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Axial spondyloarthritis (axSpA) is an inflammatory arthritis involving the spine

and the sacroiliac joint with extra-articular manifestations in the eye, gut, and

skin. The intestinal microbiota has been implicated as a central environmental

component in the pathogenesis of various types of spondyloarthritis including

axSpA. Additionally, alterations in the oral microbiota have been shown in

various rheumatological conditions, such as rheumatoid arthritis (RA).

Therefore, the aim of this study was to investigate whether axSpA patients

have an altered immunoglobulin A (IgA) response in the gut and oral microbial

communities. We performed 16S rRNA gene (16S) sequencing on IgA positive

(IgA+) and IgA negative (IgA-) fractions (IgA-SEQ) from feces (n=17 axSpA; n=14

healthy) and saliva (n=14 axSpA; n=12 healthy), as well as on IgA-unsorted fecal

and salivary samples. PICRUSt2 was used to predict microbial metabolic

potential in axSpA patients and healthy controls (HCs). IgA-SEQ analyses

revealed enrichment of several microbes in the fecal (Akkermansia,

Ruminococcaceae, Lachnospira) and salivary (Prevotellaceae, Actinobacillus)

microbiome in axSpA patients as compared with HCs. Fecal microbiome from

axSpA patients showed a tendency towards increased alpha diversity in IgA+

fraction and decreased diversity in IgA- fraction in comparison with HCs, while

the salivary microbiome exhibits a significant decrease in alpha diversity in both

IgA+ and IgA- fractions. Increased IgA coating ofClostridiales Family XIII in feces

correlated with disease severity. Inferred metagenomic analysis suggests
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perturbation of metabolites and metabolic pathways for inflammation

(oxidative stress, amino acid degradation) and metabolism (propanoate and

butanoate) in axSpA patients. Analyses of fecal and salivary microbes from

axSpA patients reveal distinct populations of immunoreactive microbes

compared to HCs using the IgA-SEQ approach. These bacteria were not

identified by comparing their relative abundance alone. Predictive

metagenomic analysis revealed perturbation of metabolites/metabolic

pathways in axSpA patients. Future studies on these immunoreactive

microbes may lead to better understanding of the functional role of IgA in

maintaining microbial structure and human health.
KEYWORDS

HLA-B27, fecal microbiome, salivary microbiome, predictive metabolomics, axial
spondyloarthritis (AxSpA)
Introduction

Axial spondyloarthritis (axSpA) is an immune-mediated

inflammatory arthritis, which affects the sacroiliac and spinal

joints, and is associated with microscopic lesions or

inflammation in the gut (1). It includes ankylosing spondylitis

(AS), in which imaging evidence of inflammation in spine or

sacroiliac joints is observed, and non-radiographic axSpA in

which radiographic changes are not observed. While the genetic

association of AS with the major histocompatibility molecule

HLA-B27 has been known for almost five decades (2), the

mechanistic link remains elusive. Like several other complex

polygenic diseases such as inflammatory bowel disease (IBD),

diabetes mellitus and multiple sclerosis, gene-environment

interactions and particularly host-microbiota interactions have

been centrally implicated in pathogenesis (reviewed in (3)). The

latter is well supported by the observations that patients with AS

have a dysbiotic gut microbiota and over half exhibit subclinical

bowel inflammation (4, 5). Furthermore, a recent study found

that gut microbial dysbiosis is associated with worst disease

activity in patients with axSpA (6).

Previously, we have shown that HLA-B27 expression

perturbs the gut microbiota in an experimental model of

spondyloarthritis (SpA) (7–9). In this model, transgenic rats

expressing multiple copies of human HLA-B27 in conjunction

with human b2-microglobulin (HLA-B27 TG) develop

spontaneous bowel and joint disease (10). Enhanced mucosal

immune responses to the gut microbiota strongly correlate with

disease severity in these animals. For instance, HLA-B27 TG rats

with arthritis elicit a stronger microbiota-specific IgA response

(increased frequency of IgA-coated microbes) than control

HLA-B7 TG animals without joint disease (8). Recently, we

have shown that healthy individuals carrying the HLA-B27 allele

also have altered gut microbial composition (11). While multiple
02
studies employing 16S rRNA (16S) and metagenomic

sequencing have revealed gut microbial dysbiosis associated

with various spondyloarthropathies (4, 5, 12–15), identification

of a causal microbe has been elusive. Compositional analysis of

the microbial community may not be sufficient to determine the

interactions between microbes and the host immune response.

To identify such bacteria that preferentially affect disease

susceptibility and severity, we employed IgA-sequencing (IgA-

SEQ), which couples flow cytometry sorting of IgA-coated

bacteria and 16S sequencing, to identify IgA coated microbes

(16). This technique has been used to determine pathologically

relevant IgA coated microbes in Crohn’s disease (CD)-associated

SpA (17). Colonization of germ-free mice with IgA coated

microbes, particularly with adherent-invasive E. coli (AIEC)

pathotype, induced Th17 immunity through microbial

metabolic enzyme propanediol dehydratase (17), which

induced IL-1b production by mononuclear phagocytes, thus

perpetuating inflammation (18). These findings identified

immune cells as metabolic sensors and highlight the

importance of IgA coated microbes and their metabolites as

potential therapeutic targets in CD treatment. AS and CD share

several aspects of clinical overlap including bowel, eye, and joint

disease (19). However, this type of investigation of the mucosal

immune response and metabolic function of IgA coated

microbes and has not yet been reported in axSpA patients.

The gut is the largest immune organ, facilitating interaction

between the gut microbiota and local mucosal immune response.

We hypothesize that other mucosal sites that are home to

microbes contribute significantly to systemic rheumatic

disease, particularly the oral cavity. It has been shown that

patients with rheumatoid arthritis (RA) have a higher

prevalence of severe periodontitis as compared to healthy

controls (20). Disease activity in RA also tracks with

periodontal disease activity with a corresponding partial
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resolution of microbial dysbiosis upon treatment (21, 22). A

recent study reported increased incidence of periodontitis in

axSpA patients in comparison with the healthy controls;

however, they did not observe differences between the bacterial

richness and diversity or community structure (23).

Furthermore, it has not been elucidated if perturbation of the

oral cavity mucosal barrier is also altered in those with axSpA.

Our hypothesis thus extends beyond the gut and investigates if

immune modulation of the mucosal barrier occurs in the oral

cavity of patients with axSpA.

In this study, we evaluated IgA coating (IgA-SEQ) and

traditional 16S sequencing of microbes in the saliva and feces

from axSpA patients and healthy controls (HCs). IgA-SEQ

analyses identified potentially immune-targeted microbes that

were not observed to be differentially abundant using traditional

16S sequencing alone. In addition, differential IgA coating on

some fecal and salivary microbes was associated with disease

activity. Using a computational approach to predict the

microbial function, we found that the IgA+ fraction in the

fecal and salivary samples showed perturbation of many

predictive metabolites and metabolic pathways in axSpA

patients. These potentially immune reactive microbes may

reveal novel host-microbial interactions in health and disease.

Taken together, this study adds to our understanding of HLA-

B27-associated host immune response and its interaction with

the gut microbes in axSpA.
Patients and methods

Study design and participants

We performed a prospective cohort study at the Oregon

Health and Science University (OHSU). Subjects were excluded

from all cohorts if they were younger than age 18 years,

pregnant, had a history of prior intestinal surgery or colon

cancer, or had antibiotic use 6 months prior to sample

collection. This study was approved by the Institutional

Review Board at OHSU and written informed consent was

obtained from all participants.

AxSpA cohort: Subjects with a diagnosis of axSpA were

recruited from either the OHSU rheumatology clinic or via the

Spondylitis Association of America (SAA). The SAA is a patient

advocacy group with physicians on its board, and members with

AS are highly engaged and informed. Supplementary Table 1

lists the detailed location and recruitment status of axSpA

patients and HCs (local vs SAA) for the stool and saliva

cohort. Medical records were reviewed by a rheumatologist

(JTR) to confirm a diagnosis of AS/axSpA based on the

modified NY (New York) Criteria and the ASAS (Assessment

of Spondyloarthritis International Society) classification

respectively (24, 25). A total of 26 subjects with AS/axSpA

were enrolled (12 subjects provided fecal samples, 9 provided
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salivary samples and 5 subjects provided both fecal and salivary

samples). Of these, 22 patients had a diagnosis of AS in their

rheumatological medical records (11 of those were confirmed

with imaging review), while 4 had limited external medical

records but were sufficient to verify axSpA, thus our patient

cohort is classified as axSpA in this study even though AS is

highly represented. All of the patient medical information was

reviewed again to confirm axSpA diagnosis during study design.

While none of the axSpA subjects had psoriasis or peripheral

arthritis, one axSpA patient in the salivary cohort was also

diagnosed with IBD. The Bath ankylosing spondylitis disease

activity index (BASDAI) was administered to subjects with

axSpA. Their current medications, including biologics, non-

steroidal anti-inflammatory drugs (NSAIDs) as well as clinical

HLA-B27 testing, if known, was also documented.

Samples: All subjects enrolled at OHSU provided a blood

sample for genomic DNA extraction and subsequent HLA-B

typing. Subjects recruited through the SAA shipped fecal and/or

salivary samples to our lab using next-day shipping packets. For

microbiome analysis, fecal and salivary samples were snap

frozen upon collection and stored at -80°C until further

analyses. All processing thereafter was performed blinded to

patient phenotype. Supplementary Figure 1 illustrates the study

experimental overview.

HLA-B typing: Genomic DNA was extracted from anti-

coagulated blood by the salting out method performed in a

shared core resource at the Casey Eye Institute, OHSU. The

LABType XR HLA-B SSO typing kit from One Lambda Thermo

Fisher (RSSOX1B) was used according to manufacturer’s

instructions in the OHSU Laboratory of Immunogenetics

and Transplantation.
Microbial community analysis

To determine the microbial community structure, genomic

DNA from the salivary and fecal samples was isolated using the

methods described previously (9). Briefly, genomic DNA was

isolated using the Power Soil DNA Isolation Kit (MoBio

Laboratories Inc., Carlsbad, CA) according to manufacturer’s

instructions. Amplification of the 16S ribosomal RNA genes

was performed using the 515–806 primers specified by the

Earth Microbiome Project (https://www.earthmicrobiome.org/

). Sequencing of the V4 region was accomplished with Illumina

MiSeq using barcoded primers (26). For IgA-SEQ, fecal

samples were homogenized in phosphate buffered saline

(PBS), supernatant was collected and washed in PBS with 1%

fetal bovine serum (FBS) and incubated with blocking buffer

(PBS with 20% rat serum) for 20 min. The IgA+ fraction was

stained with phycoerythrin (PE) labeled mouse anti-human

IgA (Miltenyi 130-093-128), and enriched using anti-PE

magnetic activated cell sorting (MACS) beads, and the

negative fraction was collected for IgA- microbes. IgA+
frontiersin.org
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fraction was further purified through a FACS Aria (BD

Biosciences). Genomic DNA from IgA+ and IgA- microbial

fractions was isolated and the V4 region of the16S rRNA gene

was sequenced as described above.

Sequencing data were demultiplexed and processed using

the DADA2 package in R (27). This included quality filtering,

denoising using the DADA2 algorithm, chimera detection and

removal, and tabulation into amplicon sequence variants

(ASVs). Taxonomy assignment was performed using the

RDP classifier (for Phylum to Genus annotations) and exact

matching (for Species level annotations) with the Silva database

(v. 132). Phylogenetic trees were generated using phangorn

and decipher. Further analyses were performed using

microbiome data analysis packages in R (phyloseq, vegan,

MicrobiotaProcess) (28–30). IgA-SEQ data were subjected to

decontam (31), a software tool to identify and remove

contaminating sequence features in 16S sequencing data, and

analyses were performed using in-house written scripts (32),

available on Github (https://github.com/KarstensLab/igaseq).

Samples that had 7,500 reads per sample in both the IgA- and

IgA+ fractions were used. The IgA index was calculated as the

log ratio of the difference between IgA coated and IgA

uncoated bacteria over the sum of IgA coated and IgA

uncoated bacteria (IgA index= - (log(IgA+ taxon)- log(IgA-

taxon))/(log(IgA+ taxon) + log(IgA- taxon))) (33). Alpha

diversity was evaluated by using multiple indices to

determine richness and evenness in the community. While

the number of observed genera/ASVs evaluates richness only

using counts, the Shannon Index contains a logarithmic values

including both richness and evenness, and Inverse Simpson

Index focuses mostly on evenness using sum of squared

proportions (34). Beta diversity was evaluated using the

phylogenetic tree-based metric, UniFrac metric (35) and

visualized with Principal Coordinate Analysis (PCoA).
Predictive metagenomic analysis

To infer the metagenome of oral and gut microbiota from

16S rRNA amplicon sequences obtained, we employed

PICRUSt2 (Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States 2) (36). PICRUSt2

estimates the metagenomic contribution of gene families in

bacteria and archaea using 16S rRNA amplicon sequencing

data, while taking into account the copy number of 16S rRNA

gene. Functional potential was estimated by mapping 16S rRNA

sequencing data to predicted functional annotation via

alignments and hidden state prediction models (31), using

default parameters. We used the quantitative abundance

counts that mapped the Kyoto Encyclopedia of Genes and

Genomes (KEGG) ortholog (KO) functional categories and

focused our analysis on pathways using the multi-organism

database MetaCyc (37) and individual metabolites (KO),
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which are both default functional annotations of PICRUSt2.

Overlap between KO is determined between various groups, and

area proportional Euler plots were created using Eulerr package

in R (38).
Statistical analysis

All statistical analyses were performed in R. For 16S

sequencing and IgA-SEQ analyses, non-parametric tests

(Wilcoxon Rank Sum) were used to assess within and

between group differences for the alpha diversity measures.

Differences in individual microbial relative abundances at the

genus and ASV level were assessed with non-parametric tests

(Wilcoxon Rank Sum) and corrected for multiple tests

using the Benjamini-Hochberg method (39). Differences in

overall microbial community structure were evaluated

using Permutational Multivariate Analysis of Variance

(PERMANOVA). Correlation between relative abundance and

disease activity (BASDAI) was performed using Spearman

correlation with adjusted p-values after correcting for multiple

comparisons using the Benjamini-Hochberg method (39). LEfSe

was used to determine the presence of significant discriminant

taxa by pairwise comparison (40). For PICRUSt2 analyses, LEfSe

was used to identify candidate biomarker features among both

individual metabolites (KO) and pathways (MetaCyc) (40). The

LEfSe method performs a series of three tests: (1) at the class

level (representing diagnosis axSpA or HC) an ANOVA

(Kruskal-Wallis sum-rank test) with an alpha of <0.05 was

applied (2) at the subclass level (representing patient sex) a

Wilcoxon test with an alpha of <0.05 was applied and (3) a linear

discriminant analysis (LDA) is finally applied to features to

estimate their effect size and provides a ranking order of features

most likely to explain group differences. Comparisons were

made between IgA+ and IgA- fractions from salivary and fecal

microbiome data from axSpA patients and HCs.
Results

Clinical characteristics defining
axSpA patients

To analyze microbial differences between axSpA subjects

and HCs, we performed 16S sequencing on the unsorted

microbial community and IgA-SEQ to identify IgA+ and IgA-

sorted fractions from the fecal and salivary samples. The fecal

cohort had 31 subjects (17 axSpA patients and 14 HCs), and the

salivary cohort had 26 subjects (14 axSpA patients and 12 HCs).

While there were no significant differences in age or gender (P>

0.2 and 0.6 respectively) between the axSpA patients and HCs

for the fecal samples, the HCs were younger (P= 0.018), and with

less female representation (P= 0.038) than the axSpA patients in
frontiersin.org
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the salivary cohort. However, both axSpA patients and HCs had

similar BMI in the fecal (P = 0.5) and salivary (P = 0.4) cohort.

AxSpA patients had a mean disease activity (BASDAI) of 3.5 in

the fecal cohort, and 2.0 in the salivary cohort. The fecal cohort

was comprised of 47% axSpA patients on biologics such as

adalimumab, etanercept or secukinumab, while 36% of the

salivary axSpA cohort were on biologics (Table 1).

Furthermore, 47% of the fecal cohort and 14% of the salivary

cohort of axSpA patients were on NSAIDs. In comparison, 21%

of fecal cohort and 17% of salivary cohort healthy individuals

reported NSAIDs use (Table 1).
Frontiers in Immunology 05
AxSpA patients have altered microbial
composition in saliva

To characterize microbial diversity in the fecal and salivary

samples from patients with axSpA in comparison with the HCs,

we performed 16S sequencing on both fecal (Figures 1A–C) and

salivary (Figures 1D–F) samples. We did not observe any

differences between the microbial diversity (alpha diversity,

Figure 1A) and community structure (beta diversity,

Figure 1B) in the fecal samples from axSpA patients in

comparison to HCs. In contrast, salivary samples from axSpA
TABLE 1 General characteristics of the subjects providing stool and saliva samples for IgA-Seq analyses.

axSpA vs. HC analysis

Stool cohort* Saliva cohort*

axSpA(n=17) HC(n=14) P† axSpA(n=14) HC(n=12) P

Age, years‡ 58 (49, 69) 55 (37, 62) 0.2 57 (52, 64) 36 (30, 56) 0.018

Female 10 (59%) 6 (43%) 0.6 12 (86%) 5 (42%) 0.038

Race 0.032 0.13

Asian 0 (0%) 2 (14%) 0 (0%) 2 (17%)

Black 1 (6%) 0 (0%) 1 (7%) 0 (0%)

White 16 (94%) 10 (71%) 12 (86%) 7 (58%)

>1 race 0 (0%) 2 (14%) 1 (7) 3 (25%)

Unknown 0 0 0 0

Hispanic or Latino 2 (12%) 1 (7%) 1 0 (0%) 1 (8%) 0.5

BMI, kg/m2 27 (23, 32) 26 (21, 30) 0.5 26 (21, 31) 23 (22, 25) 0.4

BASDAI 3.5 (2.4, 5.5) 0.8 (0.5, 1.3) <0.001 2.0 (1.5, 2.8) 0.6 (0.1, 0.9) 0.003

Unknown 1 1 0 1

BASFI 3.2 (1.4, 4.2) 0.1 (0.0, 0.5) 0.002 2.1 (1.1, 3.6) 0.0 (0.0, 0.2) <0.001

Unknown 1 1 0 1

HLA-B27+ 16 (94%) 0 (0%) <0.001 13 (93%) 0 (0%) <0.001

Unknown 0 7 0 4

Biologics§ 0.003 0.039

Yes 8 (47%) 0 (0%) 5 (36%) 0 (0%)

No 8 (47%) 14 (100%) 8 (57%) 12 (100%)

Unknown 1 (6%) 0 1 (7%) 0

NSAIDsy 0.14 0.06

Yes 8 (47%) 3 (21%) 2 (14%) 2 (14%)

No 8 (47%) 11 (79%) 10 (71%) 12 (86%)

Unknown 1 (6%) 0 2 (14%) 0

Uveitis¶ 10 (59%) NA 9 (64%) NA

IBDw 0 NA 1 (7%) NA
frontiersin.or
*Five subjects with axial spondyloarthritis (axSpA) and four subjects in the healthy control (HC) category provided both stool and saliva samples.
†P values were calculated using the Wilcoxon rank-sum test for continuous numeric values, the Fisher’s exact test for categorical variables with 2 values, and the chi-square test of
independence for categorical variables with 3 or more values.
‡All statistics are presented as either Median (IQR) or n (%).
§Biologics taken within 6 months of providing samples included adalimumab, etanercept or secukinumab.
yNon-steroidal anti-inflammatory drugs (NSAIDs) taken within 6 months of providing samples included ibuprofen, aspirin, naproxen.
¶Uveitis secondary to axSpA. No subjects were known to have active ocular inflammation at the time of providing samples, except one individual with mild uveitis in the Saliva/axSpA
group. NA, not applicable in the HC group by definition.
wIBD secondary to axSpA. Only 1 subject in the salivary cohort were known to have IBD. NA, not applicable in the HC group by definition.
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FIGURE 1

16S sequencing of fecal and salivary samples in axSpA patients and HCs at the genus level. (A–C) represent fecal samples and (D–F) are salivary
samples from axSpA patients (pink) and HC (green). Alpha diversity plots with Observed, Shannon and Inverse Simpson (InvSimpson) indices for
(A) fecal and (D) salivary samples. Microbial composition of (B) fecal and (E) salivary samples analyzed using the unweighted Unifrac distance
represented as a principal coordinate analysis (PCoA) plot. Relative abundance of genus level microbes in (C) fecal and (F) salivary samples that
are different between axSpA patients and HC. *P<0.05; NS not significant.
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patients showed a decrease in all (Shannon P = 0.016, PFDR =

0.048, observed P=0.047, PFDR= 0.094, and Inverse Simpson P=

0.048, PFDR= 0.094) measures of alpha diversity (Figure 1D),

however the microbial composition (beta diversity, Figure 1E) of

axSpA patients was not significantly different than HCs at the

genus level. We also compared individual microbial differences

between axSpA patients and HCs at the genus level for fecal and

salivary samples. We observed many microbes trended towards

altered relative abundance in the fecal (e.g., Anaerofilum,

Fecalitalea, Fournierella; P < 0.05, PFDR < 0.79; Supplementary

Table 2) (Figure 1C) as well as in the salivary samples (e.g.,

Megasphaera, Selenomonas, Oribacterium, Aggregatibacter,

Campylobacter, Ruminococcaceae_UCG-014, Treponema,

Atopobium, Corynebacterium and F0058) (Figure 1F) of axSpA

patients in comparison to HCs (P < 0.05, PFDR < 0.52;

Supplementary Table 2). These differences no longer reached

statistical significance after multiple testing correction. Similar

results were seen in both fecal and salivary samples at the species

level as measured using ASVs (Supplementary Figures 2A–F).

Notably, there was a significant difference between the salivary

alpha diversity in axSpA patients and HCs (Shannon’s Index, P=

0.0006, PFDR= 0.002), however microbial composition as

assessed by beta diversity was not significantly different

between axSpA subjects and HCs (permanova, P = 0.06)

(Supplementary Figures 2D, E). We did not observe these

differences in the fecal microbial diversity or community

structure in axSpA patients in comparison with HCs

(Supplementary Figures 2A, B). Despite this, relative

abundance comparisons of individual microbes at the ASV

level showed a trend towards increased abundance (P<0.05,

PFDR = 0.74; Supplementary Table 2) of Bacteroides vulgatus,

Holdemanella biformis and Lachnospiraceae spp. in the fecal

microbiome (Supplementary Figure 2C). The salivary

microbiome showed a trend towards decrease (P < 0.05, PFDR
<0.57; Supplementary Table 2). in the abundance of multiple

microbes (e .g . , Prevo te l la hi s t i co la , Megasphaera

micronuciformis, Prevotella maculosa, Campylobacter concisus,

Dialister invisus etc.) in the axSpA patients as compared with

HCs (Supplementary Figure 2F).
Enrichment of IgA-coated microbes in
fecal samples of axSpA patients

Although we did not observe differences in the overall

microbial composition in fecal samples as measured by 16S

sequencing, we suspected that there may be differences in how

the host immune system interacted with these microbes. To

determine whether microbiota from the fecal and saliva samples

can elicit an immune response, we performed IgA-SEQ on IgA+

and IgA- microbes sorted from saliva and fecal microbial

communities of the axSpA patients and HCs. This analysis

revealed a tendency towards increased microbial diversity of
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IgA+ fraction in the fecal microbiome of axSpA patients as

compared to the HCs, whereas the IgA- fraction showed a

tendency towards loss of diverse in axSpA patients as

compared with HCs (Figure 2A). On the other hand, salivary

microbiome of axSpA patients showed a significant decrease in

microbial richness as measured by alpha diversity in both IgA- as

well as IgA+ fractions as compared to the HCs (Figure 2E). The

beta diversity comparison (IgA+ and IgA- fractions) between

axSpA and HCs did not yield any significant differences (data

not shown).

Further analyses of IgA-enriched (Increased relative

abundance in the IgA+ fraction as compared with the IgA-

fraction) and depleted (decreased relative abundance of that

microbe in IgA+ fraction as compared with IgA- fraction)

bacteria from patients with axSpA identified a greater number

of unique IgA-coated microbial genera in fecal (Figure 2C) and

salivary (Figure 2G) samples. Similarly, there was an increased

number of IgA enriched microbes at the ASV level in both fecal

and salivary samples from axSpA patients (Supplementary

Figures 3C, G, respectively). Akkermansia has the highest IgA

index score among fecal microbes in axSpA patients followed by

Ruminococcaceae and CAG-352. In addition, axSpA patients

had many microbes with IgA enrichment such as Klebsiella,

Ruminococcus, Lachnospira, Pseudomonas and other members

of family Ruminococcaceae and Lachnospiraceae (Figure 2C).

Among fecal samples, the phylum Firmicutes represent the

majority of microbes coated with IgA in axSpA patients. The

IgA+ fractions in HCs (Figure 2B) also showed some microbes

with increased IgA coating in the fecal samples (Escherichia/

Shigella, Ruminococcaceae-NK4A214, Parabacteroides).

Interestingly, some of the IgA enriched microbes overlapped

between axSpA patients and HCs, such as those belonging to

genus Escherichia/Shigella, Ruminococcaceae-NK4A214,

Intestinibacter (Figures 2B, C). Despite significant changes in

microbial diversity and community structure in the saliva of

axSpA patients in comparison to HCs (Figures 1B, D), it had a

smaller number of IgA enriched microbes in both HCs and

axSpA patients (Figures 2D, E respectively) in comparison to the

fecal samples in both HCs and axSpA patients (Figures 2B, C

respectively). The majority of salivary microbes from axSpA

patients and HCs were IgA-depleted, with only the genus

Butyricimonas being enriched in IgA coating in HCs and

Actinobacillus (Figures 2F, G) being enriched in axSpA

patients. Comparing the IgA index for individual microbes,

Akkermansia was significantly enriched in the IgA+ fraction in

axSpA patients (Figure 2D). In the salivary microbiome, IgA

coating of Actinobacillus was increased while that of

Butyricimonas was decreased when compared to HCs

(Figure 2H). These analyses were also performed at the ASV

level and similar results were observed (Supplementary

Figure 3). Some of the IgA enriched fecal microbes such as

members of Lachnospiraceae and Escherichia/Shigella

overlapped between axSpA patients and HCs (Supplementary
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FIGURE 2

IgA-SEQ analyses of fecal and salivary samples in axSpA patients and healthy controls (HC) at the genus level. (A–D) represent fecal samples and
(E–H) are salivary samples from axSpA patients (blue) and HC (gray). Alpha diversity plots for IgA- and IgA+ fractions with observed, Shannon and
Inverse Simpson (InvSimpson) indices for (A) fecal and (E) salivary samples. IgA coating index was calculated for all taxa and significant taxa are
shown for fecal samples for HCs (B) and patients with AxSpA (C). Similarly, IgA coating index was calculated for all taxa and significant taxa, and
significant taxa are shown for salivary samples from HCs (F) and axSpA patients (G). IgA index for differentially abundant microbes in fecal (D)
and salivary (H) microbes in axSpA patients and HCs are shown. *P<0.05, **P<0.01; NS not significant.
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FIGURE 3

Correlation of immune reactive microbes with disease activity. The IgA index of the immune reactive microbes is correlated with the disease
index (BASDAI score) at the genus (A) and ASV (B) level for fecal microbes, and at the genus (C) level for salivary microbes. The strength of each
linear association is measured with a correlation coefficient r. The value of r=1 indicates perfect correlation; a positive value denotes a positive
correlation and a negative value signifies an inverse correlation. In addition, the adjusted p-value (PFDR) of the correlations after multiple tests
correction are also depicted on the plot.
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Figures 3B, C). However, there was no overlap between the IgA

enriched salivary microbes between axSpA patients and HCs

(Supplementary Figures 3F, G).
IgA-SEQ reveals immunoreactive
microbes correlating with disease activity

To determine whether IgA enriched microbes in feces from

axSpA patients were associated with disease, we correlated genus

and ASV level microbes with the disease activity score

(measured by BASDAI). The analysis showed a significant
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negative correlation between Ruminococcaceae UCG-003 (ASV

level, Figure 3B) in the fecal community, and a significant

negative correlation between genus Actinobacillus and

Alcaligenes in the salivary microbes (Figure 3C). In addition,

we found many microbes trending towards a correlation

between IgA enrichment and disease activity. Of these, genus

Clostridiales Family XIII correlated positively, while the genera

Catenibacterium, Intestinibacter and members of family

Lachnospiraceae (UCG010) and Ruminococcaceae (UCG-002)

trended towards a negative correlation [Figure 3A, (P < 0.05,

PFDR < 0.20)]. At the ASV level (Figure 3B), we observed a trend

towards negative correlation with [Bacteroides spp.,
B

C

D

E F

A

FIGURE 4

PICRUSt2 pathways and metabolites enriched in axSpA patients and healthy individuals. Linear Discriminant analysis (LDA) effect size analysis
showing differentially abundant MetaCyc metabolic pathways between various groups shown in a bar plot in (A) IgA enriched and (B) IgA
depleted fecal fractions comparing axSpA patients with HCs. The bar plots for salivary (C) IgA enriched and (D) IgA depleted fractions from
axSpA patients in comparison with HCs are also shown. Predicted microbial metabolites (KO) in the (E) feces and (F) saliva. The data for both
IgA+ and IgA- fractions and their overlap as shown in area proportional Euler plots. Briefly, the numbers represent KOs significantly altered in
their LDA score in axSpA patients in comparison with the HC in the IgA+ fraction (purple) and IgA- fraction (yellow). MetaCyc pathways and
KEGG metabolites (KOs) with a class level alpha<0.05 and subclass alpha<0.05 are considered significant. SP (superpathways), TCA (tricarboxylic
acid), GDP (guanosine diphosphate).
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Parabacteroides johnsonii, Intestinibacter bartelettii, Firimicutes

spp.; (P < 0.05, PFDR < 0.20)].
Perturbation in microbial metabolites in
axSpA patients and healthy subjects

To infer the microbial metagenome and metabolic pathways,

we employed PICRUSt2, which uses marker gene data (16S

sequencing) to predict microbial metabolic potential. Previous

inferred microbial metabolic profiling of SpA patients (41) and

HLA-B27 TG rats (9) using PICRUST has revealed perturbation

of inflammatory pathways associated with disease and/or HLA-

B27 status. Therefore, in this manuscript, based on our findings

from HLA-B27 TG rats, we further investigated the contribution

of IgA+ or IgA- fractions in the perturbation of microbial

metabolic function. We found multiple metabolic pathways

(MetaCyc) significantly increased (alpha<0.05 for class and

subclass analysis) in the fecal IgA+ fraction of axSpA patients

(Figure 4A) including biosynthesis of unsaturated fatty acids,

isopropanol biosynthesis, polyamine biosynthesis, and pathways

for amino acids biosynthesis (phenylalanine, tyrosine), and

colonic acid biosynthesis with a decrease in superpathway of

UDP-N acetylglucosamine derived O antigen biosynthesis and

pyruvate fermentation to acetone in the IgA- fractions

(Figure 4B). On the contrary, salivary IgA+ fractions

(Figures 4C, D) showed decreased pathways for L glutamate

degradation VIII (to propanoate), acetyl CoA fermentation to

butanoate II, and degradation of amino acid pathways (leucine,

histidine) in axSpA patients as compared with HCs. We also

observed alteration in nucleotide biosynthesis pathways

(pyrimidine deoxyribonucleotides de novo biosynthesis I, 5

aminoimidazole ribonucleotide biosynthesis I, guanosine

ribonucleotides de novo biosynthesis) in both fecal and

salivary fractions (Supplementary Figures 4A, C). In the

salivary IgA- fraction of axSpA patients, we observed an

increase in enterobacterial common antigen biosynthesis, with

a decrease in pathways for L glutamate and L glutamine

biosynthesis, L glutamate degradation VIII (to propanoate),

acetyl CoA fermentation to butanoate II, purine nucleobases

degradation I (anaerobic), guanosine nucleotides degradation

(Figures 4C, D). Additional exploratory analyses of metabolic

pathways were also performed (alpha <0.1 for class and alpha

0.05 for subclass analysis), which revealed alteration in pathways

for various amino acids biosynthesis, fatty acid biosynthesis,

propanoate degradation etc. (Supplementary Figures 4A–D).

In addition, LEfSE analysis at the KEGG ortholog (KO) level

for predictive genes/metabolite revealed perturbation of 72

predictive genes in the IgA+ fraction and 28 genes in the IgA-

fraction of axSpA fecal samples, with a minimal overlap of 1

gene (Figure 4E). Meanwhile, salivary IgA+ and IgA- fractions

had higher numbers of predictive genes (191 and 154

respectively) perturbed in axSpA patients, with 36 shared
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genes between the IgA+ and IgA- fractions (Figure 4F).

However, minimal overlap of the oral and fecal microbial

genes was observed (data not shown). In the fecal IgA+

fraction, genes from inflammatory pathways such as

lipopolysaccharide biosynthesis (K19353, K03271, K02847),

glutathione metabolism (K00036, K00033, K00432), oxidative

phosphorylation (K00239), and biofilm formation (K01791,

K00640) were perturbed. The IgA- fraction showed a

decreased abundance of predicted genes from metabolic

pathways such as propanoate and (K01035, K01034), and

butanoate metabolism (K01035, K01034, K14534) in axSpA

patients. The salivary IgA+ fraction from axSpA patients had

decreased abundance of genes from butanoate (K01907, K17865,

K03821, K01692, K01028, K07246, K01640), and propanoate

(K01962, K01965, K01026, K00822, K01692) metabolism.

Multiple genes for other inflammatory pathways such as

tryptophan metabolism (K01692, K04103), oxidative

phosphorylation (K08738, K02122, K02121, K02119), flagellar

assembly (K02408, K02406, K02407), and glutathione

metabolism (K07232) had altered abundances in the IgA+

fraction of the saliva samples. We also performed additional

exploratory analyses (class analysis alpha < 0.1, subclass analysis

alpha < 0.05), which revealed additional KOs belonging to

pathways mentioned above (Supplementary Figures 4E, F).

The predictive metabolites significantly altered in the IgA+ and

IgA- fractions from fecal and salivary samples are detailed in

Supplementary Table 3.
Discussion

In this study, we examined the IgA coating of microbes in

the fecal and salivary microbiome from axSpA patients and HCs.

To our knowledge, this is the first study to focus on IgA-enriched

and depleted microbes and their predictive metabolic

contributions in axSpA patients. We found an enrichment of

IgA coated microbes in the fecal samples from axSpA patients.

Also, the salivary microbiome from axSpA patients had a lower

number of IgA coated microbes despite showing significant

microbial dysbiosis. Some of these IgA coated microbes

showed an inverse correlation with the BASDAI. In addition,

predictive microbial function revealed various inflammatory and

metabolic pathways perturbed in fecal and salivary samples from

axSpA patients. Taken together, our data suggest that IgA

selectively marks inflammatory or immune reactive microbes,

resulting in an altered microbial community structure and

function in axSpA patients.

The present study combining 16S sequencing of the oral and

fecal microbiome and the IgA coated microbes proved useful in

deciphering whether dysbiotic microbes are differentially coated

with IgA. Despite minor changes in the overall microbial

diversity and composition in axSpA patients and HCs, we

observed a significant change in the IgA coating of oral and
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fecal microbes in these patients as compared to HCs. Notably,

IgA-SEQ revealed many microbes that were not differentially

abundant using the 16S sequencing alone, e.g., Akkermansia,

and members of family Ruminococcaceae and Lachnospiraceae.

These microbes have been shown to be associated with clinical

studies in SpA and IBD (12, 42) as well as in experimental

models of SpA (7–9). Interestingly, Akkermansia has been

implicated as a pathogenic microbe in SpA and IBD (12, 42);

and a protective microbe in metabolic diseases and obesity

studies (43). We also observed other IgA coated microbes in

the fecal (e.g., Lachnospiraceae, Ruminococcaceae) and salivary

(e.g., Prevotellaceae, Actinobacillus) samples from axSpA

patients, which have been shown to be associated with various

spondyloarthropathies (12, 14). Furthermore, in a recent study

on IgA coated microbes in CD-SpA patients also reported

increased IgA coating of Escherichia/Shigella, Lachnospiraceae

(17), as seen in axSpA patients from our study. Almost 50-70%

of axSpA patients have reported to have subclinical gut

inflammation (44), which is further supported by increased

calprotectin levels reported in SpA patients (45). This could

explain the enrichment of Escherichia/Shigella similar to that

seen in CD-SpA patients (17). Therefore, our study highlights

Akkermansia, Escherichia/Shigel la and members of

Lachnospiraceae, Ruminococcaceae and Prevotellaceae for

eliciting an IgA response which suggests immunologic

significance. Since these organisms are able to activate the host

immune response as indicated by an IgA response, the targeted

micro-organisms should be studied further for functional

analysis to determine host-microbe interactions in

disease development.

Recent studies have focused on specific microbes as a disease

biomarker, patients with AS and SpA have shown correlation of

disease activity (BASDAI) with increased relative abundance of

Ruminococcus gnavus and Dialister, respectively in two different

studies (12, 13). Other studies have reported gut dysbiosis

correlating with the fecal calprotectin levels (6, 46), suggesting

that using multiple markers of disease activity (e.g., BASDAI,

fecal calprotectin) in future studies may improve correlation

between disease and dysbiotic microbiota. Our current study

correlates various IgA coated microbes with the disease activity

(BASDAI), and has revealed many microbes with negative

correlation between IgA coating and BASDAI score in the

fecal and saliva fractions. However, a member of class

Clostridiales Family XIII showed positive correlation between

IgA coating and increased BASDAI score, without a significant

alteration in its relative abundance in axSpA patients (data not

shown). While IgA coated microbes have shown to exacerbate

gut inflammation (16, 17), IgA coated microbes from healthy

individuals have been shown to protect from gut inflammation

(47) and regulates microbial composition (48). Additionally, a

gut commensal microbe Bacteroides fragilis can alter its cell wall

to enhance IgA coating, allowing it to adhere to the gut epithelial

cells, and discouraging colonization by potential pathobionts
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(49). These opposing roles for IgA may be due to the T cell

dependent IgA production affected by Th-17 cells or Regulatory

T cells (17, 47). Furthermore, our studies correlating microbial

relative abundance with dysregulated inflammatory genes in

HLA-B27 TG rats revealed that the relative abundance of only

a few microbes correlated with disease severity, and most

microbes may increase or decrease in response to gut

inflammation, and therefore may not be the causal microbes

(50). Together, these studies suggest a potential for using IgA

coating as a microbial biomarker for disease activity, since many

of the microbial perturbations in axSpA patients might be in

response to altered gut microenvironment.

Our results demonstrate alterations in the salivary microbial

community associated with axSpA patients. While the salivary

microbes in axSpA patients showed significant alterations in the

microbial community and structure, we observed a smaller

number of IgA coated microbes in comparison with the fecal

samples. However, there are significant changes in the predictive

microbial function in both IgA+ and IgA- fractions from saliva

samples of axSpA patients. A possible explanation is that

perturbation of oral mucosa may be a result of disease instead

of driving the disease in axSpA patients.

To evaluate the functional potential of IgA enriched microbes

in axSpA patients, we employed PICRUSt2 to predict microbial

metabolites altered in IgA+ and IgA- fractions in feces and saliva.

Despite secretory IgA being the most abundant immunoglobulin

produced in our body (51), only 5-10% of total microbes are IgA

coated (16, 52). Despite the difference in abundance, most of the

microbial metabolic perturbations in the fecal samples were

associated with the IgA+ fractions, which further highlight their

importance in axSpA pathogenesis. We found that most microbial

metabolites perturbed in axSpA patients belong to inflammatory

pathways [e.g., isopropanol biosynthesis, degradation of amino

acid pathways (leucine, histidine, tyrosine), degradation of various

sugars (mannan, glucose, xylose)], nucleotide biosynthesis

pathways (50, 53) and pathways for short chain fatty acid

(SCFA) metabolism (e.g., glutamate degradation VIII (to

propanoate), acetyl CoA fermentation to butanoate II) (8, 50,

53). We also found alterations in the biosynthesis of

tetrahydrofolate, a cofactor required for the synthesis of amino

acids and nucleic acids, which is interesting since we also saw

altered biosynthesis of both amino acids and nucleotides in axSpA

patients as compared to the HCs. Additionally, alteration in biotin

[vitamin B7] biosynthesis pathway is seen in IgA+ fractions of fecal

samples in axSpA patients. Biotin deficiency was recently reported

in IBD patients (54) andmice deficient in biotin have exacerbation

in colitis, which is alleviated by biotin supplementation (55).

These results show a perturbation in the metabolic biosynthesis

and degradation pathways, which could be involved in disease

development and progression.

While the pathways for tryptophan biosynthesis were not

significantly different, various genes/metabolites in that pathways

were significantly altered in axSpA patients in comparison with
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HCs. Recent studies from Berlinberg and colleagues also show

increased gene abundance for various metabolites in the

tryptophan pathways in patients with axSpA and axSpA-CD

(42). Alterations in tryptophan pathway are also reported by

Stoll and colleagues to be associated with pediatric SpA (41).

Metabolomic analysis of the plasma samples from AS patients also

found a decrease in tryptophan metabolites (56), whereas another

study found increase of tryptophan metabolites in AS patients

(57). These studies indicate that decrease in tryptophan or

increase in tryptophan metabolism might play an important

role in AS pathogenesis. Also, multiple genes belonging to

SCFA metabolism were perturbed in the saliva and fecal

microbiome in axSpA patients. Previous studies by Shao and

colleagues (58) have shown that AS and RA patients have

decreased production of SCFAs - butanoate and propanoate. In

addition, Asquith and colleagues performed fecal metabolomic

analysis in HLA-B27 TG rats and found many inflammatory and

SCFA metabolism pathways were altered in these animals (59).

Gut inflammation in these HLA-B27 TG rats was ameliorated by

adding propanoate in their drinking water (59), further

emphasizing the protective role of SCFAs. These studies suggest

the need for an in-depth analysis of fecal and blood metabolites

and their association with AS. Furthermore, metagenomic analysis

of the IgA coated microbes will allow studying host-microbe

interactions at the species or strain level.

Our study has some limitations. First, we did not observe loss

of fecal microbial diversity in axSpA patients in comparison with

HCs, which could be due to our small sample size and increased

variability due to our cohort being recruited from across the US.

Additionally, this may be indicative of axSpA being a true

dysbiotic model, instead of a being associated with loss in

microbial diversity as reported in IBD (60). For example, a large

cohort of patients with juvenile idiopathic arthritis (JIA) (75 JIA

patients and 32 controls) did not find significant differences in the

alpha or beta diversity of gut microbes when compared to controls

(61), despite having significant changes at the level of individual

microbes. Another study performed metagenomic sequencing on

fecal samples from patients with CD, axSpA, axSpA-CD and

healthy controls did not observe any differences in the microbial

alpha diversity between these groups (42). Second, our

observations were limited to fecal samples, and a more severe

microbial dysbiosis may be present in the intestinal mucosal

microbiome as shown in our previous study in HLA-B27 TG

rats (9). Despite the lack of/smaller changes observed in the

microbial composition, we were intrigued by the ability of IgA-

SEQ to reflect the immunological impact of these microbes.

One more limitation is the inherent microbial diversity which

complicates microbiome comparisons between patients and

healthy individuals. We are still in the phase of exploring the

microbiome’s relationship to human health. Therefore,

microbiome analyses test several hypotheses to identify disease

specific alterations, which inflates the chance of false positive
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findings. To account for this, while also not excluding interesting

observations for researchers in the similar field, we report both p-

values (P) and adjusted p-values (PFDR). Similarly, for the inferred

microbial metabolic pathway analysis, we performed a stringent

and relaxed cutoff as done in our previous microbiome studies (9).

Another limitation is the use of biologics in almost 50% of

the axSpA patients in our stool and saliva cohorts. Treatment

with various biologics have shown to be associated with

alteration in the microbial community. In SpA patients,

treatment with IL-17 inhibitors correlated with features of

sub-clinical gut inflammation, associated with changes in the

relative abundance of certain microbial and fungal taxa (62).

Conversely, TNF inhibitors have shown to shift the microbial

community similar to the healthy controls (63), which may also

account for the lack of alpha and beta diversity measures in

axSpA patients by using 16S sequencing alone. Additionally,

47% of axSpA patients were on some form of NSAIDs as

compared to 21% NSAID use in HCs. Studies on AS patients

have shown association of NSAID use with alteration of the gut

microbial community (64), increased levels of fecal calprotectin

(46), as well as with increased number of bacterial species (65).

However, many of these patients still had an active disease as

measured by the BASDAI scores, and our studies revealed

distinct IgA coated microbes associated with axSpA despite the

limitation of biologics and NSAIDs used in our cohort. Further

studies with increased sample size will allow us to dissect the

effect of biologic and NSAIDs use on the microbial community

structure in axSpA patients. However, our essential observation

that IgA-coating of bacteria identifies a potentially pathogenic

subset of the microbiome is supported by multiple observations

reported herein as well as by prior publications (16, 17).

The etiology of axSpA is complex involving an interplay of

genetic, environmental and microbial factors in disease

development and severity. Our results highlight the value of

identifying the IgA coated microbes, which are immune-targeted

microbes, based on 16S sequencing of the IgA+ and IgA-

fractions. Further in-depth examination of IgA coated

microbes using shotgun metagenomic sequencing of IgA+ and

IgA- fractions to determine potentially inflammatory microbes

at a strain specific level is warranted. Our results suggest that IgA

coated microbes in axSpA patients indicate a stimulated immune

response to gut commensal microbes, which might contribute to

the development of axSpA. Future studies to determine the

mechanistic links between IgA coated microbiota and disease

will further highlight the functional implications of IgA coated

bacteria in axSpA.
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