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Study Objectives: Obstructive sleep apnea (OSA) is increasingly recognized as a

complex and heterogenous disorder. As a result, a “one-size-fits-all” management

approach should be avoided. Therefore, evaluation of pathophysiological endotyping

in OSA patients is emphasized, with upper airway collapse during sleep as one of the

main features. To assess the site(s) and pattern(s) of upper airway collapse, natural sleep

endoscopy (NSE) is defined as the gold standard. As NSE is labor-intensive and time-

consuming, it is not feasible in routine practice. Instead, drug-induced sleep endoscopy

(DISE) is the most frequently used technique and can be considered as the clinical

standard. Flow shape and snoring analysis are non-invasive measurement techniques,

yet are still evolving. Although DISE is used as the clinical alternative to assess upper

airway collapse, associations between DISE and NSE observations, and associated flow

and snoring signals, have not been quantified satisfactorily. In the current project we

aim to compare upper airway collapse identified in patients with OSA using endoscopic

techniques as well as flow shape analysis and analysis of tracheal snoring sounds

between natural and drug-induced sleep.

Methods: This study is a blinded prospective comparative multicenter cohort

study. The study population will consist of adult patients with a recent diagnosis

of OSA. Eligible patients will undergo a polysomnography (PSG) with NSE

overnight and a DISE within 3 months. During DISE the upper airway is

assessed under sedation by an experienced ear, nose, throat (ENT) surgeon using

a flexible fiberoptic endoscope in the operating theater. In contrast to DISE,

NSE is performed during natural sleep using a pediatric bronchoscope. During

research DISE and NSE, the standard set-up is expanded with additional PSG

measurements, including gold standard flow and analysis of tracheal snoring sounds.
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Conclusions: This project will be one of the first studies to formally compare collapse

patterns during natural and drug-induced sleep. Moreover, this will be, to the authors’

best knowledge, the first comparative research in airflow shape and tracheal snoring

sounds analysis between DISE and NSE. These novel and non-invasive diagnostic

methods studying upper airway mechanics during sleep will be simultaneously validated

against DISE and NSE.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04729478.

Keywords: diagnosis, endotyping, OSA (obstructive sleep apnea), personalized medicine, upper airway

obstruction

INTRODUCTION

Obstructive sleep apnea (OSA) is a highly prevalent disorder
affecting almost one billion individuals worldwide (1). This
entity can be best described as a heterogenous condition with
recurrent upper airway collapse provoking nocturnal breathing
cessation (2). The pathophysiology of OSA is multifactorial
and varies considerably between individuals (3). One of the
key determinants is an anatomically narrow and collapsible
upper airway (4, 5). However, non-anatomical traits are
also important contributors to OSA pathogenesis, including
an ineffective pharyngeal muscle response during sleep, an
oversensitive ventilatory control system (i.e., high loop gain),
and a low arousal threshold (6). The PALM concept combines
these pathophysiological traits on a three-point scale (passive
critical closing pressure, arousal threshold, loop gain, and
muscle responsiveness), enabling categorization of patients into
three categories: PALM scale 1 consists of patients with a
high collapsible upper airway, necessitating a major anatomic
intervention. PALM scale 2 includes patients with a moderate
collapsibility who are candidates for an anatomic or non-
anatomic intervention or a combination of both according to the
other OSA traits, and PALM scale 3 is constituted of patients with
predominantly non-anatomic traits and overall a less severe OSA
(6). This research project will focus on the anatomical OSA traits,
with a particular focus on the site of upper airway collapse.

The standard treatment for OSA is to pneumatically splint the
upper airway throughout the respiratory cycle using continuous
positive airway pressure (CPAP) (7). However, CPAP-therapy is
often poorly tolerated with non-adherence rates ranging between
46 and 83% (8). Other treatment modalities, such as mandibular
advancement devices (9), pharyngeal surgery (10), and upper
airway stimulation (11) produce beneficial results in many cases
but are limited by a variable efficacy. Thus, in light of the
complex and heterogenous pathophysiology of OSA, treatment

Abbreviations: AASM, American Academy of Sleep Medicine; AHI, apnea-
hypopnea index; BMI, bodymass index; CCCp, complete concentric collapse at the
level of the palate; CPAP, continuous positive airway pressure; DISE, drug-induced
sleep endoscopy; EEG, electroencephalography; ECG, electrocardiography; EMG,
electromyography; EOG, electro-oculography; ENT, ear, nose, throat; HMS,
Harvard Medical School; NED, negative effort dependence; NSE, natural sleep
endoscopy; OSA, obstructive sleep apnea; PSG, polysomnography.

should be individually tailored according to various phenotypic
traits (12–14).

At present, endoscopy-based methods are the clinical
mainstay of outcome prediction and patient selection, allowing to
identify the sites and patterns of upper airway collapse (15). The
gold standard method, natural sleep endoscopy (NSE), visualizes
upper airway dynamics using a pediatric bronchoscope during
normal sleep (16). However, due to the labor-intensive and time-
consuming nature of NSE, including overnight measurements,
drug-induced sleep endoscopy (DISE) was developed as an
alternative method for routine clinical practice (17). Using
sedation to induce a sleep-like state, DISE offers the advantage of
being performed during daytime hours in a high-volume setting
(18). In the last two decades, DISE has gained great popularity
for assessing the sites and patterns of upper airway collapse in
patients with OSA.

Collapse can occur at multiple levels along the pharynx,
including the soft palate, oropharynx, tongue base, and epiglottis.
The absence of complete concentric collapse at the level of
the palate (CCCp) and the presence of tongue base collapse
during DISE may be positive predictors for therapeutic success
with hypoglossal nerve stimulation therapy and mandibular
advancement devices (19–21). The same favorable association
between tongue base collapse and mandibular advancement
device outcome was found by a recent study using NSE (22).
Conversely, epiglottis collapse during DISE may negatively affect
the outcome of mandibular advancement devices, CPAP, and
upper airway surgery (23). However, this collapse type may
respond well to changes in body position from supine to lateral
as seen during both DISE and NSE (23, 24).

A recent literature review by our research group concluded
that velar collapse is seen during NSE in 58.8% of patients,
tongue base collapse in 43.2%, lateral wall collapse in 29.9%, and
epiglottis collapse in 22.4% (25). Drug-induced sleep endoscopy
studies in the past reported comparable findings with the highest
prevalence of collapse at the level of the soft palate (81.0%),
followed by the tongue base (46.6%), hypopharynx (38.7%), and
oropharynx (21.9%) (15).

Park et al. recently explored the differences in obstruction
patterns between DISE using midazolam and NSE (26). They
demonstrated significant concordance in epiglottis collapse
(92.3%), lateral wall collapse (88.5%), and velar collapse
(76.9%). However, the agreement in tongue base collapse was
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relatively low (69.2%). Compared to NSE, CCCp was observed
slightly more often during DISE. Regarding the extent of
obstruction, higher obstruction grades were present during DISE
observations, withmore sites in need of treatment, in comparison
to NSE. Overall, these findings would suggest that DISE is a
reliable test. However, this study only included a small patient
sample in the supine position.

An evolving method to non-invasively determine the sites of
upper airway collapse is airflow shape analysis. Specific airflow
features have been previously validated by using DISE and NSE
observations (27–31). Negative effort dependence (NED) as a
flow limitation characteristic is quantified as the percentage
reduction in inspiratory flow frompeak to plateau associated with
increasing respiratory effort (

[

flowpeak − flowplateau

]

/flowpeak).
In a preliminary assessment of correlations between flow
measurements and upper airway collapse sites during DISE,
the authors observed that the presence of epiglottis collapse
was associated with a higher NED compared to the absence
of epiglottis collapse or collapse at other pharyngeal sites (30).
This is in line with previous findings of Genta et al., who also
found that tongue base collapse is associated with a low NED,
and isolated palatal and lateral wall collapse with a moderate
NED (27). Using a machine learning algorithm, Azarbarzin et
al. expanded this work by developing a model that discriminated
epiglottis from non-epiglottis collapse with 84% cross-validated
accuracy (29). The main distinctive parameters of this model
were the discontinuity index (slope of the steepest line fitted
to the inspiratory airflow signal) and inspiratory jaggedness
(extent of deviation from a flat line during inspiration). The
same research group also identified expiratory flow limitation
(recognizable as pinching of the airflow signal) as the hallmark of
palatal prolapse (29). According to recent evidence, this pinching
feature is associated with a negative response to mandibular
advancement device treatment, indicating the potential of this
non-invasive assessment (32).

Different parts of the upper airway may generate different
snoring sounds. Therefore, acoustic analysis of tracheal snoring
sounds could be a useful indicator of the site of obstruction
in patients with OSA by determining the number of snore
events, the intensity of snoring, the sound frequencies, and/or
the spectrogram (33, 34). Liistro et al. were the first in 1991 who
examined the relationship between snoring characteristics and
the anatomical site of collapse by using a supraglottic pressure
catheter (35). A study of Xu et al. showed a difference in sound
spectrum between upper and lower-level obstructive apneas
using esophageal and oropharyngeal pressure measurements.
An obstruction level above the free margin of the soft palate
produced a characteristic frequency in the low frequency domain
and an obstruction level below the free margin of the soft
palate in the high frequency domain (36). However, most studies
have not used direct visualization of the upper airway with
DISE. Recent studies using DISE have shown similar associations
between the sites of collapse and certain frequency bands (37, 38).
Palatal snoring was identified at low frequencies (137, 105–
189Hz), tongue base snoring at high frequencies (1,243, 1,215–
1,277Hz), and epiglottic snoring in a mid-frequency range (490,
331–510Hz) (38). Multilevel obstruction during DISE might

be associated with complex snoring sounds, expressing as an
irregular pattern of snoring (37) or a high maximal intensity
of low-frequency snoring sounds (≥60 dB) (33). Koo et al.
stated that the spectrograms and frequencies of snoring sounds
of drug-induced sleep did not differ significantly from those of
natural sleep (39). Nevertheless, induced sleep might show a
slightly higher intensity than natural sleep, predominantly on
a retro-lingual obstruction level, and might be more irregular
in comparison with natural sleep on spectrogram (34, 38–41).
Sebastian et al. used an automated technique from audio signal
recordings to identify the primary site of upper airway collapse.
The automated system showed a high accuracy for identifying
tongue and non-tongue related collapse (macro-average recall of
80%) but with only low unweighted average recalls for classifying
all sites (34). A review of Penzel and Sabil supports the hypothesis
of tracheal sound analysis to be a surrogate for respiratory
flow (42). In a more recent study of the same research group
with a small sample size (n = 32), the detection of apneas
was compared using four different methods of airflow signals,
concluding tracheal sounds to be a possible future substitute for
oral thermistors (43). However, more studies utilizing endoscopic
visualization of the upper airway during sleep, are necessary to
validate this hypothesis. To conclude, tracheal snoring sounds
analysis may be used as a useful screening tool to determine the
site of obstruction during sleep.

In the current project, we aim to compare endoscopic findings
of upper airway collapse as well as flow and tracheal snoring
sounds analysis between natural and drug-induced sleep in
patients with OSA.

MATERIALS AND METHODS

Study Objectives
The study aims are as follows:

1. To compare upper airway collapse observed during NSE and
DISE in patients with OSA.

2. To compare the airflow shapes caused by the different sites of
collapse, between NSE and DISE.

3. To compare the acoustics of snores (i.e., tracheal snoring
sounds) generated by the different sites of upper airway
collapse between NSE and DISE.

4. To validate previously developed models for predicting the
sites of collapse from airflow and snoring sounds and to
compare prediction performance between NSE and DISE (27–
31, 44, 45).

Patient Recruitment
Regarding all four aims, patients participating in this study must
follow the inclusion and exclusion criteria as listed in Table 1.

To achieve the objectives, subjects will be prospectively
recruited at the Department of Otorhinolaryngology in the
Antwerp University Hospital and at the Department of Sleep
and Circadian Disorders in the Brigham and Women’s Hospital
between March 1, 2021 and September 30, 2022. Every year,
approximately 400 patients undergo a DISE at both departments
combined. As a result, we expect to be able to include 40
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TABLE 1 | Eligibility criteria.

Inclusion criteria Age: 18 years or older

BMI ≤35 kg/m²

Diagnosis of OSA with a baseline AHI ≥15/h based on

full PSG

Capability of giving informed consent and willingness to

undergo NSE and DISE

Exclusion criteria Central sleep apnea (defined as central AHI ≥30% of

total AHI)

Inability to sleep in a supine position due to a medical

condition

Inability of the patient to understand and/or comply to

the study procedures

Neuromuscular disorders or craniofacial anomalies

affecting the upper airway

Sedative medication use (opioids and muscle relaxants)

Active psychiatric disorders (psychotic illness, major

depression, anxiety attacks, excessive alcohol, or drug

use)

Severe or decompensated cardiac or respiratory

diseases

Contra-indications for DISE: fitness for general

anesthesia (ASA >3), allergy to sedative agent(s), and an

expected extremely difficult airway

Pregnancy or willing to become pregnant

AHI, apnea-hypopnea index; BMI, body mass index; DISE, drug-induced sleep

endoscopy; NSE, natural sleep endoscopy; OSA, obstructive sleep apnea;

PSG, polysomnography.

participants during this time frame. Being a pilot study, no
formal sample size calculations can be performed. Power analyses
will be performed retrospectively to include additional patients
if necessary.

Study Design
This study is a blinded prospective comparative multicenter
cohort study. The study population will consist of adult patients
with a recent diagnosis of OSA [baseline apnea-hypopnea index
(AHI)≥15/h based on polysomnography (PSG)]. After receiving
informed consent, eligible patients will undergo a research
PSG (with NSE) and a subsequent DISE procedure within 3
months (Figure 1). The research PSG will be identical to the
clinical PSG (i.e., overnight sleep in a sleep laboratory with
standard measurements), except that it includes NSE, as well as
airflow measurements using a pneumotachometer, and acoustic
measurements of snoring using a microphone placed over the
trachea. For the DISE procedure, the patient is lying supine
in a semi-dark and silent operating theater. An intravenous
bolus injection of midazolam 1.5mg will be used to induce
sleep. Maintenance of sedated sleep will be obtained by a
target-controlled infusion of propofol (2.0–3.0µg/ml). Scoring
of obstruction sites (for DISE and NSE) will be done using
two standardized scoring systems as previously described by
our research team (Figure 2) (25). Different ear, nose, throat
(ENT) surgeons within the research team will perform and
score the DISE and NSE of the same participating patient to
ensure that all investigations are scored in a blinded fashion.
During DISE, we will also use electroencephalography (EEG)
and electromyography (EMG)measurements to enable scoring of

FIGURE 1 | Generic study protocol. AHI, apnea-hypopnea index; BMI, body

mass index; CPAP, continuous positive airway pressure; DISE, drug-induced

sleep endoscopy; EEG, electroencephalography; EMG, electromyography;

NSE, natural sleep endoscopy; OSA, obstructive sleep apnea; PSG,

polysomnography.

sleep stages, and to control for them in our comparison of DISE
and NSE.

Study Materials
A type I full-night PSG will be performed using standard sleep
study equipment, following latest American Academy of Sleep
Medicine (AASM) guidelines (47, 48). Classic PSG consists of
EEG channels (prefrontal, central, and occipital leads with a
reference lead to the mastoids), three surface EMG channels
measuring the activity of the submentalis and the bilateral tibialis
anterior muscles, two electro-oculography (EOG) channels,
one electrocardiography (ECG) channel, oxygen saturation
measurement, a position detector and measurement of thoraco-
abdominal movements.

Airway visualization during natural sleep will be achieved
by a 2.8mm diameter pediatric bronchoscope (BF-XP-190,
Olympus Europe, Hamburg, Germany) with attached video-
processor (CV-190, Olympus Europe, Hamburg, Germany)
inserted through an oronasal mask. Before insertion, topical
application of a decongestant and topical anesthetic will be
applied. The patient will be asked to sleep in the supine
position during the measurements. Before sleep onset, the tip
of the endoscope will be positioned just above the soft palate.
Subsequently, collapse at different upper airway levels will
be observed during the night by repositioning the endoscope
repeatedly at the naso- and oropharynx. An overview of the
set-up is given in Figure 3.

Airflow will be assessed using a calibrated pneumotachograph
with heater control (3,700A pneumotachographs and 3,850
AF pneumotach heater control, Hans-Rudolph, Shawnee, KS,
USA) attached to a calibrated pressure and volume transducer
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FIGURE 2 | Endoscopic classification systems. HMS, Harvard Medical School. VOTE classification system (26, 46). HMS classification system (22, 27, 29).

with matching carrier demodulator (Validyne Engineering,
Northridge, CA, USA). Mask pressure will be measured using
a pressure transducer referenced to atmosphere and arterial
oxygen will be monitored at the fingertip. Moreover, an
esophageal pressure catheter will be inserted into one of the
nostrils through a sealed hole in the mask.

During DISE, the airway will be visualized with a flexible
nasopharyngoscope (END-GP, 3.7mm diameter, Olympus
Europe, Hamburg, Germany). In addition to the endoscopic
video recordings, we will also measure pneumotachograph
flow (Hans-Rudolph), calibrated mask pressure, EEG, EOG,
chin EMG, SaO2, and thoraco-abdominal movements.
These additional measurements will be recorded using an
integrated Alice 6 LDx system (Philips Respironics, Murrysville,
Pennsylvania, USA), synchronized with the DISE video
acquisition system (Figure 3).

Additional acoustic measurements will be performed during
NSE and DISE to combine tracheal snoring sounds with flow
patterns and examine associations with the site(s) of collapse. A
calibrated omnidirectional zoom microphone (Sony ECM-77B)
will be attached to the trachea. A custom-made holder will keep
the microphone in place. Gain will be obtained through an M-
track 2 × 2 (M-audio). Sound signals will be integrated into the
DISE and NSE set-up to allow for time-coupling of all signals.

Signal Processing
Several features, including respiratory measures in time and
frequency domains, will be extracted from the flow and acoustic
signal. The endotypic traits—collapsibility, loop gain, arousal
threshold, and muscle responsiveness—will be determined as
described previously (49–52). First, ventilatory drive, defined
as ventilation during unobstructed breaths, will be calculated
as tidal volume × respiratory rate (L.min−1) using diaphragm
EMG. Determination of the percentage of flow:drive will be
done by dividing ventilation (L.min−1) by ventilatory drive
(L.min−1). Collapsibility of the pharynx will be characterized by
the ventilation at a normal ventilatory drive (Vpassive) during
sleep. Ventilatory control stability is most commonly defined by
loop gain, which will be calculated as the ratio of the ventilatory
response and the associated ventilatory disturbance (50). The
arousal threshold will be measured as the mean ventilatory
drive preceding the start of an arousal (51). The increment in
ventilation from Vpassive to ventilation at the arousal threshold
will be computed, indicating the muscle responsiveness (52).

Individual flow limited breaths will be scored and flow shape
analysis will be performed according to Mann et al. (44). A
particular focus will be on NED, as this feature was commonly
used in previous research to study upper airway mechanics
during DISE (27, 30).
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FIGURE 3 | Overview of the set-up to simultaneously measure airflow and capture endoscopy footage. ECG, electrocardiography; EEG, electroencephalography;

EMG, electromyography; EOG, electrooculography.

Acoustic features from tracheal snores will be estimated
primarily in the frequency domains. Tracheal snoring sounds
first undergo preprocessing with a high pass filter with a cutoff
frequency of 5Hz. Features are then extracted from the processed
snore signal on a window-level with overlap (e.g., 100ms window
with 50% overlap). These features will include those developed
for speech analysis that have been adapted for use in analyzing
snoring sounds (33, 34, 37, 38). They include, but are not limited
to, power in relevant frequency bands (45), formant frequencies,
pitch, harmonicity, mel-frequency cepstral coefficients, and
several other metrics describing the power spectral density of
the snore signal. Time domain features will also be explored,
such as zero-crossing rate, energy, snore duration, and within-
breath timing of peak snore amplitude. Snores will be evaluated
at the breath-level by averaging windows within the bounds
of inspiratory start and stop times (for inspiratory snores) and
expiratory start and stop times (for expiratory snores) for all
breaths. All breath-level features, such as snore features, flow
shape features, and ventilation, are stored in a table detailing
all breaths for the night (along with event type, sleep state,
etc.), which can be used for various analysis applications. These
applications include models for predicting the site of collapse
from snore sounds and/or flow shapes that can be applied to
predict the site of collapse at the breath-level, which can then

be utilized to assess likelihood of response to alternative non-
CPAP therapies.

The primary site of collapse of each individual flow-limited
breath will be labeled using a custom-made scoring tool. Patient
level analysis requires summarizing flow shapes and acoustic
features for the patient (e.g., mean values of each feature) and
using patient level scoring of site of collapse as the outcome. The
overall clinical scoring will be used for analysis on a patient level
(Figure 2) (25). The comparison of flow shape and tracheal snore
features of specific sites of collapse between DISE and NSE (Aim
3), will be performed on both a breath level and a patient level.
Further, model validation for predicting site of collapse using
flow shape and tracheal snore features (Aim 4) will also be done
on both a breath level and a patient level.

Statistical Analysis
The chi squared test will be performed to compare the site,
degree, and pattern of upper airway collapse on a patient level
between NSE and DISE (Aim 1). Analysis, linking flow, and
acoustic parameters to the OSA traits, will be done on a patient
level and on a breath level using Matlab (The MathWorks, Inc.,
Natick, Massachusetts, USA) (Aim 2). To compare flow shape
metrics and acoustic features from snores for each primary site
of collapse between DISE and NSE (on a patient level and
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a breath level), unpaired comparison tests (e.g., t-test, Mann-
Whitney U-test) will be performed (Aim 3). Lastly, for Aim
4 we will prospectively validate previously developed models
(27–31, 44, 45) that predict the site of pharyngeal collapse on
DISE and NSE data. Prediction will be compared to the true site
of collapse labels generated by expert reviewers, as previously
described. Prediction performance between DISE and NSE will
be qualitatively compared.

DISCUSSION

Obstructive sleep apnea is increasingly recognized as a complex
and heterogenous disorder in terms of its causes, clinical
expression and susceptibility to comorbidities. As a result,
a “one-size-fits-all” management approach is not appropriate
and should therefore be avoided. A more personalized patient
selection through an endotyping approach would allow not
only to increase true clinical effectiveness but also to avoid the
current “trial-and-error” method which can significantly delay
appropriate treatment and lead to a potential waste of resources.
Therefore, there is a need to evaluate pathophysiological
endotyping in OSA patients, with upper airway collapse at one
or more upper airway levels during sleep as one of the main
pathophysiological features. Knowing which trait(s) should be
addressed in each patient is crucial to predict and achieve
response to non-CPAP therapies (53, 54). To assess the site(s) and
pattern(s) of upper airway collapse, NSE is defined as the gold
standard. Flow shape and tracheal snoring analysis are evolving
as non-invasive measurement techniques. Although DISE is used
as the clinical alternative to assess the site(s) and pattern(s)
of upper airway collapse, associations between DISE and NSE
collapse, and associated flow and snoring patterns, have not been
quantified satisfactorily.

Study Protocol
The proposed study protocol has different crucial aspects. A
recent clinical PSG nomore than 2 years old is needed to confirm
OSA diagnosis. Hereby, we prevent patients being included in
the study protocol while they do not suffer from moderate to
severe OSA. The completion of the research PSG marks the
official start for the study patient. During this PSG, baseline
gold standard measurements will be performed and coupled
with NSE video recordings. After the research PSG, a DISE with
flow measurements and tracheal snoring sounds analysis will be
scheduled. During both NSE and DISE, flow measurements and
acoustic analysis of tracheal snoring sounds will be performed
as the latter are assumed to be innovative methods to predict
upper airway collapse, in accordance with previous research
(33, 34, 42, 43). This comparison not only allows us to compare
collapse patterns during NSE and DISE, but also to validate
previously developed models for predicting the sites of collapse
from airflow and snoring sounds and to compare prediction
performance between NSE and DISE.

Study Aims
Our first aim focuses on the comparison in collapse patters
between NSE and DISE. This project will be one of the first

studies to formally compare both examinations in each subject.
No restriction will be put on the desired treatment for these
patients. This is crucial as we aim to collect data in OSA patients
with different collapse sites. To allow proper prediction, sufficient
data is needed for each site of obstruction. For example, patients
with CCCp, as assessed during DISE, are currently excluded for
upper airway stimulation therapy (19). Thus, we would exclude
this collapse type by only including patients eligible for upper
airway stimulation therapy.

Moreover, this will be, to the authors’ best knowledge, the
first comparative research in flow shape analysis and tracheal
snoring sounds analysis between DISE and NSE. As shown
by Vanderveken et al. (55), DISE requires an additional step
in the clinical pathway. A future goal would be to omit this
step in certain patients to achieve a faster screening process
resulting in more time- and cost-effective treatment. Upfront
response prediction using the combination of flow characteristics
and tracheal snoring sounds has the potential to optimize and
shorten the clinical pathway. By reducing the clinical pathway
and as such reducing costs, OSA treatment will be accessible
for a larger patient population, reducing the portion of patients
remaining undertreated.

Limitations
The performance of NSE requires the presence of one or two
investigators during a whole night to examine only one to two
patients. Moreover, blinding will be attained by having different
ENT surgeons performing the DISE and NSE of the same
participating patient, which will necessitate another additional
researcher. Furthermore, NSE is an invasive study for the patient,
accompanied with numerous challenges for the clinicians, such
as the risk of awakening the patient when moving the scope
to a different upper airway level. However, in previous studies
subjects seemed to tolerate scope insertion and were able to
sleep during the examination with minimal sleep disruption
during manipulation of the endoscope (16, 27–29, 31, 56, 57).
Nonetheless, it is a highly time consuming and labor-intensive
study, limiting the feasibility to examine many patients in a short
time frame and making it a certain challenge to achieve a large
sample size.

Natural sleep endoscopy will only be performed in the supine
position, which makes it hard to evaluate upper airway collapse
in different sleeping positions. However, upper airway collapse
is often more pronounced in the supine position, depending
on the responsible structure, which makes it a reliable body
position for this study (56, 58). During DISE, the upper airway
will additionally be evaluated after lateral head rotation. In this
way, changes in upper airway collapse related to body position
can still be assessed in each patient.

The effect of sedative drugs used during DISE (propofol
and midazolam) on upper airway collapse is not fully known.
Previous studies showed that respiratory parameters such as
the AHI and the mean oxygen saturation remained unchanged
during propofol sedation (59). Moreover, the use of propofol did
not induce snoring in healthy subjects in earlier publications (59).
However, according to previous studies, propofol might lead to a
40% greater decrease in genioglossal muscle activity compared
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to natural nonrapid eye movement sleep (60, 61) and increasing
propofol concentrations were shown to be associated with an
increase in collapsibility (62–65). Therefore, the comparison with
an endoscopic evaluation during natural sleep might become
even more interesting.

Normal sleep at home or during a clinical PSG differs from a
research measurement during NSE because of the presence of a
pediatric bronchoscope, a sealed mask, an esophageal pressure
catheter and a pneumotachograph, which may influence the
results. However, according to Maddison et al., a catheter into
the pharynx might not have an influence on upper airway
collapsibility (66). Therefore, we argue that NSE remains a
relatively reliable examination that closely resembles natural
sleep under normal conditions.

Study Set-Up Advantages
By including measurements during both natural and drug-
induced sleep, we will be able to compare the results obtained
during both conditions. This is of great importance as only
limited formal comparison of collapse patterns during natural
and drug-induced sleep has been done. Moreover, since
CCCp, as assessed during DISE, is currently considered as
a formal exclusion parameter for upper airway stimulation
therapy, this comparison is of utmost importance to understand
OSA pathophysiology.

Second, an esophageal pressure catheter will be added to
the set-up, which may improve the accuracy of detecting
flow limitation. Therefore, esophageal pressure measurements
may play an important role in distinguishing obstructive from
central apneas. However, the presence of endoscopy during
drug-induced or natural sleep also provides certitude in this
differentiation. If the quality of the endoscopic images during
natural sleep would be disturbed at certain hours of the
night, the esophageal pressure measurements might provide
us a back-up in evaluating the presence or absence of upper
airway obstruction.

Third, this is an investigator-blinded comparative cohort
study with different ENT surgeons conducting DISE and NSE in
each patient, thereby minimizing the risk of biased observations.

Fourth, both the NSE set-up and DISE set-up with additional
measurements have been successful in preliminary testing and
are operational. One of the primary advantages of this dataset
is that it enables within-patient comparison of the differences in
the site of collapse when under natural and drug-induced sleep.

Further, it allows for comparison between DISE and NSE of non-
invasive measures of the site of collapse derived from flow shapes
and snoring sounds. This would then facilitate the validation
of some earlier developed models, based on drug-induced sleep

and imply that they are applicable to normal sleep. Furthermore,
the finding that gold standard measures (e.g., site of pharyngeal
collapse) from DISE and NSE are sufficiently similar, would
imply that new non-invasive measures (e.g., flow shape/snoring
sound derived site of collapse) could be effectively developed and
validated from DISE studies. The key advantage being that DISE
studies can be collected more rapidly than NSE studies, will make
it feasible to collect large patient datasets required to develop
more complex prediction models.

CONCLUSION

This project will be one of the first studies to formally
compare collapse patterns during natural and drug-induced
sleep. Moreover, this will be, to the authors’ best knowledge,
the first comparative research in airflow shape and tracheal
snoring sounds analysis between DISE and NSE. These novel
and non-invasive diagnostic methods studying upper airway
mechanics during sleep will be simultaneously validated against
DISE and NSE.
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