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Mouse tracking reveals structure knowledge in the
absence of model-based choice
Arkady Konovalov1,2 & Ian Krajbich2,3✉

Converging evidence has demonstrated that humans exhibit two distinct strategies when

learning in complex environments. One is model-free learning, i.e., simple reinforcement of

rewarded actions, and the other is model-based learning, which considers the structure of the

environment. Recent work has argued that people exhibit little model-based behavior unless

it leads to higher rewards. Here we use mouse tracking to study model-based learning in

stochastic and deterministic (pattern-based) environments of varying difficulty. In both tasks

participants’mouse movements reveal that they learned the structures of their environments,

despite the fact that standard behavior-based estimates suggested no such learning in the

stochastic task. Thus, we argue that mouse tracking can reveal whether subjects have

structure knowledge, which is necessary but not sufficient for model-based choice.
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A central question in the study of behavior is to what extent
decisions are driven by top-down goals versus bottom-up
reward associations. To understand this question,

researchers have used multi-stage decision tasks where one’s
decision in the first stage affects the options available at later
stages. It has been argued that such tasks require the decision
maker to understand the task structure and plan ahead, in order
to optimize performance. Such behavior is referred to as ‘model-
based’ learning1–21, and is typically understood as the ability to
use the structure of the environment in order to reach goals and
receive rewards. Individual inclination to use this type of strategy
has been linked to goal-based behavior22,23, cognitive control5,
slower habit formation16, declarative memory24, higher extra-
version6, and lower alcohol dependence25.

However, while the initial studies of model-based behavior
involved a now popular two-stage Markov decision task with
stochastic action-state contingencies1,17,23,26,27, recent evidence
suggests that model-based strategies do not typically lead to
higher rewards in these probabilistic tasks. It is therefore unclear
whether a lack of model-based behavior reflects an inability to
learn the structure of the environment or simply indifference
towards the model-based strategy.

One approach to this problem has been to devise new tasks
where it is beneficial to use model-based strategies. For instance,
some have argued that tasks with deterministic relationships
between actions and outcomes might be better ways to study
model-based behavior14,21,28,29. However, it is unclear to what
extent learning in deterministic environments relates to learning
in stochastic environments.

A second approach is to investigate the stochastic task more
thoroughly. The stochastic task remains a standard for measuring
model-based behavior, and has been used in many studies in both
psychology and neuroscience8. It is therefore important to better
understand what this task actually measures, using data beyond
subjects’ choices. For instance, previous eye-tracking work has
demonstrated that model-based strategies have distinct gaze sig-
natures17. Recent research in other decision-making domains has
highlighted the usefulness of studying peoples’ mouse trajectories
in computer-based tasks. This research has focused on using the
mouse trajectories to infer how strongly decision-makers favor
their chosen options30–36. We reasoned that it should be possible
to similarly use mouse trajectories to infer how strongly decision-
makers expect particular outcomes.

In this study, we set out to investigate both of these approaches.
First, we sought to identify whether the degree of model-based
behavior at the individual level is consistent across different types
of environments, using a two-stage task that allows for both
stochastic and deterministic transitions within the same para-
digm. Second, we used mouse tracking in both types of tasks to
try to detect whether subjects were learning the structures
(exhibiting structure knowledge), despite not necessarily using
that information to change their behavior (being model-based in
their choices). We employed a new study design that uses the
cursor position as a measure of subjects’ action-state contingency
beliefs and, in general, their structure knowledge.

The new two-stage learning task used a single screen to display
both the first and second stages (the structure of transitions
between the states, however, still remains hidden to the subjects).
As in many previous experiments, subjects chose between two
stimuli (fractals) in the first stage, and these choices determined
which of two second-stage fractals would appear. Unlike other
studies, the second stage was not revealed immediately, or on a
separate screen. Instead, subjects had to move the cursor below an
invisible line to see the second-stage fractal (Fig. 1a, see Methods).
Because subjects are naturally motivated to finish tasks quickly,
they had an incentive to move their cursor to the side of the

screen where they expected the second-stage fractal to appear.
This allowed us to measure subjects’ beliefs about the locations of
the fractals and to determine whether they had learned the
transition structure between the first-stage choices and the
second-stage outcomes.

Within the same paradigm, we used both stochastic transition
structures (Fig. 1b) and deterministic transition structures
(Fig. 1c). In the stochastic task one of the first-stage fractals was
more likely to lead to one of the second-stage fractals; this is
referred to as a common transition (as opposed to a rare tran-
sition). In the deterministic task there were patterns, where a
short sequence of first-stage choices deterministically determined
the second-stage fractal.

We implemented several recent suggestions to improve the
correlation between the degree of model-based behavior and
reward rate: using different reward amounts instead of different
probabilities of a fixed reward, a wide range of rewards, large
changes in mean reward from trial to trial, and no choice in the
second-stage28. Nevertheless, in the stochastic task, subjects’
earnings were still uncorrelated with the degree to which they
were model-based in their choices. Indeed, when we simulated
model-based agents in this task, it took thousands of trials to
generate a significant correlation between model-based behavior
and reward rate. Meanwhile, in the deterministic task, model-
based choice yields higher rewards even with a relatively low
number of trials (100). This experiment allowed us to directly
compare subjects’ behavior in stochastic and deterministic
environments and to study the information contained in mouse
trajectories in cases where subjects were and were not incenti-
vized to use model-based behavior.

To preview the results, we find that mouse tracking can reveal
individuals’ subjective beliefs and we demonstrate that even
though individuals learn the task structure, their choices do not
necessarily become model-based.

Results
In the stochastic task, one can qualitatively distinguish model-
based and model-free choices by comparing behavior after
common and rare transitions1. To demonstrate this, we simulated
purely model-free and model-based agents using the standard
models (see Methods). The simulations use values of the learning
rate and temperature parameters close to the median values in the
experiment (α= 0.7, β= 0.1), although the qualitative difference
between model-based and model-free behavior does not depend
on the specific values of these parameters.

For the model-free case, the first-stage choice is more likely to
be repeated if the previous trial yielded a high reward, regardless
of the transition type (Fig. 2a). In contrast, for the model-based
case, the probability of repeating the same first-stage choice after
a high reward depends critically on whether the transition was
common or rare. After a rare transition, a high reward should
encourage the subject to switch in the next trial, in order to
increase their chance of reaching that high-reward state again
(Fig. 2b).

The data from the experiment show that subjects were gen-
erally not model-based in their choices (Fig. 2c). We confirmed
this with a mixed-effects logit regression of the decision to stay
with the same first-stage option as a function of the reward in the
previous trial, for rare transitions (using R packages lme4 and
lmerTest). For model-based behavior we expect this relationship
to be negative; in our data it is positive: β= 0.02, z= 6.48,
p= 9 � 10�11. There was some degree of individual variability:
only 8 subjects had negative regression coefficients (more model-
based behavior), while the other 49 subjects had positive coeffi-
cients (more model-free behavior).
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To allow for comparisons between the two tasks, we also mod-
eled subjects’ behavior using the same standard model-based rein-
forcement learning we used for the simulations (see Methods),
determining the degree to which they used knowledge of the
structure to make their first-stage choices (characterized by a weight
parameter w, where w= 0 indicates pure model-free behavior and
w= 1 indicates pure model-based behavior). This model provided a
good fit to the data, explaining (on average, across subjects), 73% of
subjects’ choices. Across subjects, the model-based weight w was
0.24 (sd= 0.23) in the stochastic task and 0.41 (sd= 0.25) in the
deterministic task (the difference is significant; two-sided t-test, t
(56)= 4.63, p= 2 � 10�5, Fig. 2d). There was no significant time
trend in w across the blocks (mixed effects regression, stochastic
task: p= 0.61, deterministic task: p= 0.59).

As expected, for the stochastic task, the regression measure of
model-based behavior was correlated with w from the full model
estimation (Pearson’s r=−0.53, t(55) =−4.6, p= 2 � 10�5). The
simulations above revealed that a positive coefficient corresponds
to w < 0.5 (so β ¼ 0 , w ¼ 0:5), and indeed 47 out of
57 subjects had w < 0.5.

It has been suggested that both stochastic and deterministic
transition structures can be used to study model-based behavior.
However, since these types of transitions could lead to very dif-
ferent representations of the environment, it was unclear whether
being model-based in one setting would correlate with being

model-based in the other. We found that individual w in these
two conditions, calculated as averages of block-wise estimates,
were indeed correlated (Fig. 2e, Pearson’s r= 0.47, t(55)= 4.00,
p= 2 � 10�4).

Despite the correlation in w between the two tasks, there was
no correlation in the reward rates between the tasks (Pearson’s r
= 0.11, t(55)= 0.81, p= 0.42, Fig. 2f). Again, this is consistent
with the idea that in the two-stage task with stochastic transitions,
reward rate is not correlated with the index of model-based
behavior28. The reason is that the model-based strategy does not
help participants earn higher rewards15. This was also the case in
our data; there was no correlation between w and reward rate in
the stochastic tasks (Pearson’s r= 0.15, t(55)= 1.11, p= 0.27,
Fig. 2h). In comparison, reward rate had a strong positive cor-
relation with w in the deterministic task (Pearson’s r= 0.64, t
(55)= 6.16, p= 9 � 10�8, Fig. 2i).

We next sought to test whether w might reflect the difficulty of
the task. We hypothesized that participants would show more
model-based choice when it was easier (i.e., less costly) to learn
the transition structure. Starting with the deterministic task, we
indeed observed higher values of w for easier patterns (as indexed
by reward rate) (Fig. 2d, mixed effects regression, β ¼ 0:09 (s.e.
0.02), t(56)= 4.58, p= 3 � 10�5). However, in the stochastic task
there was no change in w as the common transition probability
increased from 0.6 to 0.9 (Fig. 2d, mixed effects regression, β ¼
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Fig. 1 Experimental task and design. a Choice-trial timeline. Subjects chose between the two top fractals (first stage). To reveal the outcome (second
stage), subjects needed to move the mouse below an invisible line on the screen (here shown with a dotted line). To receive the resulting reward, subjects
clicked on the revealed bottom fractal. To begin the next trial, subjects moved the mouse back up above another invisible line. The positions of all fractals
were fixed from trial to trial within a block. b In the stochastic condition, one of the top fractals is more likely to lead to one of the bottom fractals (common
transition), and the probabilities are reversed for the other pair. c In the deterministic condition, the switch between the bottom fractals from trial to trial is
determined by the choices of the top fractals in the three previous trials. Here we show the four deterministic patterns used in the experiment. at is the top
choice in trial t; the action history column describes the four possible top-choice histories. Each pattern (columns 1–4) is a set of outcomes corresponding
to one of these histories. These outcomes include either stay (the same bottom fractal appears on this trial as in the previous trial) or switch (the bottom
fractal switches from the previous trial). See Supplementary Information for a detailed description of the patterns. d Example of the second stage reward
schedule: each bottom fractal had an independent drifting reward following a Gaussian random walk, with rewards restricted to the interval between 0 and
100. Each subject had independent, randomly generated reward schedules. The fractals pictured here are for illustration only; the originals are available in
the OSF repository. Source data are provided as a Source Data file.
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�0:12 (s.e. 0.2), t(55)=−0.6, p= 0.54). Reward rate did increase
with the common transition probability (mixed effects regression,
β ¼ 8:9 (s.e. 2.2), t(64)= 4.6, p= 8 � 10�6, Fig. 2g) but this would
also occur for a pure model-free learner (as confirmed by a simple
simulation of a model-free subject).

We next turned to subjects’ mouse movements as a direct
measure of whether they had learned the structure of the action-
state transitions, i.e., the model-based knowledge. If participants
were motivated to complete the task quickly37, then those who
learned the transition structures might anticipate the location of
the next second-stage fractal and move their mouse in that
direction before actually seeing the fractal. We used a mouse-

tracking measure of the pixel distance between the vertical mid-
line and the mouse cursor’s crossing point on the invisible hor-
izontal line, to provide a separate estimate of subjects’ knowledge
of the task structure (Fig. 3a, Methods). This measure was posi-
tive if the cursor was on the correct side of the screen, i.e., towards
the common transition in the stochastic task and the coming state
in the deterministic task.

In line with the behavioral results and our mouse-tracking
hypothesis, in the deterministic task, subjects’ cursors were sig-
nificantly different from zero for every pattern (two-sided t-tests,
Cohen’s d= 1, t(51)= 7.2, Cohen’s d= 1.48, t(55)= 10.8,
Cohen’s d= 1.38, t(54)= 10.2, Cohen’s d= 1.45, t(55)= 10.8, all
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Fig. 2 Simulations and behavioral results. a Example simulation of a purely model-free agent (w= 0) in the stochastic transition task: the probability to
stay with the same first-stage choice increases with the previous trial’s reward, but does not depend on the previous transition (common (dark blue circles)
or rare (light blue diamonds)). b Example simulation of a purely model-based agent (w= 1) in the stochastic transition task: the probability to stay with the
same first-stage choice decreases with the previous trial’s reward if the previous transition was rare. c Probability to stay with the same first-stage option in
the stochastic transition task: subjects display very little model-based behavior (N= 57 individual subjects). d Model-based weight w by condition (block
type): 0.6–0.9 correspond to the common transition probability (stochastic condition, in blue), and 1–4 denote the pattern type (deterministic condition, in
red). e Correlation in model-based weight w between stochastic and deterministic conditions. The weights are calculated as the averages of block-wise
estimates. f Correlation in reward rate between stochastic and deterministic conditions. g Reward rate by conditions (block type) and pattern difficulty
(N= 57 individual subjects). h–i Correlation between the model-based w and reward rate in the stochastic (h) and deterministic (i) conditions. All
correlation plots show Pearson correlations, each individual point is one subject, and dotted lines indicate linear regression fits. In bar plots: dots denote
individual subjects, error bars denote s.e.m. at the subject level. Source data are provided as a Source Data file.
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p < 0.0001), and farther in the correct direction (i.e., towards
where the fractal actually appeared) for easier patterns (Fig. 4a;
mixed effects regression, β ¼ 16:6 pixels per pattern (s.e. 5.7),
t(51)= 2.8, p= 0.006). Moreover, mouse movements were sig-
nificantly correlated with w for the deterministic task (r= 0.57,
t(55)= 5.15, p= 4 � 10�6, Supplementary Fig. 1). Thus, mouse
position did appear to track subjects’ learning.

Turning to the stochastic task we also observed clear evidence
of learning of the transition structure; subjects’ cursors were
significantly on the correct side (i.e., towards where the fractal
was most likely to appear) for all values of the common transition
probability (two-sided t-tests, Cohen’s d= 0.82, t(52)= 5.95,
Cohen’s d= 1.24, t(54)= 9.2, Cohen’s d= 1.82, t(52)= 13.3,
Cohen’s d= 2.87, t(54) = 21.3, all p < 0.001) and closer to the
correct fractal as the common transition probability increased
(Fig. 3a, mixed effect regression β ¼ 56:4 pixels per 0.1 increase
in transition probability (s.e.= 48.8), t(64)= 11.6, p= 10�16).

For the stochastic task we ordered subjects by their mouse-
tracking measure of structure knowledge (Fig. 3b). Statistically,
nearly every subject (56 out of 57) had a significantly positive
effect (all p < 0.01, t(399) > 2.6, t-test against 0). In addition, we
focused on the blocks showing no model-based behavior.

Specifically, we selected the blocks where w was estimated at 0
(51% of the stochastic task data) and the blocks where the
interaction between common/rare transition and previous trial
reward was negative or equal to 0 (42% of the stochastic task
data). In both cases, almost all subjects showed a significant
mouse-tracking measure of the transition-structure knowledge
(two-sided t-test; p= 10−6, t(49)= 12.6, and t(46)= 11.3; Sup-
plementary Fig. 2).

Clearly our subjects learned the transition structure. This result
indicates that w does not necessarily reflect knowledge of the
transition model; these subjects clearly knew the transition struc-
ture, they simply did not make their choices in a model-based way.

There were significant correlations between the individual
mouse-tracking measures of structure knowledge and the
regression measures of model-based choice (Fig. 3b, Pearson’s
r=−0.36, t(55)=−2.84, p= 0.006), as well as with w (Pearson’s
r= 0.3, t(55)= 2.3, p= 0.025, Supplementary Fig. 1). Thus, as
one would expect, there is a positive relationship between struc-
ture knowledge and model-based choice.

Turning to reward rates, in the stochastic condition our
mouse-tracking measure of structure learning did not correlate
with individual reward rate (Fig. 4b, Pearson’s r= 0.18, t
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Fig. 3 Mouse-tracking results: stochastic task. a Ballistic mouse trajectories in the stochastic task. Each colored line represents the average cursor path
between a top fractal and a bottom fractal for a specific transition probability (yellow= 0.9, green= 0.8, light blue= 0.7, dark blue= 0.6). For illustration,
we only present the paths between fractals on the same side of the screen, in cases where subjects’ predictions were correct. We only measure the
cursor’s starting point and the point at which it crosses the line, connecting those two points with a straight line. b Individual subject estimates in the
stochastic task. In blue: distance towards the correct (common transition) side of the screen (in pixels), in increasing order (error bars represent s.e.m.
based on N= 400 trials for each subject). In orange: inverted regression-coefficient measure of model-based behavior from Fig. 2a-c (in arbitrary units,
with positive values denoting more model-based behavior, errors bars represent standard error of the regression coefficient of each individual subject
based on N= 400 trials). Source data are provided as a Source Data file.
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(55)= 1.39, p= 0.17), while in the deterministic condition it did
(Fig. 4c, Pearson’s r= 0.44, t(55)= 3.66, p= 0.0002). These
results indicate that when model-based behavior is useful for
earning larger rewards, our mouse-tracking measure reliably
correlates with it.

Interestingly, we observed a weak but significant correlation
between the mouse movements in the stochastic and determi-
nistic condition (Pearson’s r= 0.26, t(55)= 2.02, p= 0.048). This
suggests some overlap in the ability to learn the two types of
structures.

Finally, we analyzed the trial-by-trial mouse positions in the
stochastic task, where it is possible to derive subjective beliefs
(conditional action-state probabilities) as Bayesian posteriors
assuming a Beta-Bernoulli distribution9,17. These analyses
revealed a striking similarity between the evolution of Bayesian
beliefs and subjects’mouse movements across trials (Fig. 4d-e). In
other words, the expected strength of a subject’s belief that their
action will lead to the fractal on the right predicts how far their
mouse will move to the right (Fig. 4f). Here, we aggregated across
all trials, both first-stage options (left and right), and all prob-
abilistic action-state contingencies. The correlation was (Pear-
son’s) r= 0.69, t(55)= 7.1, p= 3 � 10�9 (subject level, all
conditions pooled), which is also confirmed by a linear mixed-
effects regression of the distance towards the right-hand state as a
function of the belief that the right-hand state is coming, treating
subjects as random effects (β ¼ 0:03 (s.d.= 0.003), t(54)= 10.3,
p= 2 � 10�14). Notably, we observed no corresponding change in
model-based choice across trials (see Supplementary Fig. 3).

On trials immediately following rare transitions, subjects’
mouse cursors did not display the typical deviation towards the
correct side, instead crossing near the middle of the screen, or in
some cases on the wrong side. This suggests one reason why
subjects may not have been choosing in a model-based way in the
task; whenever there was a rare transition their beliefs appear to
have temporarily deviated from the ideal. However, subjects’
mouse movements quickly (within ~2 trials) realigned with the
expected curve (see Supplementary Fig. 4).

Finally, we also examined trials with rare transitions that led to
a large (>50) reward (6% of trials overall). In such cases, a model-
based subject should often switch on the following trial, while a
model-free subject should stay. Based on the mouse trajectory
during the rare-transition trial, we found that subjects were
indeed significantly more likely to switch after a correct mouse
trajectory than after an incorrect trajectory (logistic mixed effects
regression, β ¼ �0:53 (s.d.= 0.2), z= 2.64, p= 0.008). However,
in both cases subjects were more likely to stay than to switch,
confirming again that subjects were more model-based in their
mouse movements than in their choices (Supplementary Fig. 5).

Discussion
Our results demonstrate that in a classic two-stage learning task
with stochastic transition structures, subjects’ behavior does not
necessarily reflect their knowledge of the structure, as revealed by
mouse tracking. Subjects appear to often know exactly which
second-stage state is coming but do not use this information
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Fig. 4 Mouse-tracking results. a Distance towards the correct bottom fractal by condition and difficulty. b–c Correlation between reward rate and mouse-
tracking measure of learning, split by condition: stochastic (b) and deterministic (c). d Stochastic task: evolution of the posterior Bayesian probability of
revealing the bottom right-hand fractal, conditional on the top left-hand fractal choice, split by condition, for the first 40 trials of each block (in bins of size
5). e Stochastic task: evolution of the mouse cursor towards the right-hand side of the screen, split by condition, for the first 40 trials of each block (in bins
of size 5). f Cursor distance as a function of Bayesian belief (in bins of size 0.1), by condition. All correlation plots show Pearson correlations, each
individual point is one subject, and dotted lines indicate linear regression fits. In a–c: dots denote individual subjects, in all plots: error bars denote s.e.m. at
the subject level (N= 57). Source data are provided as a Source Data file.
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when making their first-stage choices. These results suggest that
the absence of model-based decisions does not imply that an
individual has not built a model of the environment: if this
knowledge is not useful for receiving larger rewards, they might
choose not to use it. One can think of model-based behavior as
consisting of two necessary-but-not-sufficient components:
structure knowledge and attribution. We use the mouse-tracking
data to identify the structure knowledge component and show
that it is often present in the absence of the attribution compo-
nent (or high w, i.e., model-based behavior).

This observation is consistent with other work finding that at
the end of the experiment, most subjects can describe the tran-
sition structure38. Our results confirm that this is not simply due
to reflection at the end of the experiment, but is indeed knowl-
edge that subjects have throughout the task. In the deterministic
case, the model-based strategy yields a clear reward advantage,
making it more attractive to learn the structure and use that
knowledge to earn larger rewards, while the purely model-free
strategy does not perform better than chance.

Our results also show that in the traditional stochastic task,
despite subjects knowing the transition structure, they do not
seem to utilize it for model-based reinforcement. Understanding
why this proper credit assignment does not occur is a critical
open question. As other studies show, in this probabilistic task
there is little benefit to employing model-based behavior, so if it is
costly to use model-based knowledge to guide choices, subjects
may not actively employ it. So, one way to frame our findings is
that it is not costly to learn the model-based structure, but it is
costly to use that structure to guide behavior.

It is possible that the mouse movements in the stochastic task
could be learned in a model-free way. However, subjects would
still possess the knowledge of which first-stage actions lead to
which second-stage states. The puzzle is why they wouldn’t use
that knowledge to alter their choice behavior. One can also argue
against model-free learning of the mouse movements since this
would not be possible (or at least much more complicated) in the
deterministic task, where the same first-stage choice leads to
different second-stage states depending on the prior history. In
addition, the pattern in Supplementary Fig. 4 indicates immediate
dampening/resetting of the mouse-movement—belief association
after a rare transition, followed by gradual (but quick) recovery,
which is inconsistent with a simple RL mechanism.

The results in Supplementary Fig. 4 also reveal that subjects’
inability to behave in a model-based way may be due not just to
attribution, but also to temporary forgetting of the structure
knowledge after rare transitions, which is precisely when model-
based behavior is identifiable. Thus, an inability to represent a
stable transition structure may be at the root of the problem. This
could be another manifestation of the hot-hand fallacy39.

Although others have argued for a relationship between payoff-
relevance and the model-based index28, here we observed clear
evidence that the individual model-based indices are consistent
between the probabilistic and deterministic tasks, while evidence
for consistent structure knowledge was considerably weaker. This
suggests that acting on model-based information may be a more
stable individual trait than the ability to learn the structure itself.
Thus, the standard stochastic task may still be useful for evalu-
ating the natural tendency to behave in a model-based way, even
if model-based behavior is not incentivized.

Finally, our results demonstrate a simple but powerful method
of mouse tracking40 that does not require tracing the entire
mouse trajectory but instead its location at a single point in
time41. The approach relies on a similar mechanism to predictive
gaze42, but does not necessitate the use of eye-tracking equip-
ment. This makes the technique easy to use and useful for eval-
uating what subjects believe in a simple non-invasive way that

could be applied to any task involving beliefs. Future research
could attempt to use mouse-tracking data at the trial level, to
provide more direct measures of subjects’ latent beliefs. This
would allow researchers to track changes in beliefs in a more
precise way than using discrete choice data.

Methods
Participants. We recruited 58 adult subjects (20 female) from the Department of
Economics undergraduate subject pool at the Ohio State University. We paid each
subject based on overall performance in the task, with subjects earning $13.3 on
average, including $5 as a show-up fee. We determined the target sample size
aiming to estimate a significant correlation between an individual mouse-tracking
measure and model-based index assuming a Pearson correlation coefficient of 0.5,
0.01 significance level, and 90% power, which resulted in a minimal sample of
52 subjects. We invited 60 subjects for two 30-person sessions. Out of 58 subjects
who participated, we excluded one subject who failed to complete the task in
reasonable time, leaving 57 subjects for all the analyses. The Ohio State University
Internal Review Board approved the experiment, and all subjects provided written
informed consent.

Task. We used a modified version of the two-stage task commonly used to estimate
the index of individual model-based behavior1,29, implementing a series of recent
recommendations that improve the estimation of the parameter of interest28. We
used Psychtoolbox in MATLAB (Mathworks) to present the stimuli and record
mouse-tracking data. For each subject, we recorded the position of the mouse
cursor on the screen at a rate of 1000 Hz.

Each trial had two stages. Unlike previous experiments in the literature, we
presented all the states of the two-stage task on the same screen to allow for mouse
tracking. In the first stage, subjects chose one of two fractals (let us label them A1
and A2) presented at the top of the screen (Fig. 1a), with no time restriction. Each
choice could lead to one of the two separate states, represented by another pair of
fractals (let us label them B and C), displayed in the bottom left and the bottom
right corners of the screen. After a subject clicked on one of the first-stage fractals,
the new state was not immediately revealed. To see the outcome, the subject had to
move the mouse below an invisible line located 70% of the way to the bottom of the
screen (Fig. 1a). Once the mouse cursor crossed the invisible line, the second-stage
fractal appeared on the screen and the first-stage fractals disappeared. In the second
stage there was no choice: the subject just had to click on the fractal to reveal the
reward (again, with no time restriction). Once the reward was revealed, the subject
had to move the cursor above another invisible line located 70% of the way back to
the top of the screen, to reveal the first-stage fractals for the next trial (implying a
self-paced intertrial interval (ITI)). The left/right positions of the all the fractals
remained fixed throughout each block of trials.

Experiment design. Each subject completed 8 blocks of the experiment, with each
block consisting of 100 trials. Each block used a completely new set of fractals.
Across the blocks, we varied the type of structural relationship between the first-
stage choices and second-stage states.

Four blocks had the standard1 stochastic relationship, where each of the fractals
A1 and A2 was more likely to lead to one of the two bottom fractals B and C
(Fig. 1b). For instance, A1 would lead to B with probability 0.6, and to C with
probability 0.4. For A2, these probabilities were reversed. We varied the common
transition probability between the blocks, using the values 0.6, 0.7, 0.8, and 0.9.
Within each subject, we randomly counterbalanced whether the right or left
bottom fractal was more common for the left or the right top fractal. There was no
evidence for a side bias across all conditions (t(56)= 0.98, p= 0.32) nor within any
individual condition (p > 0.15).

The other four blocks had deterministic relationships that depended on the first-
stage choice in previous trials (Fig. 1b). Specifically, we considered any choice
history two trials back. Given only two options, there are four possible histories:
same option chosen three times in a row (e.g., A1, A1, A1); different option chosen
each time (e.g., A1, A2, A1); same option chosen one trial back, but not two trials
back (e.g., A1, A1, A2); a different option chosen one trial back and two trials back
(e.g., A1, A2, A2). We defined the possible outcome of these histories as repeating/
switching the second-stage state on the current trial (from B to C or vice versa).
Four possible histories and two possible outcomes produced 16 potential transition
structures (or patterns), from which we selected four non-trivial ones. If the subject
was able to figure out the hidden transition pattern, he or she could deterministically
reach one of the desired bottom fractals by applying a specific first-stage choice
sequence. For a detailed description of the four transition patterns please see the
Supplementary Information. As an example, for the easiest pattern (pattern 4) the
rule looked as follows: to get fractal B, the subject needed to choose the same fractal
(A1 or A2) on every trial, while constant alternating between A1 and A2 always led
to fractal C.

We presented all eight blocks in random order. Before each block, we indicated
the type of the transition structure to the subjects. To avoid belief spillover and
excessive experimentation, we instructed them, following the standard protocol,
that one type of block had a random transition structure, with one of the top (first-
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stage) fractals being commonly associated with one of the bottom (second-stage)
fractals, while the other type of block had a more complex transition pattern that
they needed to figure out on their own.

Within each block, both bottom fractals had independent reward distributions
(Fig. 1d). Mean rewards for each fractal drifted between 0 and 100 points according
to a normal distribution with a standard deviation of 20, and each realized payoff
had added normally distributed noise of mean 0 and standard deviation of 20; this
was done to ensure that learning rates below 1 were optimal to succeed in the
task43. At the end of the experiment, we converted the sum of all points earned in
all blocks into each subject’s USD payoff.

Computational modeling. We used the following standard model combining TD
(1) (temporal difference) model-free learning and model-based learning to fit
subjects’ choices and estimate the model-based index1,17,23,27,28. We assumed that
the value of the chosen bottom fractal is updated using the model-free Rescorla-
Wagner rule:

vt ¼ vt�1 þ α rt � vt�1ð Þ; ð1Þ
where vt is the value of the bottom fractal on trial t or t−1, rt is the reward on trial
t, and α is the learning rate. The model-free Q-value of each of the chosen top
fractals is updated in a similar fashion (using a TD(1) update):

qMF
t ¼ 1� αð Þ � qMF

t�1 þ α � rt ; ð2Þ
where qt is the value of the bottom fractal on trial t or t � 1, and rt is the reward on
trial t. For the sake of simplicity, we assumed that this value is updated with the
same learning rate α; the results are similar using two separate learning rates.

In addition, we assigned a model-based Q-value to the top fractal choice. In the
stochastic condition, this value was equal to the expected value of the choice:
qMB
t ¼ pLv

L
t þ pRv

R
t , where pi represent the true probabilities of getting to the left

(L) or right (R) bottom fractals after choosing the specific option, and vit are the
cached model-free values of the bottom fractals. In the deterministic condition,
since the next bottom fractal was uniquely defined from the underlying pattern
based on the previous history of top fractal choices, the model-based value of each
top fractal was simply equal to the cached value of the bottom fractal that would
appear (according to the pattern) if that top fractal was chosen.

In the final step of the model, we used the standard hybrid combination of the
model-free and model-based Q-values:

qHYB
t ¼ w � qMB

t þ 1� wð Þ � qMF
t ; ð3Þ

where w is the weight index reflecting the degree of model-based behavior. We used
the difference of Q-values for the top fractals as an input in a standard logistic
choice model with a temperature parameter β.

To allow for greater parameter flexibility, we fit this model with three free
parameters (α, β, w) to each separate 100-trial block using maximum likelihood
estimation (MLE). Since w is our main parameter of interest, for all analyses we
excluded 27 blocks where w could not be identified (about 6% of the data). This
affected 17 subjects, with a maximum of 3 out of 8 blocks excluded per subject.

In addition, we explored several alternative models from the literature: a purely
model-free learner (TD(1), w= 0), a TD(0)-hybrid model, a TD(1)-hybrid model
including a perseverance parameter, a TD(λ)-hybrid model including an eligibility
trace λ, and the TD(λ) model including the perseverance parameter, and including
both of these last two parameters (see Supplementary Information for the detailed
descriptions of the models). Although more complex models provide an
improvement in fit for some subjects, in our case the average Bayesian information
criterion (BIC) value for these models was worse than the simple TD(1) model,
albeit by a small margin (see Supplementary Fig. 6). Given the lack of meaningful
improvement with these models, we opted for the simplest model variant.
Importantly, the main results related to the model fits do not depend on the choice
of the model (see Supplementary Fig. 7).

Measures of interest. In our analyses, we focused on three individual-level
variables:

Reward rate. behavioral measure of performance. Since each subject has randomly
drawn reward distributions, following previous literature, we normalized received
rewards by simply subtracting the average of the two empirical reward distributions
within each block from the total reward received by the subject in that block28.

Model-based weight w. a computational measure of model-based behavior. It is the
standard index of individual model-based behavior in the literature1. Since we
computed one weight per block, for cross-subject analyses we averaged these
weights across relevant blocks. The results are similar using the median w.

Distance to the correct state side. mouse-tracking measure of model-based behavior.
Since the resulting bottom fractal was only revealed after the mouse cursor crossed
an invisible line on the lower part of the screen, we used the horizontal coordinate
of the point where the cursor crossed the line as a measure of belief about the
specific (left or right) fractal to be revealed on that trial. As model-based indivi-
duals should be tracking the environmental structure, they should be more likely to

move the cursor to the side where the fractal will appear. Our specific measure was
the absolute pixel distance between the point where the cursor crossed the invisible
line and the midpoint of the line, if the cursor was on the correct side of the screen
(in the stochastic task: where the common transition state should have appeared; in
the deterministic task: where the state defined by the pattern was going to appear),
and the negative of this distance if the cursor was on the incorrect side. We
calculated this measure for every trial and then averaged across all trials to obtain
the individual measure. The results are robust to using other similar measures, for
instance, a simple binary variable indicating whether the cursor was on the correct
(left or right) side of the screen when it crossed the invisible line.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and analyzed for the current study are publicly available
in the OSF repository at: https://osf.io/v54nz/. The source data underlying Figs. 2–4 and
Supplementary Figs. 1-2 are provided as a Source Data file.

Code availability
The code reproducing the analysis is publicly available in the OSF repository at: https://
osf.io/v54nz/.
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