the contrasting results obtained by Dostal et al. is 
the experimental model used was not Fe deficient, thus, in non-
anemic patients, the host Fe reservoir may be sufficient to sustain 
the healthy composition of the gut microbiota.

DOes NUtritiONAL irON 
iMPLeMeNtAtiON iNFLUeNce tHe 
MicrOBiOtA cOMPOsitiON?

The relation between iron availability and intestinal microbiota is 
still largely unexplored although it is well known that iron availabil-
ity influences the composition of the microbiota. The battle for iron 
is mainly based on iron-sequestration strategies. From the microbial 

side, iron uptake relies on iron chelation, high-affinity proteins 
(siderophores) being a mechanism serving to scavenge this metal 
from host protein and/or other microbial species. The best-known 
siderophore is enterobactin, first isolated in 1970 and primarily 
found in Gram-negative bacteria like S. typhimurium. From the host 
side, the siderophores seq u estering protein lipocalin-2 released into 
the intestinal lumen are an innate defense system serving to limit 
microbial growth. Nonetheless, the same strategy protecting from 
bacterial pro liferation during healthy periods (lipocalin-2 sidero-
phores sequestration) offers advantages to pathogens that acquire 
iron through modified siderophores (like salmochelin) which are 
not recognized by lipocalin-2. Raffatellu et  al. demonstrated this 
concept very elegantly, showing that both WT Salmonella enterica 
and the ionN mutant strain (unable to utilize salmochelin) are able 
to grow in mice intestinal lumen, but the latter is not able to gain 
advantages during intestinal inflammation. Furthermore, ionN 
mutant and WT S. enterica strains grow equally well in the inflamed 
intestine of lipocalin-2-deficient mice (11). Heme-derived iron is 
an important source of iron for both the host and the intestinal 
microorganisms. Pathogenic strains grow particularly well in heme-
rich conditions due to their efficiency in capturing heme. As dem-
onstrated by Constante et al. in mice, a heme-rich diet decreased 
microbial diversity, increased the abundance of Proteobacteria and 
reduced the abundance of Firmicutes similarly (but to a lesser extent) 
to DSS-induced colitis (2). Furthermore, a heme-enriched intestinal 
lumen (due to a heme-rich diet or intestinal bleeding) may favor 
the growth of bacteria-coding genes related to heme uptake and 
release from red blood cells. This aspect may be crucial to explain 
the correlation between meat consumption and increased risks for 
colorectal cancer.

Are NUtritiONAL irON cHeLAtOrs 
ABLe tO cHANGe tHe GUt MicrOBiOtA 
cOMPOsitiON?

As nutrition-derived iron is a crucial aspect of the intestinal 
 ecology, nutrition-derived iron chelators may play an equally 
relevant role in shaping the microbial composition of the 
intestine. Direct studies addressing this complex subject are 
still lacking, but the effects of some iron chelators have been 
reported. As mentioned earlier, egg white (EWH) is one of the 
first iron chelators ever described. The non-heme-iron binding 
pepsin hydrolyzate of EWH was used to supplement obese 
Zucker rats and evaluate the microbiota modulation. EWH 
supplementation was able to drive the microbiological charac-
teristics of the obese Zucker rats toward that of the lean rats 
(12). Polyphenols,  characterized by well-known iron-chelating 
abilities, were reported as antimicrobial agents (13), but there 
are no direct studies exploring whether polyphenol-mediated 
effects on the gut microbial composition are directly related to 
iron sequestration, or else iron-sequestration results in immune 
cells anti-inflammatory polarization thus influencing the gut 
microbial composition. Iron sequestration by iron–polyphenol 
complexes could be an effective strategy to deprive gut microbial 
species of a crucial supply. Indeed, it is known that the iron–poly-
phenol complex cannot be absorbed by the epithelial cells and 

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive


FiGUre 1 | Representation of the host–microbiota battle for iron. (A) In homeostatic conditions, Fe3+ is reduced to Fe2+ by the ferrireductase (DcytB) activity before 
being imported through the epithelial divalent metal transporter DMT1. Once inside the cells, iron can be accumulated, bound by ferritin, or exported via ferroportin. The 
gut microbiota relies on low-molecular-weight iron chelators (siderophores) for receptor-mediated iron uptake. The most common siderophore is enterobactin. (B) In 
conditions of intestinal inflammation lipocalin-2 secretion from epithelial and myeloid cells is upregulated. Lipocalin-2 reduces iron availability for gut microbiota by binding 
enterobactin and thus impairing enterobactin-mediated iron acquisition. Pathogens that do not strictly rely on enterobactin for iron uptake gain an advantage from 
lipocalin-2 mediated commensal growth, which hampers secreting glucosylated variants of enterobactin which are not bound by lipocalin-2. (c) Polyphenols can bind 
iron with strong affinity. DMT1 fails to transport the polyphenol–iron complex into epithelial cells. Most likely, the polyphenol–iron complex reduces iron availability in the 
intestinal lumen, impairing gut microbiota growth. This aspect should be taken into account during intestinal inflammatory events associated with microbial dysbiosis.
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is excreted in the feces (14), suggesting that intestinal bacteria 
also fail to obtain iron once it has been chelated by polyphenols.

In light of the crucial role of the microbiota in IBD, future 
studies need to take into account the possibility of using natural 
iron-chelating agents to suppress immune cells inflammatory 
responses and, at the same time, to prevent undesired gut micro-
bial advantages (15, 16) (Figure 1). Recent metagenomics studies 
in diet-induced obesity murine models demonstrated a marked 
increase presence of Akkermansia muciniphila in the intestinal 
microbiota of mice daily gavaged with cranberry extract. 
A. muciniphila-derived extracellular vesicles seem to be able to 
improve tight junction expression and improve intestinal barrier 
integrity. These results provide a link between polyphenol expo-
sure, intestinal microbiota, and intestinal health, but much more 
has to be done to comprehend the exact ongoing mechanisms 
(17–20). The infusion route should be preferentially adopted 

for patients’ needs of iron supplementation to avoid conferring 
undesired advantages to intestinal pathogens. Nutrition and 
nutrition-derived therapies should be considered as pivotal com-
plementary treatments that can have an impact on the mucosal 
immune response. These insights can be viewed from several 
different perspectives and may help to improve the efficiency of 
current pharmacological approaches.
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