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Conjunctival hyperaemia is a common clinical ophthalmological finding and can be a symptom of various ocular disorders.
Although several severity classification criteria have been proposed, none include objective severity criteria. Neural networks and
deep learning have been utilised in ophthalmology, but not for the purpose of classifying the severity of conjunctival hyperaemia
objectively. To develop a conjunctival hyperaemia grading software, we used 3700 images as the training data and 923 images as
the validation test data. We trained the nine neural network models and validated the performance of these networks. We finally
chose the best combination of these networks. )e DenseNet201 model was the best individual model. )e combination of the
DenseNet201, DenseNet121, VGG19, and ResNet50 were the best model. )e correlation between the multimodel responses, and
the vessel-area occupied was 0.737 (p< 0.01). )is system could be as accurate and comprehensive as specialists but would be
significantly faster and consistent with objective values.

1. Introduction

Conjunctival hyperaemia is one of the most common
findings in ophthalmologic practice. It is routinely described
as a symptom of many ocular diseases such as conjunctivitis,
uveitis, elevated intraocular pressure due to glaucoma, and
ophthalmic side effects. For example, conjunctival hyper-
aemia is a minor side effect of glaucoma eye drops, but it
becomes relatively important when medication adherence is
considered. Most complaints of eye drop-related conjunc-
tival hyperaemia are regarding aesthetics, but patients’
dislike of their eyes’ appearance can significantly impact
their need to continue their medication [1, 2]. Several clinical
studies have been conducted to assess conjunctival hyper-
aemia reactions after glaucoma eye drop instillation [3, 4],
but a critical variable in these studies is the determination of
the severity of conjunctival hyperaemia.

At present, conjunctival hyperaemia is classified by severity
according to the McMonnies and Chapman-Davies scale [5],

Institute for Eye Research scale [6], Efron scale [7], a validated
bulbar redness scale [8], and the Japan Ocular Allergy Society
(JOAS) conjunctival hyperaemia severity grading scale [9].
However, all of these grading systems are purely subjective
[10]. In the aforementioned clinical studies, the JOAS system
was used; in it, clinicians use standardised photographs to
grade the degree of dilation of the conjunctival blood vessels
causing hyperaemia on a 4-point scale that includes no
hyperaemia. )is severity grading is used in clinical studies of
the aforementioned glaucoma eye drops [3, 4].

Yoneda et al. invented an analytical application dedi-
cated to conjunctival imaging to establish an objective
grading system [11, 12]. In their application, the area oc-
cupied by the blood vessels is obtained from images captured
by a dedicated conjunctival imaging system. However,
Yoneda admits that it is necessary to simplify the application
before it can be used in clinical practice [11].

Recently, a supervised machine learning system known
as neural network [13] and its algorithms are gaining
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attention. In particular, in medical research, the deep neural
network, which uses many convolution layers [14], has been
applied. In ophthalmology, its use has been validated in
reports on diabetic retinopathy, glaucoma, age-related
macular degeneration, and retinal detachment [15–19].
)e imaging devices used to train the machines are also
diverse, including a fundus camera, an optical coherence
tomographic system, and a wide-angle fundus camera. )e
advantage of diagnostic and judgement systems using deep
learning is the range of their adaptability. For example, using
convolutional layers, features can be grasped without the
effects of slight noise [20–22]. In addition, although a large
amount of computation is required for the learning process,
actual grading is performed by a simplified four-rule
computation. )us, a large computing capacity is ulti-
mately unnecessary, and even a small device can be used for
verification [23].

Although a clinically useful system that automatically
performs hyperaemia grading by deep learning is theoret-
ically possible, to our knowledge, it has not been attempted
yet.

Here, we attempted to develop a system that performs as
well as ophthalmology specialists using standard slit pho-
tographs to teach a deep neural network the conjunctival
hyperaemia severity grading of the JOAS.

2. Materials and Methods

)e Japan Ocular Allergy Society’s conjunctival hyperaemia
severity grading system (hereafter “JOAS grading”)9 is a
system to classify the degree of dilation of conjunctival blood
vessels in spherical conjunctiva into four levels: none, mild,
moderate, and advanced, using a set of standard photo-
graphs (Figure 1). )is study was performed in accordance
with the Declaration of Helsinki. Study protocol and con-
duct were approved by the Institutional Review Board of
Kochi University and Saneikai Tsukazaki Hospital.

2.1. Images toBeAnalysed. Of all slit lamp photographs taken
for clinical purposes at Ophthalmology Department of Tsu-
kazaki Hospital between 01/15/2005 and 07/14/2018, a total of
5,008 photographs were extracted. To make them consistent
with the standard JOAS photographs, magnifications of 5×

and 8× were used. Slit lampmicroscopes by Zeiss Corporation
and Hague Straight Corporation were used; the photography
conditions such as the amount of light and direction of gaze
were not specifically defined. Photographers varied as well.
)ere were no particular inclusion criteria in terms of
causative diseases. )e patients who have subconjunctival
hemorrhage were excluded. Also, images taken after ocular
fluorescein staining were included in the analysis.

Excluded from the analysis were all images taken
through a cobalt or blue-free philtre. )e images not taken
under generalised illumination were also excluded. )e
study was conducted in accordance with the tenets of the
Declaration of Helsinki. Study protocol and conduct were
approved by the Institutional Review Board of Kochi
University and Saneikai Tsukazaki Hospital.

2.2. Image Data. )e initial 5,008 images were divided into
two groups: 4,008 images for preparing the artificial in-
telligence model (hereafter “for training”) and 1,000 images
for preliminary validation by graders and for model vali-
dation (hereafter “for validation”). An overview of the data
flow for training and subsequent validation is provided in
Figure 2; details will be described in the appropriate sections
below.

2.3. Selection of Graders. In this study, the quadratic-
weighted kappa coefficient [24] was used to first examine
interrater agreement for the 1,000 validation images. )is
allowed us to determine the quality of responses and
evaluate performance by excluding coincidence rates
(chance positive results due to data distribution) [24].

JOAS grading was performed by a physician who was a
specialist member of the Japanese Society of Allergology and
the Japanese Ophthalmological Society (hereafter the
“specialist”), as well as four certified orthoptists (COs). )e
1,000 validation images were graded individually and
completely independently (i.e., no consultations among
graders). Five images were excluded due to mistakes, and
those images considered to be ungradable by at least one
grader were excluded when calculating the weighted kappa
coefficient. As a result, a total of 881 images were included in
this analysis.

As shown in Table 1, all 4 COs and the specialist graded
with weighted kappa coefficients of above 0.7; therefore, they
were considered grading experts (hereafter “the experts”) for
the purposes of reference (correct) JOAS grading scores
during training.

2.4. Training Data. )e 4,008 training images were ran-
domly divided into two sets of 2,004 images. Two COs (A
and B or C and D) graded one image set each using JOAS
grading. Images considered to be ungradable by either of the
two during the grading process were excluded from analysis.
In addition, some images were lost due to data management
errors. A total of 200 images were lost from the full training
image set. For the remaining 3,808 images, both graders
were in agreement for 2,621 images; this set was then used
for the training data. )e remaining 1,187 images which
were inconsistent in grades were graded again by the spe-
cialist, who reinstated a total of 1,079 of the inconsistent
images. As a result, a total of 3,700 images were included in
the training data.

2.5. Validation Data. One thousand images were randomly
divided into two sets of 500 images to be used for validation
of the system. For each set of 500 images, responses used for
the selection of graders were adopted as experts’ responses to
be used for performance evaluation of the artificial in-
telligence model. )e images with consistent responses were
adopted as experts’ responses (there were no consistent
responses for ungradable images), and some of the images
with inconsistent responses were excluded from analysis by
the specialist. For those images with inconsistent answers, if
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they were not excluded from analysis, the experts’ responses
were adopted. For validation data, 454 images were included
for CO A and B and 469 images for CO C and D.)ere were
923 images in total.

2.6. Building of the Artificial Intelligence Model. )e grade
classification of the training data was as follows: Grade 0, 688

images; Grade 1, 1734; Grade 2, 1176, andGrade 3, 102. Image
processing was performed on the training data to amplify
images as follows: Grade 0, 4 times; Grade 1 and 2, doubled;
Grade 3, 18 times. Doing this allowed us to have smaller
differences on the number of training images after data ex-
pansion between grades. In the image amplification pro-
cessing, inversion was always carried out. Other processing
performed included no corrections, contrast adjustment
(increase or decrease), c correction (c � 0.75 or 1.5), histogram
equalisation, Gaussian noise addition, and salt and pepper
noise addition. Of the nine types of processing employed, the
types of processing to be performed on each grade were
randomly chosen: 2 types for Grade 0, 1 type for Grade 1, 1
type for Grade 2, and 9 types for Grade 3. With the amplified
images, we trained nine types of network structures (VGG16,
VGG19, ResNet50, InceptionV3, InceptionResNetV2, Xcep-
tion, DenseNet121, DenseNet169, and DenseNet201) [25–30]
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Figure 2: Image data flow. )e top branch represents data flow for creating an artificial intelligence model. )e bottom branch represents
data flow for preliminary grader evaluation and model evaluation. CO was a certified orthoptist (expert grader); Dr was a doctor who is a
specialist in both the Japanese Society of Allergology and the Japanese Ophthalmological Society (specialist grader). )e data flow processes
for training data and evaluation data were different because defining correct responses required different protocols for each process.

Table 1: Weighted kappa coefficients of one Japan Ocular Allergy
Society-certified specialist and four certified orthoptists.

Opponent CO A CO B CO C CO D
Dr1 0.727 0.717 0.717 0.749
All COs had weighted kappa coefficients above 0.7. CO: certified orthoptist.
Dr1: doctor who is a specialist of both the Japanese Society of Allergology
and the Japanese Ophthalmological Society.
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Overall
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Extensive
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Some vessel
vasolidation

No
vasolidation

Grade 0

Figure 1: Standard photographs of the severity of conjunctival hyperaemia by Japan Ocular Allergy Society grade. )e grading system is
defined by the number of dilated vessels in the bulbar conjunctiva. )e palpebral conjunctiva is not evaluated.
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and built nine models. Using each model, we tested the
validation data and evaluated the model.

2.7.DeepLearningModel andTraining. )eVGG16 network
structure can be divided into five binding blocks composed
of a convolution layer and max pooling layer, as well as the
fully connected layer [25].

First, all input images were converted to 256×192 pixels
in advance, read in 8-bit RGB colour and 256 pixels∗
192 pixels∗ 3 channels tensors. )e input was normalised to
the range of 0-1 by dividing it by 255.

)e convolutional layer recognises features of the target
through convolutional filters [20–22].)emax pooling layer
was placed at the end of each block; it reduces the position
sensitivity of a feature output from a convolutional layer so
that a more general recognition can be performed [31].

Finally, after flattening the three-dimensional matrix, we
arranged two layers of the fully connected layer and clas-
sified them into four classes by a softmax function. )e
purpose of the fully connected layer is to remove spatial
information from extracted features and to statistically
distinguish the target from other feature vectors [32].
Dropout processing was applied to the first fully connected
layer to mask out with 50% probability. )e purpose of
dropout processing is to improve the generalisation per-
formance and prevent overlearning during the training [33].

As an output, the probability distribution for the out-
come of the sum becoming 1 is displayed, making the item
with the largest value as the output grade.

We used a method called fine-tuning, which uses
already-learned parameters with different data. Its objective
is to increase the training speed and easily obtain high
performance even with a small amount of data [34]. )e
parameters obtained from learning Imagenet were used as
initial values of the parameters for layers other than the fully
connected layer, and the training was conducted to obtain
appropriate parameters from the initial values.

)e initial weight update was performed according to an
optimisation algorithm called Momentum SGD (learning
coefficient� 0.001, inertia term� 0.9), which is one of the
stochastic gradient descent methods [35, 36]. Categorical
cross-entropy was used for a loss function.

Also, each grade was given a different weight for the loss
function. Table 2 lists the weight for each grade.

Fine-tuning was performed on other network structures
as well. For layers except the fully connected layer, we used
parameters by learning Imagenet as initial values, and
learning and validation of classification were done using two
fully connected layers and a dropout layer. )e optimiser
and loss function are the same as in the case of VGG16.

)e construction and validation of the model were
carried out using Keras (https://keras.io/en/) which runs
Python’s TensorFlow backend (https://www.tensorflow.org/).
)e training and validation of the model were done using the
GeForce GTX 1080 Ti GPU by NVIDIA.

2.8. Performance Evaluation in a Single Model. Performance
evaluation in each model was performed using the weighted
kappa coefficient.

Of all the validation data, we set the weighted kappa
coefficients of CO A and CO B as κab for data using the
responses by CO A and B (κna and κnb, respectively).
Likewise, CO C and COD were set as κcd, κnc, and κnd. Here,
we set and calculated the evaluation index called kappa
distance score (KDS) to find how close the responses of the
model were to those of humans.

KDS � κna + κnb − 2κab(  + κnc + κnd − 2κcd( . (1)

2.9. Comparison of Kappa Coefficients between Models.
For the total of 923 validation images, the weighted kappa
coefficients of each model were compared to examine
whether any of the models provided a different response. In
comparison with other models, we excluded those with an
average of weighted kappa coefficient of 0.7 or less and
those with the lowest average of weighted kappa
coefficients.

)is was done until there were no more models with an
average of weighted kappa coefficients of 0.7 or less in
comparison with other models, and only the remaining
models were used as the models for performance evaluation
in a multimodel.

2.10. Performance Evaluation in a Multimodel State.
When using a multimodel, there are two ways to set which of
the neural network’s responses are to be used:

(1) If the responses of more than half of the models of N
(number) models match with the expert’s responses,
the responses are considered the same; otherwise, the
grade with the highest number of models’ responses
are considered as the responses of the multimodel.

(2) If the responses of at least one model of N (number)
models match with the expert’s responses, the re-
sponses are considered the same; otherwise, the
grade with the highest number of models’ responses
are considered as the responses of the multimodel.

Based on the responses of (1), the score obtained by the
method described in the performance evaluation of a single
model was set as KDS(n,half ) and responses obtained in (2)
were set as KDS(n,least).

Seven out of nine models were used for validation. In the
order of the highest KDS when performing the single-model
performance evaluation for each of the seven models,
KDS(n,half ) and KDS(n,least) atN� 2 to 7 were calculated using
N models.

Also, KDS(n,half ) and KDS(n,least) values were normalised
so that the average would equal 0 and the standard deviation
would equal 1, and the total value was set as KDS(n,multi) as
shown below:

Table 2: Weighting per grade.

Grade 0 Grade 1 Grade 2 Grade 3
Weight 1.5 1 1 5
Weighting parameters were set based on the balance between the amount of
data and the importance of diagnosis.
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2.11. Quantitative Evaluation. We compared the responses
obtained by the software to the image area occupied by blood
vessels in the bulbar conjunctiva as developed by Yoneda
et al. [11, 12] with the responses by the multimodel. )e
evaluation screen is shown in Figure 3.

To obtain the multimodel’s response, grades provided by
the 6-model multimodel were averaged and rounded. Except
for Grade 3, images were randomly selected.

We investigated whether there is a correlation between
the response of the multimodel and the area occupied, as
well as whether there is a significant difference in the area
occupied by blood vessels per each response grade of the
multimodel.

2.12. Statistical Analysis. We used a Python module called
scikit-learn to calculate the weighted kappa coefficients.
Although the confidence interval can be obtained from
approximate standard error for the weighted kappa co-
efficients [24], there is no established calculation method for
confidence intervals such as KDS using multiple weighted
kappa coefficients. )erefore, there is no established way to
test whether the score exceeds zero.

It is also difficult to examine whether there is a significant
difference in score per model. For the above reasons, cal-
culation of confidence intervals and statistical test were not
performed for each statistic.

Spearman’s rank-correlation test [37] was performed to
examine the correlation between Yoneda’s software and the
multimodel. )e Kruskal–Wallis [38] and Steel–Dwass [39]
tests were conducted to investigate whether there was a
significant difference in the area occupied by blood vessels of
each response grade of the multimodel.

3. Results and Discussion

For each model, we trained the neural network to grade
conjunctival hyperaemia using the JOAS system with 3,700
images. We then used 923 other images as validation test
images to evaluate how well the model could grade. )e
average age and female ratio of training images and vali-
dation test images were 50.6 (±21.2) year and 57.0%. We
calculated weighted kappa coefficients (κ) as interrater re-
liability measures for the experts (Table 1) and then for each
of the models (Table 3). We then used these values to cal-
culate a kappa distance score (KDS) for each model, as well
as for a multimodel system in which two or more of the
seven best models were combined to give a single final
output (i.e., each model in the multimodel got a “vote,” and
the votes were tallied for the “winning” grade ouptut). )e
KDS represents how close the model’s responses matched
the expert clinicians’ responses, such that higher values are a
closer match and values above zero are considered clinically
acceptable.

3.1. Single-Model Evaluation. Table 3 shows κ scores and
KDSs for each model. We found that the DenseNet201
model was the best individual model (i.e., highest KDS);
however, no individual model reached a KDS above zero.

Evaluation of intermodel kappas for multimodel
inclusion.

)e weighted kappa coefficients between models were
also calculated. )e average kappa coefficients of the
InceptionResNetV2 model and Xception model were below
the acceptable threshold of 0.7 and were the two lowest
(Supplementary Tables 1 and 2). )us, they were excluded
and the following seven models (Supplementary Table 3)
were evaluated for performance in a multimodel system:
DenseNet201, DenseNet121, VGG19, DenseNet169,
VGG16, ResNet50, and InceptionV3.

3.2. Multimodel Evaluation. Figure 4 shows the three KDS
values assessed for each multimodel system (n� 2 to 7 in-
cluded models): KDS(n,half ), KDS(n,least), and KDS(n,multi). Of
these, KDS(n,half ) represents diagnostic accuracy (the ability
to score the correct grade), KDS(n,least) represents diagnostic
completeness (the ability to provide at least one correct
response when faced with several correct options), and
KDS(n,multi) represents the net KDS score (how close the
system was to the experts). KDS(n,half ) was above zero for all
systems, indicating that when combined, the individual
models can achieve clinically acceptable diagnostic accuracy.
KDS(n,multi) was highest for the 6-model system, suggesting
that combining the DenseNet201, DenseNet121, VGG19,
DenseNet169, VGG16, and ResNet50 models produces the
best overall outcome (Supplemental Tables 4).

An example of a response provided by an actual model is
shown in Figure 5. It took 411.0 seconds to generate the
graph of the responses for the 923 test images, which
translates to a scoring speed of 0.445 seconds per image.
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3.3. Correlation with Quantitative Data. Figure 6 shows the
multimodel’s responses, and the area occupied by blood
vessels measured with Yoneda et al.’s software (Supple-
mentary Table 5). )eir software was able to measure the
area occupied by blood vessels for 71.8% of all images. )e
correlation between the multimodel responses and the
vessel-area occupied was 0.737 (p< 0.01). In addition, sig-
nificant differences were found between each pair of grades
when comparing the measured areas occupied by grade, as
well as between grade pairs when comparing the multimodel
responses (p< 0.01). )is suggests that both the software
and the multimodel system can distinguish clearly between

grades and that the area of an image occupied by blood
vessels can be a quantitative marker for each grade.

4. Discussion

In this study, we developed a deep learning system that
grades the severity of hyperaemia with a high degree of
consistency with expert graders and can do so with objective
criteria (image area occupied by blood vessels). Hyperaemia
grading can have different responses. When using the neural
network, or supervised learning, it is necessary to teach input
(image) and output (grading) at the same time [13].

Table 3: Weighted kappa coefficients and kappa distance scores (KDS) for each model and expert graders.

Model Κna Κnb Κab Κnc Κnd Κcd KDS
DenseNet201 0.693 0.707

0.748

0.712 0.643

0.653

−0.048
DenseNet121 0.693 0.713 0.704 0.642 −0.051
VGG19 0.692 0.708 0.714 0.637 −0.052
DenseNet169 0.656 0.690 0.718 0.663 −0.077
VGG16 0.679 0.692 0.681 0.651 −0.100
ResNet50 0.685 0.713 0.678 0.614 −0.114
InceptionV3 0.655 0.677 0.655 0.550 −0.266
Xception 0.580 0.669 0.619 0.538 −0.397
InceptionResNetV2 0.576 0.625 0.571 0.515 −0.517
Table is arranged in the order of the higher KDS in the evaluation of models. Κna: the weighted kappa coefficients of neural network and CO A. Κnb: the
weighted kappa coefficients of neural network and CO B.Κab: the kappa coefficients of COA and CO B.Κnc: the kappa coefficients of the neural network and
CO D. Κnd: the kappa coefficients of the neural network and CO C. Κcd: the kappa coefficients of CO C and CO D. KDS: kappa scores.

(a) (b)

(c) (d)

Figure 3: Software to measure the area occupied by blood vessels. It calculates the area occupied by blood vessels in terms of a per-pixel
threshold value (the green overlay in the images demonstrates above-threshold (positive) values) and outputs that as a percentage of imaged
area (the box). (a) 5.2%, (b) 9.5%, (c) 13.0%, (d) 33.4%.
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)erefore, for training purposes, it is necessary to know the
correct response for each image, so we used the experts’
responses as the correct responses for images when they
agreed and the specialist’s response when the experts dis-
agreed. For validation, however, it is not required to teach
the correct response, so the experts’ responses were used to
assess responses. )us, the data flow differed between the
validation data and the training data systems. KDS(n,half )
represents the accuracy of diagnosis, and KDS(n,least) rep-
resents the completeness of diagnosis. In other words, a
diagnosis would be inaccurate if a system provided random
responses across grades; that would be clinically un-
acceptable. At the same time, when various diagnoses
(correct options) are possible, the system could provide
responses that do not include any correct response grades,
which would be problematic in terms of risk management.
)e grading by experts can halve this problem. Because
KDS(n,half ) was greater than 0 in the 6-model multimodel
system, it can be considered to have clinically acceptable
accuracy. Because the KDS(n,multi) score was the highest, it is
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Figure 5: An example of the six-model multimodel grading. Using JOAS grades, four models of the six provided the response of Grade 2
(DenseNet121, DenseNet169, DenseNet201, and VGG16), whereas two models provided the response of Grade 1 (ResNet50 and VGG19).
)erefore, the output was “Grade 2”.
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also considered the most comprehensive diagnostic model
among all the combinations of models examined in this
study. KDS(n,half ) is markedly lower in the n� 3, 5, and 7
systems. )is is because when n is an even number, “more
than half” of the models have to provide a correct response
to score as correct; on the other hand, when n is an odd
number, the “majority” of the models have to provide a
correct response to score as correct. )at is, in odd-
numbered combinations, one more model must be in
agreement than in their even-numbered (i.e., one less model/
combination) counterparts; this reduces the likelihood of
success, which is represented by a lower KDS.

JOAS grading is used as a subjective indicator by doctors
in both research and clinical practice [9]. On the other hand,
the area occupied by blood vessels in an image has been
applied by Yoneda et al. [11] as an objective indicator in
research studies. )e multimodel system created in this
study was highly consistent with both the subjective and
objective indicators. One might think that it would be best to
use the area occupied by blood vessels as an objective in-
dicator in clinical practice, but there is a drawback to doing
so. Continuous values (those represented by a range of
numbers rather than discreet categories) are rarely used as a
basis for decision-making. Far more often, one or more
threshold values are set to perform categorical classification.
Because the vessel-occupied area is continuous, subjective
thresholds must be set, reducing the objectivity of the value.
)us, it is as meaningful (or more so) for a neural network to
use the categorical value, grading, instead of measuring the
area occupied by blood vessels. Given these conditions, we
believe that our multimodel system, particularly the 6-model
system,matches the subjective performance of JOAS grading
by clinicians and is, therefore, a clinically relevant model.

One of the strengths of this multimodel system is that it
was created using images acquired in routine clinical
practice.)us, the system does not require imaging methods
specific for grading hyperaemia or special imaging devices;
instead, it can use images acquired using a standard slit lamp
microscope with adjustable angle and magnification, sug-
gesting that it is highly suitable for routine clinical appli-
cation. For example, a patient being seen for corneal foreign
bodies (e.g., pieces of metal) could have associated hyper-
aemia automatically graded at the same time. )is would
allow the ophthalmologist to evaluate improvement of the
hyperaemia at the time of follow-up for the corneal in-
clusions. With our system, it is possible to improve the
quality of care easily with software and without adding any
special equipment. In fact, the software used to measure the
area occupied by blood vessels was able to measure only
about 70% of all the data used in this study.

)ere are several limitations to our prototype system.
First, our study results suggest that it would be necessary to
clearly illustrate the neural networks’ focus area in clinical
practice. At present, the neural network should only be used
to assist physicians in making a final decision, instead of
allowing it to make an independent diagnosis.)erefore, it is
important to include a function in the system wherein the
relevant part of the reasoning used by the neural network is
directly communicated to the physician; in fact, a few recent

medical papers have addressed one such form of reasoning,
segmentation [40, 41]. In our system, however, clinically
produced hyperaemia images are used, and these will be seen
by the physician as part of his or her examination. )is
obviates the need for that communicative function. Second,
this study is a retrospective data search within a single fa-
cility, and it is necessary to evaluate the robustness of the
model by conducting a prospective study on data from one
or more other facilities.

5. Conclusions

In this study, we developed an artificial intelligence-based
grading system that was accurate and highly consistent with
grading by clinical experts. We would like to develop this
system further by improving the problematic aspects
mentioned above, utilising it in an actual clinical setting and
adding the necessary functions to allow it to be applied in
much more widespread applications.
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