
fcvm-09-864602 April 11, 2022 Time: 19:7 # 1

MINI REVIEW
published: 15 April 2022

doi: 10.3389/fcvm.2022.864602

Edited by:
Norbert Gerdes,

Heinrich Heine University Düsseldorf,
Germany

Reviewed by:
Jürgen Bernhagen,

Ludwig Maximilian University
of Munich, Germany

Kosuke Kataoka,
Tokushima University, Japan

*Correspondence:
Dimitrios Tsiantoulas

dimitris.tsiantoulas@meduniwien.ac.at

Specialty section:
This article was submitted to
Atherosclerosis and Vascular

Medicine,
a section of the journal

Frontiers in Cardiovascular Medicine

Received: 28 January 2022
Accepted: 02 March 2022

Published: 15 April 2022

Citation:
Smeets D, Gisterå A, Malin SG

and Tsiantoulas D (2022) The
Spectrum of B Cell Functions

in Atherosclerotic Cardiovascular
Disease.

Front. Cardiovasc. Med. 9:864602.
doi: 10.3389/fcvm.2022.864602

The Spectrum of B Cell Functions in
Atherosclerotic Cardiovascular
Disease
Diede Smeets1, Anton Gisterå2,3, Stephen G. Malin2,3 and Dimitrios Tsiantoulas1*

1 Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria, 2 Center for Molecular Medicine,
Karolinska University Hospital, Stockholm, Sweden, 3 Department of Medicine Solna, Karolinska Institutet, Stockholm,
Sweden

B cells are a core element of the pathophysiology of atherosclerotic cardiovascular
disease (ASCVD). Multiple experimental and epidemiological studies have revealed both
protective and deleterious functions of B cells in atherosclerotic plaque formation. The
spearhead property of B cells that influences the development of atherosclerosis is their
unique ability to produce and secrete high amounts of antigen-specific antibodies that
can act at distant sites. Exposure to an atherogenic milieu impacts B cell homeostasis,
cell differentiation and antibody production. However, it is not clear whether B cell
responses in atherosclerosis are instructed by atherosclerosis-specific antigens (ASA).
Dissecting the full spectrum of the B cell properties in atherosclerosis will pave the way
for designing innovative therapies against the devastating consequences of ASCVD.
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INTRODUCTION

Heart attacks and strokes are the leading causes of mortality and morbidity worldwide (1–3). The
main underlying pathology of these clinical manifestations is ASCVD, which leads to the formation
of plaques in large and medium-sized arteries. Rupture or erosion of atherosclerotic plaques triggers
thrombus formation thereby causing myocardial infarction (MI) or stroke (4, 5). Atherosclerosis is
a lipid-driven chronic inflammatory disease characterized by progressive retention of cholesterol-
carrying low-density lipoprotein (LDL) particles in the subendothelial space of arteries (6, 7)
followed by a chronic maladaptive immune response (4, 8–12) and remodeling of the artery wall
(13), fueled by genetic (14) and lifestyle risk factors (13). Local enzymes act on retained lipoproteins,
which leads to LDL aggregation and oxidation (OxLDL) characterized by the formation of lipid
peroxidation-derived products called oxidation-specific epitopes (OSE) (15, 16). The accumulating
modified LDL particles stimulate endothelial cells to produce adhesion molecules and chemokines
(17), which attract circulating leukocytes such as T lymphocytes (18) and monocytes (19) to
the vessel wall.

The controlled double-blind clinical trials CANTOS (20), COLCOT (21), and LoDoCo2 (22)
have demonstrated the therapeutic value of immunomodulation in secondary prevention of
ASCVD. While these studies have shown that inflammation is crucially involved in human ASCVD,
they also revealed the need for the development of precise immunotherapies that would limit side
effects, such as the risk for fatal infections (23).
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B Cells Are Key Pieces of the CVD
“Immune-Mosaic”
Patients with autoimmune rheumatic diseases, who display
dysregulated responses of adaptive immunity (B and T
lymphocytes), are at high risk for premature ischemic heart
disease due to accelerated development of atherosclerosis that
cannot be fully explained by the traditional Framingham risk
factors such as cholesterol levels, smoking and systolic blood
pressure (24). Furthermore, mice lacking adaptive immunity
display reduced atherosclerosis (25). These findings have
highlighted the crucial role of adaptive immunity in modulating
atherosclerosis. Several studies have revealed a broad spectrum of
T cell [reviewed elsewhere; (18)] and B cell properties that affect
atherosclerosis (26–28).

B cells have the unique ability to generate immunoglobulins
that can be displayed on the cell surface in the form of the
B cell receptor (BCR) or secreted as antibodies. In mouse
B lymphopoiesis, B-cell-biased lymphoid progenitors (BLPs)
differentiate via the pre-pro-B cell stage to committed pro-B cells,
with commitment regulated by the transcription factor Pax5 (29).
The successful display of a recombined heavy chain together with
surrogate light chains on the cell surface provides proliferative
signals to large pre-B cells and this cell division is followed
by rearrangement of the light chain genes at the small pre-B
cell stage, hence completing V(D)J recombination and resulting
in an immature B cell that displays IgM on the cell surface.
Upon completion of recombination events, the B cells can leave
the bone marrow to further mature in secondary lymphoid
organs. Although the marrow of long bones is often considered
the predominant site of B lymphopoiesis, other locations are
noticeable for B cell development, including the fetal liver, the
calvaria of the skull (30), and also the mouse intestinal lamina
propria (31).

Mature B cells consist of two main subsets, the conventional
B-2 cells, and the less frequent B-1 cell subset (26). B-1 and
B-2 cells display differences in their activation requirements,
anatomical localization, and surface markers. B-1 cells are
subdivided into B-1a and B-1b cells. B-1a cells are long-lived and
self-renewing innate-like B cells that are derived from the fetal
liver hematopoiesis, and are enriched within the peritoneal and
pleural cavities, although a substantial population also can be
found in the spleen (32). Notably, CD20+CD27+CD43+CD70−
B cells were proposed to be the equivalent of mouse B-1 cells
in humans (33). However, this remains unsettled considering
the similarities of CD20+CD27+CD43+CD70− B cells with
preplasmablasts (34, 35). On the other hand, B-2 cells display
many similarities between mice and humans concerning their
localization and function (36). B-2 cells include the follicular (FO)
B cells and the marginal zone (MZ) B cells. Both subsets are
generated through the maturation of splenic immature B cells,
which have successfully escaped the bone marrow selection, via
pertinent BCR signaling (37). In contrast to MZ B cells, FO B
cells display circulating properties, which allow them to home to
distant sites (37).

Early evidence supporting a role for B cells in human
atherosclerosis is derived from studies more than 40 years
ago that demonstrated the presence of immunoglobulins in

atherosclerotic arteries (38, 39). Based on histological analyses,
B cells are commonly detected in adventitia surrounding
atherosclerotic regions with the ability to recirculate to draining
lymph nodes (40), while they are an infrequent cell type in
atherosclerotic plaques (41). However, although a technical
contamination of circulating B cells cannot be excluded,
a mass-cytometry analysis of human carotid atherosclerotic
plaques revealed a substantial portion of plaque B cells (42).
Besides being present in atherosclerotic arteries, a systems
biology investigation of whole blood gene expression data
from Framingham Heart Study participants and genome-wide
association studies coupled to the construction of co-expression
networks, identified coronary heart disease-specific causative
modules enriched in genes regulating B-cell activation (43),
thereby providing indications for a functional role of B cells in
human atherosclerosis. In line with this, numbers of activated
CD19+CD86+ B cells or IgM+ unswitched memory B cells
display a positive and negative association, respectively, with
increased risk for stroke in humans (44, 45), suggesting that
B cell activation may be involved in the progression of
atherosclerosis.

The first experimental evidence that B cells impact
atherosclerosis was provided by Caligiuri et al., who showed
that splenectomy-induced acceleration of atherosclerosis in
Apolipoprotein E deficient (Apoe−/−) mice could be rescued
upon transfer of splenic B cells that were isolated either from wild
type or Apoe−/− donors (46). Next, Major et al. reported that
lethally irradiated LDL receptor-deficient (Ldlr−/−) mice that
were injected with bone marrow from B cell-deficient (µMT)
donor mice developed increased atherosclerosis compared to
controls (47). However, in a recent study Tay et al., reported
that Apoe−/− µMT mice developed decreased atherosclerosis
compared to control Apoe−/−mice (48). Apoe−/− mice
accumulated predominately VLDL remnants in their circulation
whereas in Ldlr−/− mice the main accumulating lipoprotein in
plasma is the LDL (49). Apart from the obvious reasons, such
as different experimental settings, the differences in lipoprotein
profile and metabolism may be, at least in part, responsible for
the differential effect in atherosclerosis upon B cell deficiency
between Ldlr−/− and Apoe−/−mice.

B cell subsets exhibit distinct effects in atherosclerosis,
which further emphasizes the sophisticated involvement of B
cells in this disease (Figure 1). B-1 cells confer protection in
atherosclerosis (50, 51). On the other hand, treatment of Apoe−/−

or Ldlr−/− mice with a B cell depleting anti-CD20 antibody,
which preferentially depletes B-2 cells, reduced atherosclerosis,
and prevented the MI-induced acceleration of atherosclerosis
(52–54). In addition, genetic deletion of the B cell transcription
factor Pax5 in CD23-expressing cells (primarily mature B2 cells)
(55), or treatment with an agonistic antibody specific for B-
and T-lymphocyte attenuator (56) that reduced mature B-2
cells, also resulted in decreased atherosclerosis. Disruption of
the B cell-activating factor receptor (BAFFR) pathway, which is
essential for B-2 (but not B-1) cell survival (57), also conferred
an atheroprotective effect (58–61). However, selective ablation of
MZ B cells increases atherosclerosis (62), which indicates that
therapeutic strategies targeting the entire B-2 cell compartment
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may not be optimal, and thus, dissecting the functions of B cell
responses is essential for the designing of precise therapies in
atherosclerosis.

Antibody-Mediated Functions of B Cells
in Atherosclerosis
The main property of B cells that plays a crucial role in
atherosclerosis is antibody production. B-1 cells secrete high
amounts of natural IgM antibodies, which are produced in
absence of a foreign microbial threat (63). On the other hand,
FO B cells can enter the germinal center (GC) reaction, which
is notable for producing high-affinity antibodies through the
process of somatic hypermutation, although this process is not
exclusive to the GC. GCs can be found in the secondary lymphoid
organs of Apoe−/− and Ldlr−/− mice (27, 55, 62, 64). Upon
exit from the GC reaction, B cells can differentiate into short-
and long-lived memory B cells as well as short- and long-lived
antibody-producing cells (65).

Immunoglobulin M, a Trustworthy Groundkeeper
There is a consensus that IgM exhibits atheroprotective
properties. For instance, transfer of B-1a cells into
splenectomized mice, which exhibit a severe reduction in
peritoneal B-1a cells and circulating IgM antibodies, reversed
splenectomy-accelerated atherosclerosis (50). However, the
protective effect of B-1a cell transfer in this setting was absent
when B-1a cells deficient in secreted IgM (sIgM) were injected
(50). Consistent with this, mice lacking sIgM develop aggravated
atherosclerosis (66–68). Moreover, B cell-specific CXCR4 (C-X-C
chemokine receptor type 4) deficiency, which resulted in reduced
IgM levels in plasma, led to increased atherosclerosis in female
mice (69). Thus, dissecting the molecular pathways that regulate
the production of atheroprotective IgM antibodies may reveal
new therapeutic strategies for atherosclerosis. Along this line,
apoptotic cell injection (64), infusion of liposomes decorated
with phosphatidylserine moieties (70), and genetically induced
inhibition of antibody class-switching (71) led to increased total
IgM levels in plasma and reduced atherosclerosis. In addition, the
transfer of B-1b cells into lymphocyte-deficient atherosclerotic
mice also led to increased plasma IgM and reduced plaque
size (51). Thus, strategies directly promoting the expansion of
B-1a or B-1b cells could be of interest. For instance, reduced
atherosclerosis along with increased B-1a cell numbers and
circulating IgM levels were reported in atherosclerosis-prone
mice that were deficient in sialic acid-binding immunoglobulin-
like lectin G (72) or had been treated with an antibody against
the phosphatidylserine receptor T-cell immunoglobulin and
mucin domain-1 (73). However, therapeutic strategies for the
expansion of B-1a cells have to be considered with caution as
they may be accompanied by an increase of the proatherogenic
B-1a cell-derived subset, the innate response activator (IRA)
B cells (74), which via producing granulocyte-macrophage
colony-stimulating factor instruct a dendritic cell-mediated
promotion of proatherogenic Th1 immunity (75).

The identification of atherosclerosis-specific antigens (ASA)
will allow the designing of precise therapeutic strategies
in atherosclerosis. Clinical studies have shown an inverse

correlation of OSE-specific IgM against malondialdehyde
and phosphorylcholine (PC), which are present on oxidized
LDL (16, 76) and apoptotic cellular debris (77, 78), with
atherosclerotic burden and cardiovascular outcomes (28, 79–82).
The implication of OSE-specific IgM antibodies in atherosclerosis
was originally shown by using the E06 IgM antibody that binds
oxidized phospholipids (OxPLs) and has an identical CDR3
region to the germline-encoded B-1 cell-derived T15 clone (83).
Immunization with heat-killed pneumococcal extracts led to a
strong increase of the PC-specific T15/E06 IgM clonotype and
decreased lesion formation (84). Furthermore, passive infusion
of T15/E06 IgM antibodies reduced vein graft atherosclerosis in
atherosclerotic Apoe−/− mice thereby providing direct evidence
that the E06 IgM confers an atheroprotective effect (85). In a
seminal study by Prof. Witztum’s lab, it has been shown that
transgenic overexpression of the single-chain variable fragment
of E06 strongly decreased atherosclerosis in Ldlr−/− mice
(86). These data suggest that E06 acts as a blocking antibody
limiting the proinflammatory effect of OxPLs in atherosclerosis
in vivo. This is supported by the capacity of E06 to block OxLDL
uptake by macrophages (87) and proinflammatory cytokine
production by OxPL-stimulated macrophages (88) in vitro.
While the expansion of OSE-specific IgM could be considered
therapeutically in atherosclerosis, it is important to identify its
right “therapeutic window.” This is essential as endogenous
OSE-specific IgMs are present at high levels in both mice and
humans (89) and increase over time in hypercholesterolemia
(90). In fact, infusion of purified T15/E06 preparations (91)
or the OxPL-neutralizing 10C12 IgM clone (68) had no effect
in advanced atherosclerosis. Furthermore, it appears likely
that long exposure to an atherogenic milieu might induce the
expansion of IgM with shared antigen specificities. For instance,
genetic deficiency of the VHS107.1.42 locus, which is essential
for the successful production of T15 antibodies, did not affect
experimental atherosclerosis in mice with marked dyslipidemia
(92). IgMs also recognize other self-antigens and thereby regulate
the maturation of B-2 cells (93–96) and circulating levels of
other immunoglobulins (67, 97, 98). Notably, mice lacking sIgM,
display high levels of IgE antibodies, which are responsible
for the accelerated atherosclerosis in this setting (67). Taken
together, the properties of IgM in atherosclerosis demonstrate
the important role of (neo)-self-antigens in this disease.

Immunoglobulin E, a Powerful Assailant
The most well-documented properties of IgE antibodies are their
role in triggering an allergic reaction and fighting microbial
infections (99, 100). These properties of IgE are mediated via
binding to high-affinity IgE receptor FcεRI, which is mainly
present on mast cells, basophils, and eosinophils (101). Mice
lacking the FcεRI receptor display reduced atherosclerotic plaque
size, thereby suggesting that IgE antibodies play a role in
atherosclerosis (102). The proatherogenic role of IgE antibodies
was directly shown using a neutralizing anti-IgE antibody
specific for free IgE that, as mentioned above, completely
reversed the accelerated atherosclerosis in atherosclerotic sIgM
deficient mice, which display high plasma IgE antibodies (67). In
agreement with this, mice deficient in IgE antibodies developed
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FIGURE 1 | B cell functions in atherosclerotic disease. Circulating cholesterol-containing LDL particles are progressively retained in the subendothelial space of
arteries. Oxidized or aggregated LDL particles are taken up by arterial macrophages, which turn to foam cells because of uncontrolled lipid uptake and thereby
undergo apoptosis or necrosis. Antibody-producing cells that reside in the bone marrow, the spleen and in the adventitia, produce high amounts of antibodies that
are deposited in the plaque. IgM is known to bind and block the proinflammatory effects of oxidized LDL, apoptotic cells and microvesicles. IgE antibodies by binding
to FcεRI receptors activate powerful proinflammatory responses by mast cells and macrophages. IgG antibodies can also bind OxLDL as well as self-proteins, such
as ALDH4A1, and modulate macrophage activation. BAFF and APRIL, which both bind the TACI receptor in B cells, dampen the proinflammatory responses by
macrophages, and limit the LDL retention in the intima, respectively, thereby revealing an indirect property of B cells to regulate plaque inflammation. BLPs,
B-cell-biased lymphoid progenitors; PGs, proteoglycans, TACI, Transmembrane activator and CAML interactor; BAFF, B cell activating factor; APRIL, A Proliferation
Inducing Ligand, HSPGs, heparan sulfate proteoglycans; BM, bone marrow; ATLO, artery tertiary lymphoid organ; OxLDL, oxidized LDL; agLDL, aggregated LDL.

decreased atherosclerosis (103). Furthermore, a systemic IgE-
mediated mast cell activation in atherosclerotic mice lacking
B cells resulted in increased lesion size (104). Mechanistically,
IgEs promote mast cell and neutrophil activation, and the
production of proinflammatory cytokines by macrophages and
smooth muscle cells (67, 102, 103), which could be responsible
for their effect in atherosclerosis in vivo. The detrimental
role of IgE antibodies in atherosclerosis is also supported by
several epidemiological studies (105, 106) that also implicate
the mammalian oligosaccharide galactose-α-1,3-galactose as a
candidate antigen (107). Future studies are required to identify
the spectrum of proatherogenic IgE-specific antigens.

Immunoglobulin G, a Vault for
Atherosclerosis-Specific Antigens?
IgG antibodies are produced in different subclasses: IgG1, IgG2,
IgG3, and IgG4 in humans and IgG1, IgG2a/c, IgG2b, and IgG3 in

mice (108). Tay et al., provided the first direct evidence on the role
of IgG antibodies in atherosclerosis, by showing that mice lacking
most endogenous immunoglobulins developed increased plaque
size upon injection of purified total IgG from atherosclerotic
mice compared to IgG from non-atherosclerotic donors (109).
This study also suggests that exposure to an atherosclerotic
milieu alters the antigen specificities of the IgG repertoire by
inducing the expansion or even the de novo generation of B cell
clonotypes that are likely to include specificities against ASA.
In line with this, a protein array analysis revealed an altered
repertoire of IgG1 protein targets in the serum of Apoe−/− vs.
C57BL/6 mice fed an atherogenic diet (71). It is not clear whether
the altered IgG repertoire is triggered upon chronic exposure
to atherogenic pressure or already emerges at the initiation of
the disease. In this regard, abrupt loss of APOE, which results
in acute onset of dyslipidemia, triggered a rapid increase in
IgG antibodies levels enriched in specificities against common
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autoantigens (55). These data suggest that the GC reaction is
involved in atherosclerosis. In agreement with this, elimination of
GC B cells achieved upon deletion of the key B cell transcription
factor Pax5 in AID-expressing B cells, reduced atherosclerosis
(55, 110). Furthermore, B cell-specific overexpression of the
FcγRIIB receptor limited GC B cell responses and reduced
atherosclerosis in male mice (111). Moreover, deletion of Prdm1
encoding the key transcription factor BLIMP1, in all B cells (110)
or selectively in mature B cells (109), caused impaired plasma cell
differentiation and a dramatic reduction in all immunoglobulin
isotypes (particularly in IgG) and led to reduced atherosclerotic
plaque size (109, 110). While these data show that the IgG
antibodies confer an overall proatherogenic effect, B cell-specific
deletion of the transcription factor x-box binding protein-1,
which similarly to BLIMP-1 deficiency resulted in reduced levels
of all immunoglobulins, increased early atherosclerosis (112).
Thus, it is conceivable that the IgG repertoire also includes
atheroprotective clones. Indeed, Lorenzo et al. have recently
shown that GC-derived antibodies from hypercholesterolemic
mice against mitochondrial dehydrogenase ALDH4A1 protect
from atherosclerosis (27), thereby demonstrating that the
repertoire of the antigen specificities of GC B cells includes
also protective responses in atherosclerosis. This conclusion is
also supported by Centa et al. showing that IgG antibodies
could promote plaque stability (110). It appears promising
that the identification of ASA recognized by IgG would reveal
new mechanistic layers for the role of B cell responses in
atherosclerosis.

Antibody-Independent Functions of B
Cells in Atherosclerosis
B cells are an important source of cytokines (113). Transfer
of CD21hiCD23hiCD24hi IL-10 secreting B cells isolated from
renal lymph nodes into syngeneic mice increased plaque size
in a perivascular collar injury model of the carotid artery
(114). In contrast, B cell-specific IL-10 deficiency did not affect
atherosclerosis in the aortic root (115). These data suggest that
B cells may exhibit distinct effects in different atherosclerosis-
prone sites. B-2 cell functions that affect atherosclerosis, such
as antigen presentation via MHCII complexes (48, 109), CD40
(48, 109), and GITRL (116) signaling, involve interaction with
T cells. In addition, MZ B cells mediate their protective effect
in atherosclerosis via suppressing the proatherogenic responses
of T follicular helper cells (62). However, lymphocyte-deficient
mice that were injected with splenic B-2 cells developed increased
atherosclerosis (53), which shows that B-2 cells can affect plaque
formation in absence of T cells, for example via the production

of TNF (117). Furthermore, BAFFR deficiency or blockage
(that leads to dramatically reduced B cell numbers) limits
atherosclerosis (58–60), whereas soluble BAFF neutralization
aggravates atherosclerotic plaque size (118). Both B cell deficiency
(48) as well BAFFR blockage (60) result in increased soluble
BAFF levels that could be responsible for the atheroprotective
effect in these settings. Similarly, A Proliferation Inducing Ligand
(APRIL), which is recognized by B cells through shared receptors
with BAFF, confers atheroprotection via binding to heparan-
sulfate proteoglycans (HSPGs) in the artery wall (119). Therefore,
it is likely that B cell depletion in the vessel wall (120, 121) would
increase the availability of APRIL for binding to HSPGs.

Summary and Future Perspectives
B cells have the capacity to sense and respond to atherosclerosis.
The revolutionary development of high-throughput technologies
and methods for gene editing will allow the dissection of the
mechanisms by which B cells impact atherosclerotic plaque
formation in an unprecedented depth. A key point in this
effort would be to identify if and how the B cell response in
atherosclerosis is driven by ASA. This will set the ground for
the development of precise therapies that will target selectively
culprit or atheroprotective B cell clones.
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