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Background: Recent studies investigating longevity have revealed very few convincing
genetic associations with increased lifespan. This is, in part, due to the complexity of
biological aging, as well as the limited power of genome-wide association studies, which
assay common single nucleotide polymorphisms (SNPs) and require several thousand
subjects to achieve statistical significance. To overcome such barriers, we performed
comprehensive DNA sequencing of a panel of 20 genes previously associated with
phenotypic aging in a cohort of 200 individuals, half of whom were clinically defined by an
“early aging” phenotype, and half of whom were clinically defined by a “late aging”
phenotype based on age (65–75 years) and the ability to walk up a flight of stairs or walk
for 15 min without resting. A validation cohort of 511 late agers was used to verify
our results.

Results:We found early agers were not enriched for more total variants in these 20 aging-
related genes than late agers. Using machine learning methods, we identified the most
predictive model of aging status, both in our discovery and validation cohorts, to be a
random forest model incorporating damaging exon variants [Combined Annotation-
Dependent Depletion (CADD) > 15]. The most heavily weighted variants in the model
were within poly(ADP-ribose) polymerase 1 (PARP1) and excision repair cross
complementation group 5 (ERCC5), both of which are involved in a canonical aging
pathway, DNA damage repair.

Conclusion: Overall, this study implemented a framework to apply machine learning to
identify sequencing variants associated with complex phenotypes such as aging. While
the small sample size making up our cohort inhibits our ability to make definitive
conclusions about the ability of these genes to accurately predict aging, this study
offers a unique method for exploring polygenic associations with complex phenotypes.
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INTRODUCTION

Exceptional longevity is influenced by a combination of
environmental and genetic factors, and previous twin studies
report that the heritability of human longevity is approximately
25% (Herskind et al., 1996). Family studies have suggested that
exceptional aging tends to run in families, yet the search for
genetic determinants of longevity has produced inconsistent
results (Sebastiani et al., 2012; Sebastiani et al., 2013; Pilling
et al., 2017). Several genome-wide association (GWA) studies
have attempted to pinpoint genetic influences of healthy aging
or longevity, yet only two loci, TOMM40/APOE/APOC and
FOXO3A, have repeatedly reached genome-wide significance
(Deelen et al., 2014; Broer et al., 2015). Thus, an alternative
approach to understanding genetic factors underlying a complex
phenotype like exceptional aging is warranted.

In our analysis, we utilized a comprehensive targeted
sequencing approach designed to interrogate rare and
common variants in both coding and non-coding regions
within 20 key genes that are strongly associated with
involvement in aging related processes and have utilized
traditional statistical and machine learning approaches to
explore aging-related genetic variants. The 20 genes were
chosen because they have previously been associated with
various molecular functions involved in aging, such as DNA
damage response and repair, telomere maintenance, metabolism,
cellular senescence, and stress resistance. There is ample
evidence suggesting a causal role of DNA damage in aging and
age-related diseases; for example most progeroid syndromes,
including Werner syndrome, Cockayne syndrome (CS), and
Fanconi anemia, are characterized by accelerated aging,
possibly as a result of hypersensitivity to genotoxins
predominantly due to problems with DNA repair and genome
maintenance (Gensler and Bernstein, 1981; Hoeijmakers, 2009;
Behrens et al., 2014; Vermeij et al., 2016).

Several lines of evidence also suggest that levels of DNA
damage increase with age, whereas DNA repair capacity in
mammals reduces with age (Niedernhofer et al., 2018).
Comparative studies in mammals further indicate that species
longevity positively correlates with DNA repair efficiency (Hart
and Setlow, 1974; Tian et al., 2017; Ma and Gladyshev, 2017).
Long-lived species such as the naked mole rat, Heterocephalus
glaber, and bowhead whale, Balaena mysticetus, have a higher
copy number of genes associated with DNA repair, possibly
allowing for decreased susceptibility to age-accumulated DNA
damage (Macrae et al., 2015; Tian et al., 2019). Therefore, we
hypothesized that variants associated with DNA repair, telomere
maintenance, and genomic stability could be predictive of
phenotypic age.

Single variant association tests, such as linear regression, have
been the statistical tools of choice for large GWA studies. In fact,
Abbreviations: SVM, support vector machine; TFBS, transcription factor binding
site; BMI, body mass index; CADD, Combined Annotation Dependent Depletion;
SIFT, sorting intolerant from tolerant; GWAS, genome wide association study;
ROC, receiver operating characteristic; AUC, area under the curve.
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many longevity-targeted GWA studies have taken this approach
(Newman et al., 2010; Broer et al., 2015). However, such
univariate models leave out epistatic effects that may be
predictive of heterogeneous diseases, such as aging, resulting in
frequent preclusion of the actual number of genetic factors
contributing to or predictive of polygenic diseases (Stephan
et al., 2015). More complex statistical approaches would
account for genetic factors that alone have little association,
but when considered in a multiplex manner, hold great
predictive power. Random forest and support vector machines
(SVMs) are just two of a multitude of ensemble learning methods
capable of analyzing large data sets such as those obtained in
GWA studies. Random forest couples bootstrap sampling and
conditional inference trees for determining the importance of
variables for classifying data (Lunetta et al., 2004). We sought to
use random forest in our analysis of phenotypic aging, as it is
capable of handling sizable data sets, considers the interactions
between variables, and provides importance measures for
predictors. On the other hand, SVM is a type of supervised
learning that not only supports high dimensional data, but is
robust against noise and sparsity in the data (Furey et al., 2000).
SVM functions by taking a set of input features or data and
defining an optimal decision boundary or hyperplane that most
accurately separates the input space based on assigned binary
classifiers. These factors allow for better determination of genetic
predictors in polygenic diseases that might be due to nonlinear
interactions in both common and rare variants, and was thus also
implemented in our analysis (Lunetta et al., 2004).

For this study, we sequenced a panel of 20 aging-related genes
with a targeted sequencing method previously developed by our
lab in a cohort of 200 individuals selected from the University of
Pittsburgh Claude D. Pepper Older Americans Independence
Center (Day et al., 2014). Half of the cohort was labeled as
phenotypic “early” agers, as determined by age (65–75 years old)
and the inability to either walk up a flight of stairs or walk for 15
min without resting. The other half of the cohort was labeled as
phenotypic “late” agers defined by age (>75 years old) and the
ability to pass the walking tests performed on the early agers. We
point out that regardless of grouping, all patients were
ambulatory. In addition to gait, we also assessed multiple
parameters of function, mental status, strength, and activity
and number of diseases (comorbidity index).

After applying univariate and multivariate analyses to the
sequencing data, we show that a decision tree-based method,
random forest, trained on genetic markers in the discovery
cohort shows promise in predicting phenotypic age. Despite
the fact that a sample set of 200 is small for this genomic study,
we show that our exploratory analysis to determine genetic
predictors of aging provides a useful and novel mechanistic
approach for investigating the association of polygenic risk
variants with complex diseases. Further analyses with larger
cohorts would find this approach valuable for determining a set
of genetic variants, which when considered alone do not hold
predictive value, but in combination are highly predictive of
phenotypic aging. A predictive model of early phenotypic aging
would not only give insight into key biological processes of this
December 2019 | Volume 10 | Article 1277
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complex phenotype, but could potentially be used in a clinical
setting as a diagnostic tool to indicate patients who may be at
risk for early onset of age-related diseases.
MATERIALS AND METHODS

Cohort Characteristics
Discovery Set UPMC (University of Pittsburgh
Medical Center Cohort) Participants
Participants were recruited through the University of Pittsburgh
Claude D. Pepper Older Americans Independence Center, which
maintains a registry of more than 2,500 older adults who live in
the greater Pittsburgh area and are interested in participating in
clinical research. Print and radio ads were also used to recruit
additional patients. Respondents were screened with a
standardized phone interview. All study participants were
community-dwelling and medically-stable volunteers who were
independently mobile. Most respondents (~90%) were of self-
reported Caucasian ethnic background (Figures S1 and S2).

Assessments

• Demographic information: Age, gender, level of education,
and smoking status.

• Body composition: Height, weight, and dual x-ray
absorptiometry (DXA) tomeasure total fat and lean bodymass.

• Cognitive function: Montreal Cognitive Assessment
(MOCA) and Digit Symbol Substitution Test (DSST). Higher
scores indicate better cognitive function.

• General health: Comorbidities were assessed using a
comorbidity index (Rigler et al., 2002); a higher score suggests
a greater number of comorbidities and poorer health (Sangha
et al., 2003). The SF-36 measured patients' self-reported
health and wellness; higher scores indicate better health
(Ware and Sherbourne, 1992). Finally, participants were
characterized as frail, prefrail, or robust using the five-item
Fried Frailty Index; higher scores indicate frailty (Figure S3)
(Abellan van Kan et al., 2008).

• Function and activity: We used the Community Healthy
Activities Model Program for Seniors (CHAMPS) Physical
Activity Questionnaire to assess the frequency of activity and
estimate calories per week involved in the activity (Stewart
et al., 2001). We assessed grip strength with a standard
dynamometer. The short physical performance battery
(SPPB) was used, which provides an integrated physical
assessment based on several measures, including gait speed,
chair stand, and balance; a higher score indicates better per-
formance (Vasunilashorn et al., 2009).
Validation Set (Wellderly Cohort)
The Wellderly Cohort consists of individuals of at least 80 years
of age with no chronic disease or need for chronic medications.
Sample collection and processing for whole genome sequencing
(WGS) as well as variant calling are as previously described
Frontiers in Genetics | www.frontiersin.org 3
(Erikson et al., 2016). Individuals used in this study had an
average age of 86 and consisted of less males (n = 195) than
females (n = 316). Comparison of overlapping clinical features in
the discovery and validation cohorts were assessed to ensure a
similar population distribution (Figures S4A, B). Furthermore,
the cohort contains no enrichment for longevity variants.

Participant Group Determination
We sought to maximize the signal with respect to any genetic
differences between the groups. Because there is no standard
operational criterion for defining early and late agers, we used
self-reported and performance-based measures of mobility
(Abellan van Kan et al., 2008), strongly associated with
incident functional decline, disability, and mortality in the
elderly (Perera et al., 2016). As such, we operationally defined
“early aged” participants as those 65–75 years of age who could
not walk up a flight of stairs or walk for 15 min without resting;
“late aged” were those age 75 years and older who could walk up
a flight of stairs or walk for 15 min without resting. The age cut-
off of 75 years was chosen as it has been utilized in numerous
phenotypical aging studies in older adults (Boonen et al., 2006;
Boonen et al., 2010; McClung et al., 2012). We excluded
participants with a history of a major cancer. Table 1 depicts
the differences in participant characteristics between groups.

Variant Genotyping
Clone adapted template capture hybridization sequencing
(CATCH-Seq) was used as an alternative to other sequencing
methods due to the low cost and high coverage ability of both
coding and noncoding genomic regions (Day et al., 2014).
CATCH-Seq yield is comparable to WGS (89 versus 98% at
100x) but at a fraction of the cost, allowing for more samples to
be included in a study when only a small set of genes are under
investigation, as is the case in this investigation. CATCH-Seq
probes were designed to capture ~150–200 kilobase (kb) regions
around each of the 20 target genes (Table 2). Standard Illumina
sequencing libraries were hybridized to the CATCH-Seq probes,
and the target-enriched libraries were subjected to 2 x 100 base
pair (bp) paired-end sequencing on HiSeq 2500 sequencers. The
resulting sequence data was aligned to the human reference
genome (GRCh37) with Burrows-Wheeler Aligner (BWA) (Li
and Durbin, 2009), and variants were called using GATK v2
(McKenna et al., 2010) with exclusion filters for variants with low
mapping quality (mapq < 20) and low genotype quality (q < 30).

Quality Control
Variant Inclusion Criteria
The initial datasets consisted of 25,273 variants in the discovery
cohort and 8,018 variants in the validation cohort (Table S1).
Rare variants, or those with less than eight alleles observed in the
discovery cohort, and those with variants with over 10% missing
data, were excluded. Variants not covered in both the discovery
and validation cohort were also excluded. Variants were then
imputed across individual genes +/− 50 kb using K-nearest
neighbor imputation via the impute package in R (Hastie et al.,
2001). A total of 5,896 variants was selected for further analysis.
December 2019 | Volume 10 | Article 1277

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


Breitbach et al. Exonic Variants in Aging-Related Genes
Statistics
Total Variance Analysis
The sum of all variance between groups was analyzed using a
Wilcoxon rank-sum test to determine whether “early” agers had
more or less genetic variance in the target genes compared to
“late” agers.

Single Variant Association
Logistic regression was utilized to assess the association of any
single variant to the age group phenotype. A quantile-quantile
(QQ) plot was used for evaluation of the distribution of p-values.

Gene Association
Wilcoxon rank-sum tests were used to compare the distribution
of Combined Annotation-Dependent Depletion (CADD) scores
of non-reference alleles near target genes (+/− 50 kb) between
early and late agers. P-values were adjusted for multiple
hypothesis via the Bonferroni method.

Predictive Modeling
Four-fold cross-validation with four different seeds using a
random forest regression model via the RandomForest package
in R as well as SVM classification via the e1071 package in R were
conducted for predictive modeling of the aging phenotype (Liaw
and Wiener, 2002; Dimitriadou et al., 2005). Default settings for
number of trees grown (n = 500) and number of variables tried at
each split (mtry = 6) were used for each random forest model. An
SVM model was tuned using a range of costs (c = 0.1, 1.0, 10.0,
Frontiers in Genetics | www.frontiersin.org 4
100.0) and gamma values (gamma = 0.5, 1, 2). Both random
forest and SVM modeling were performed on 28 different
stratifications of the data in addition to a control data set
(Table S2) resulting in 928 models in total. Most of the data
subsets consisted of different groups of genomic spaces within
the sequenced data as well as filters for frequency and
deleteriousness. The first subsets of the data contained all
sequence variants in addition to groups with different filters,
including a subset of rare variants (tAF < 0.1), very rare variants
(tAF < 0.01), mildly deleterious, and highly deleterious variants
as defined by the CADD score (CADD > 10 and CADD > 15,
respectively). We then took subsets of only the variants within
the start and end site of the target genes and then applied the
same filters as the first to analyze rare (tAF < 0.1), very rare
(tAF < 0.01), mildly (CADD > 10), and highly (CADD > 15)
deleterious variants. The next set of subsections contained target
gene variants plus 50 kb up- and down-stream of the
transcription start and end sites to capture regulatory genomic
space within the analysis. Once again, the same cutoffs for allele
frequency and CADD score were applied. The last genomic space
stratification included variants within exons of the target gene
isoforms, thus eliminating intronic space from the models. Allele
frequency and CADD score cutoffs further stratified the exonic
variant subset. In addition to stratifications of the genomic space,
publicly available databases such as the Genome-Wide
Repository of Associations Between Phenotypes (GRASP), the
single nucleotide polymorphisms (SNP) and copy number
annotation (SCAN) database, and software such as SIFT
TABLE 1 | Comparisons of variables between aging cohorts: mean ± standard deviation.

Demographics Early aged 65–75 (n = 100) Late aged >75 (n = 100) Early vs. late aged p-value*

Age (years) 70.4 ± 3.0 83.2 ± 5.4 <0.0001
Sex (% female) 63 (63.0) 56 (56.0) 0.3133
Comorbidity index (of 14 conditions)Δ 4.4 ± 1.8 2.5 ± 1.6 <0.0001
Arthritis 68% 45% <0.001

Gait Speed (m/s) # 0.92 ± 0.24 1.08 ± 0.26 <0.0001
% used cane 14% 5% <0.001
% used other device 5% 1%

BMI (mean; kg/m2) 33.5 ± 8.3 27.2 ± 4.6 <0.0001
BMI ≥ 40 24% 1% <0.001

Lean body mass (kg) 53. ± 11.8 47.4 ± 9.9 0.0002
Total mass (kg) 91.6 ± 23.5 73.6 ± 15.3 <0.0001
% Fat body mass 37.9 ± 8.6 32.2 ± 7.8 <0.0001
MOCA (1–30) # 25.3 ± 2.8 24.3 ± 3.5 0.03
DSST Score # 42.2 ± 9.5 39.7 ± 10.7 0.0808
Grip strength (kg) (dominant) 26.7 ± 10.8 26.7 ± 10.6 0.9791
Chair rise time (s)Δ 14.7 ± 13.8 12.4 ± 11.8 0.0001
SPPB total score # 9.1± 2.5 10.2 ± 1.8 0.0005
Balance score # 3.4 ± 1.0 3.6 ± 0.7 0.1873
Calories from all activity per week 2320 ± 2186 3585 ± 3059 0.001
Calories from moderate activity per week 929 ± 1495 2018 ± 2322 0.0001
Freq of all activity per week 13.9 ± 9.8 19.7 ± 10.6 <0.0001
Freq of moderate activity per week 4.3 ± 5.0 7.2 ± 6.4 0.0003
Frail scale Δ 2.6 ± 1.3 0.6 ± 0.9 <0.0001
Physical function index # 37.3 ± 19.1 77.2 ± 17.2 <0.0001
General health perception # 52.8 ± 22.2 78.2 ± 14.3 <0.0001
Bodily pain # 44.5 ± 22.4 76.3 ± 19.7 <0.0001
Social function # 69.0 ± 24.5 92.1 ± 15.7 <0.0001
Mental health index # 65.2 ± 14.3 75.8 ± 9.4 < 0.0001
Vitality # 47.7 ± 14.1 66.5 ± 11.8 <0.0001
December 20
*Computed using independent samples t-, Wilcoxon rank sum, or chi-square tests, as appropriate. Δ Lower score better, # Higher score better.
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TABLE 2 | Names, biological function, and literature references for aging association of the 20 genes sequenced.

Gene Function Biological association with aging/age-related pathology Literature reference for
study inclusion

Apolipoprotein E (APOE) Combines with lipids to form lipoproteins,
which package cholesterol and other fats
for transfer through the bloodstream.

Polymorphisms in APOE are associated with human longevity. (Broer et al., 2015; Soto
et al., 2015; Pilling et al.,
2016)

Aprataxin (APTX) Involved in DNA break repair and base
excision repair.

Defects in aprataxin cause the autosomal recessive
neurodegenerative disorder ataxia oculomotor apraxia 1 (AOA1).

(Katyal and McKinnon,
2008; Krishnan et al.,
2011; Coppede and
Migliore, 2012)

Bloom syndrome RecQ
like helicase (BLM)

ATP-dependent DNA helicase. Unwinds
DNA in the 3'-5' direction. Involved in
double-strand break repair.

Defects associated with segmental aging of the immune system
together with an elevated risk of otitis media and pneumonia, an
elevated risk of diabetes mellitus, reduced fertility, and higher
cancer incidence.

(Karow et al., 2000;
Coppede and Migliore,
2012; de Renty and Ellis,
2016)

Cyclin dependent kinase
inhibitor 2A (CDKN2A)

Induces cell cycle arrest and acts as a
tumor suppressor.

Mutations near CDKN2A were particularly associated with
diseases of aging (e.g., cancer, atherosclerosis, type 2 diabetes,
glaucoma). CDKN2A expression increases with age. Removal of
p16+ cells in mouse models increases health span and lifespan.

(Baker et al., 2008; Shiels,
2010)

Sialic acid binding Ig-like
lectin 3 (CD33)

Mediates cell-cell interactions and
maintenance of immune cells in the
resting state.

Mutations in CD33 are associated with AD risk. (Griciuc et al., 2013; Estus
et al., 2019)

Dyskerin pseudouridine
synthase 1 (DKC1)

Stabilization and maintenance of
telomerase.

Mutations in DKC1 causes premature aging, bone marrow failure,
and cancer.

(Blasco, 2007; Gu et al.,
2011)

Excision repair cross-
complementing rodent
repair deficiency,
complementation group 4
(ERCC4)

Catalytic component of a DNA repair
endonuclease responsible for 5' incision
during DNA repair.

Loss of ERCC4 causes systemic accelerated aging (XPE) and
neurodegeneration.

(Muñoz et al., 2005;
Bogliolo et al., 2013; Yuan
et al., 2014)

Excision repair cross-
complementing rodent
repair deficiency,
complementation group 5
(ERCC5)

Endonuclease involved in single-strand
DNA nucleotide excision repair at the 3'
end.

Mutations in ERCC5 lead to Cockayne Syndrome (CS), which is
characterized by premature aging.

(Coppede and Migliore,
2012)

Excision repair cross-
complementing rodent
repair deficiency,
complementation group 6
(ERCC6)

DNA-binding protein involved in
transcription-coupled nucleotide excision
repair.

Defects in ERCC6 cause CS and age-related macular
degeneration.

(Tuo et al., 2006; Baas
et al., 2010)

Fanconi anemia group A
protein (FANCA)

DNA repair protein involved in Interstrand
Crosslink (ICL) repair.

Defects cause Fanconi anemia, a progeroid syndrome with
symptoms common in premature aging (sarcopenia,
hypersensitivity to infectious agents, endocrine abnormalities, etc.).

(Soria-Valles and López-
Otín, 2016; Schumacher
et al., 2008)

Lamin A/C (LMNA) Component of the nuclear lamina. LMNA mutations cause Hutchinson-Gilford syndrome (HGPS). (Rodriguez et al., 2009;
Kawahara et al., 2011;
Lopez-Mejia et al., 2011)

Poly(ADP-ribose)
polymerase 1 (PARP1)

Mediates poly-ADP-ribosylation of
proteins and plays a role in DNA repair,
chromatin remodeling, telomere
maintenance, and mediator of
inflammation.

PARP1 activation increases with age in C. elegans. Increased
activation has been associated with aging, neurodegeneration and
metabolic abnormalities in humans.

(Krishnan et al., 2011;
Coppede and Migliore,
2012; Maynard et al.,
2015)

DNA polymerase beta
(POLB)

DNA polymerase involved in base
excision and repair.

Polb+/− mice have an increased age-related mortality rate and
tumorigenesis.

(Strosznajder et al., 2000;
Cabelof et al., 2002)

DNA polymerase gamma
(POLG)

Involved in mitochondrial DNA replication. Increased mitochondrial mutation load in mice is associated with
premature aging.

(Trifunovic et al., 2004;
Kujoth et al., 2005; Hiona
and Leeuwenburgh, 2008)

Sirtuin 1 (SIRT1) NAD-dependent protein deacetylase.
Involved in cell cycle regulation, response
to DNA damage, metabolism, apoptosis,
and autophagy.

SIRT1 overexpression extends lifespan in mice. Mutations are
associated with age-related pathologies such as myocardial
infarction (MI).

(Grabowska et al., 2017;
Satoh et al., 2013; Yuan
et al., 2016)

Sirtuin 6 (SIRT6) NAD-dependent protein deacetylase.
Deacetylase activity toward histones
H3K9Ac and H3K56Ac. Required for
genomic stability. Deacetylates telomeric
DNA.

SIRT6 overexpression extends lifespan. Long-lived animals have
highly efficient SIRT6 function.

(Schumacher et al., 2008;
Berman et al., 2012;
Serrano et al., 2013;
Moskalev et al., 2014)

(Continued)
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(sorting intolerant from tolerant) were utilized for grouping the
data based on variant effect (Ng and Henikoff, 2003; Gamazon
et al., 2010; Lonsdale et al., 2013; Leslie et al., 2014). For this, we
analyzed known versus unknown variant models, SIFT
deleterious variants vs. SIFT tolerated variants, variants
effecting expression, and GWAS variants. We also included a
control set, which was made by randomly shuffling all of the
variants. We did not adjust for age in any of the models tested,
because age should not affect this analysis of SNPs.

We assessed the performance of each model using receiver-
operating characteristics (ROCs). Additionally, we used Bayesian
Classifier to determine the optimal cut-off between early and late
agers in the random forest regression analysis. Top performing
SVM and random forest models were tested on the validation
(Wellderly) cohort of late agers, and the misclassification
percentage, based on the optimal cut-off, was used to rank
each model rather than ROC-area under the curve (AUC),
since the cohort comprises a single class (late agers) rather
than the binary class available in the discovery cohort. Top
classifiers in the best performing random forest model were
determined by analyzing the Gini importance measures (Gini
coefficient) for each split in the top models, which gives a
measure of variable importance. In other words, the higher the
Gini coefficient, the better the classifier is at accurately splitting
the data between two classes.

Enrichment Analysis
Enrichment for specific genomic domains and functions within
the top variants was determined using a variety of tools.
Enrichment of rare or severely deleterious variants was
analyzed by assessing allele frequency and CADD scores of the
top variants. We utilized the UCSC Genome Browser for
determination of the specific location of each variant for
analysis of intronic or exonic SNP enrichment (Kent et al.,
2002). GRASP was used to discover whether the top classifying
SNPs have been previously associated with specific phenotypes
(Leslie et al., 2014). The Roadmap Epigenomics Project database
was used to ascertain how many top variants were within
regulatory regions via data from the HepG2 hepatocellular
Frontiers in Genetics | www.frontiersin.org 6
carcinoma cell line as well as GM12878 lymphoblastoid
cells (Chadwick, 2012). Lastly, enrichment for transcription
factor binding sites within the top 50 variants was assessed
using data from the ENCODE database (ENCODE Project
Consortium, 2012).
RESULTS

Clinical Characteristics
As expected by design, and despite its older age, the late aging
group had better scores for gait speed, chair rise time, SPPB,
physical function, self-perceived health, bodily pain, social
function, mental health, and vitality (all p < 0.05). The late
aging group was also less likely to suffer from comorbidity or
frailty (p < 0.05), expended more calories from all activity per
week and from moderate activity per week, and displayed a
higher frequency of all and moderate activity. However, cognitive
scores were similar between the two groups.

Logistic Regression
To identify high-impact aging-related variants, variants were
tested for association with the aging group using logistic
regression. Top variants were within intronic and upstream
regions of lamin A (LMNA) (rs915180, p value = 0.0015) and
Werner syndrome ReqQ like helicase (WRN) (rs6989940, p value =
0.0017), however none of the top hits reached significance beyond
what would be expected by chance given the number of individual
variant tests. A QQ plot of the logistic regression p-values
indicated deflation as a result of a lack of power owing to the
small sample size in this study (Figure 1A and Table S3).

Variant Burden
We combined the number of alternate alleles among all 20 genes
in each subject following simple inclusion criteria of the variants
for quality control to determine if early agers had a larger variant
burden in aging-related genes compared to late agers, finding no
significant difference (Wilcoxon p value = 0.75) (Figure 1B).
This method was then repeated for each individual gene, for
TABLE 2 | Continued

Gene Function Biological association with aging/age-related pathology Literature reference for
study inclusion

Superoxide dismutase 2
(SOD2)

Destroys superoxide anion radicals
produced in cells.

SOD2 mutations are associated with heart disease and increased
risk of malignancies.

(Patel, 2002; Fabrizio et al.,
2004; Qiu et al., 2010;
Velarde et al., 2012)

Telomerase reverse
transcriptase (TERT)

Ribonucleoprotein polymerase that
maintains telomere ends by the addition
of the telomere repeat TTAGGG.

Telomere attrition is highly associated with aging due to increased
cellular senescence.

(Aubert and Lansdorp,
2008; Martinez and Blasco,
2010; Ghosh and Zhou,
2014; Blackburn et al.,
2015)

TERF1 interacting nuclear
factor 2 (TINF2)

Component of the telosome that is
involved in telomere length regulation and
protection.

Mutations in TINF2 are linked to Revesz syndrome, a
telomeropathy with symptoms characteristic of accelerated aging.

(Kim et al., 1999; Rubelj
and Vondraček, 1999;
Savage et al., 2008)

Werner syndrome RecQ
like helicase (WRN)

DNA helicase that is involved in
maintenance of genomic stability, DNA
repair, replication, transcription, and
telomere maintenance.

Mutations in WRN lead to Werner syndrome with systemic aging
phenotypes.

(Mohaghegh and Hickson,
2002; Ding et al., 2007;
Multani and Chang, 2007;
Bendtsen et al., 2012)
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which we compared the total amount of non-reference alleles in
early agers compared to late agers in order to test whether the
variant burden in that gene differed between groups. There was
little difference in total non-reference allele count per target gene
between early and late agers for most of the genes analyzed
(Figures S5A, B). However, LMNA approached the Bonferroni
corrected p-value of 0.003 according to a Wilcoxon rank-sum
test (p-value = 0.006, FDR = 0.1).

Machine Learning
Since neither the univariate nor the gene-based multivariate
analyses yielded statistically significant associations with aging
group, we moved on to a computational approach geared at
determining the predictive power of our sequencing data for
aging status. Both random forest and SVM were applied to the
variant data to determine the best genetic predictors of late aging.
The ability of both the random forest algorithm and SVM to
outperform other non-parametric classification methods led to
our use of these predictive modeling approaches in this study
(Furey et al., 2000; Lunetta et al., 2004). As depicted in Figure
1C, the training cohorts were divided into early and late agers for
random forest model training, and top performing models
according to the ROC-AUC were then tested for prediction of
aging status in the validation cohort. Various stratifications of
the data were fed into each algorithm to determine the best
subset of predictors. These subsets included: variants of both low
and high allele frequencies, variants that are known to effect
expression (eQTL) defined by the SCAN database, variants
previously associated with aging as determined by the GRASP
database, functional variants determined by ENCODE, variants
Frontiers in Genetics | www.frontiersin.org 7
with low and high levels of deleteriousness as defined by the
CADD scores, and variants near or within the target genes. Four-
fold cross-validated random forest at four different seeds was
performed on these various filters of the variant data as
previously described, resulting in a total of 16 models per filter,
or 464 total models.

The distribution of ROC-AUCs, a measure of model
sensitivity and specificity, was compared to identify the top
performing models (Table S4, Figure S9). Random forest
performed on the non-reference alleles within the exons of the
20 target genes having a CADD score greater than 15 showed the
greatest performance (mean ROC-AUC = 0.62) among random
forest models, while the model trained on non-reference alleles
within TFBSs proved to have the highest performance among all
SVM models (Figures 2A–D), but failed to outperform the top
random forest model. Furthermore, the top random forest model
outperformed the random forest model trained on the control
shuffled data set (Wilcoxon p-value = 1.5x10−4), demonstrating
that despite having a mean AUC of 0.62, the model performs
significantly better than the control model. This model also
proved to outperform that of all sequenced variants (mean
ROC-AUC = 0.51) (Wilcoxon p-value = 9.5x10−5). For analysis
of model predictive power in an independent cohort, we tested
the ability of the top random forest model to correctly identify
the validation (Wellderly) cohort as late agers. As previously
stated, because this cohort lacked any early agers, we used
percent misclassification rather than ROC-AUC to assess
prediction accuracy as ROC-AUC assessment requires two
groups. This analysis revealed that the top model performed
well on the model validation (Wellderly) cohort (median
FIGURE 1 | Logistic regression and variant burden reveal lack of association with early aging. (A) Quantile-quantile plot of logistic regression p-values. (B) Box plot
of total number of variants in the discovery early aged group (red), discovery late ager group (blue), and the validation late ager group (purple). (C) Diagram of
predictive modeling analysis study design.
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misclassification = 0.02) (Figure 3A). Additionally, smoking
status, which is known to affect aging, was tested as a predictor
of age group for comparison of genomic data to environment in
predicting aging status, revealing that our model built on high
CADD exon variants in aging-related genes performed
comparably (Figure 3B) (Valdes et al., 2005; Csiszar et al.,
2009; Astuti et al., 2017). Because there is a significant
difference in BMI between early and late agers (p = 5.6 x 10−8),
we tested the correlation between the predictor value and BMI in
the discovery cohort for the top performing model, which
revealed little correlation between age group prediction and
BMI (Spearman Rho = 0.07) (Figure S6). Furthermore, a
scatterplot of the predicted age group from the best model
(mean ROC-AUC = 0.62) versus BMI in both cohorts details a
lack of trend between the two values, further supporting that this
is a model predictive of early versus late aging rather than BMI
(Figure S7).

One of the most advantageous aspects of the random forest,
especially when predicting phenotypes, is that it returns
importance scores for each predictor in the model, allowing for
the ranking of classifiers within the dataset and associations
between predictors and phenotypes. Classifiers in the top
Frontiers in Genetics | www.frontiersin.org 8
performing model were ordered by their Gini coefficient, a
measure of how well the classifier contributed to accurately
separating the classes. We found that the predictors within the
top performing model (high CADD exon variants) were
nonsynonymous mutations within 9 of the 20 genes (APTX,
BLM, ERCC4, ERCC5, ERCC6, LMNA, PARP1, POLG,
and WRN).

Enrichment Analysis
Top variants were determined by averaging the Gini coefficients
across the 16 models performed on the highly deleterious target
gene exon data set. Enrichment analysis was then conducted on
these variants in regard to gene and variant effect. We found that
a majority of the top variants were located within excision repair
cross complementation group 4 (ERCC4), ERCC5, LMNA, and
PARP1 (Figure 4A and Table S5). Furthermore, 6 of the
predictor's regions have previously been associated with more
than 15 different phenotypes in the GRASP database (Table S6).
Enrichment analysis of variant consequence effect revealed that
predictors are enriched for those that cause a nonsynonymous
change as well as a stop gain, or premature termination codon
(p < 0.001) and depleted for synonymous mutations (Figure 4B).
FIGURE 2 | Different subsets of variants defined as top predictive models using random forest and support vector machine (SVM) learning methods. (A) Boxplots of
the random forest model area under the curve (AUCs) for the all variant, high Combined Annotation-Dependent Depletion (CADD) exon and control subsets of the
variant data. P-values between groups determined by performing a Kruskal-Wallis test. **** = p < 0.0001, *** = p < 0.001. (B) Boxplots of the SVM model AUCs for
the all variant, transcription factor binding site (TFBS), and control subsets of the variant data. P-values between groups determined by performing a Kruskal-Wallis
test. (C) Receiver-operating characteristic (ROC) curve of the mean high CADD exon random forest model with confidence intervals. The red line represents the null
AUC (0.5). (D) ROC curve of the mean TFBS SVM model with confidence intervals. The red line represents the null AUC (0.5).
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DISCUSSION

Although aging is highly dependent on environmental,
behavioral, and social interactions, studies have shown that a
quarter of the variance explaining longevity is heritable
(Herskind et al., 1996; Perls et al., 2002; van den Berg et al.,
2018; van den Berg et al., 2019). Yet, only a handful of genetic
determinants explaining a small portion of the heritability have
been discovered to date. Hampering additional discovery are the
complexity of the biology of aging as well as the rarity of the
longevity phenotype. Analysis of late aging rather than longevity
allows for larger cohort sizes, as late agers are more common in
the general population than long-lived individuals (>100 years
old); however, the lack of a clear definition for “healthy” or late
aging makes genetic analysis and cross-study interpretation of
this phenotype extremely difficult. Recently, Reed et al., defined
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“healthy” aging as living to the age of 70 in the absence of
coronary surgery, heart attack, stroke, diabetes, or prostate
cancer, finding an approximate 50% heritability of the defined
phenotype in a cohort of male twins (Reed et al., 2004). Several
other late aging cohorts exist, characterized by various
definitions and resulting in inconsistent heritability percentages
and gene associations (Walter et al., 2011; Brooks-Wilson, 2013;
Erikson et al., 2016). Furthermore, large-scale aging GWA
studies to date have failed to identify recurrent specific
genomic regions that statistically associate with the longevity
or late aging phenotypes, though combined analysis of SNPs
have identified pathways and multi-allele signatures associated
with aging phenotypes, indicating that these studies should
include polygenic or epistatic associations in addition to the
more traditional analysis of single gene associations to more
successfully discover genetic determinants of aging phenotypes
FIGURE 4 | Random forest high Combined Annotation-Dependent Depletion exon predictive variants are within 9 of the 20 genes and mostly non-synonymous.
(A) Scatter plot of the Gini score for each of the predictive variants based on corresponding gene. (B) Bar plot of the variant consequence type within the predictors
with corresponding empirical p-values.
FIGURE 3 | The random forest high Combined Annotation-Dependent Depletion (CADD) exon model is predictive of late aging status in the validation cohort and
outperforms smoking as a predictor of aging. (A) Boxplots of the fraction of misclassified patient samples based on the random forest high CADD exon model
(magenta) and the control random forest model (shuffled dataset) (teal). (B) Receiver-operating characteristic curve of the mean area under the curve (AUC) resulting
from the random forest high CADD exon model (black) with confidence intervals in the discovery cohort and the AUC resulting from smoking status as a sole
predictor of early versus late aging (green).
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(Brooks-Wilson 2013). This observation led us to design a
unique approach for determining genetic predictors of
phenotypic aging by conducting targeted sequencing of 20
previously determined aging-related genes in a cohort of
“early” and “late” agers. This approach allowed for the
identification of a set of genetic variants associated with
various aspects of genomic integrity as possible predictors of
late aging. While we emphasize that our small discovery cohort
(n = 200) is not ideal for a genomic association study, our process
of combining targeted sequencing and machine learning to
identify a set of genetic factors that together act as predictive
determinants for a complex disease will be useful in further
genetic association studies of complex phenotypes for which
individual variant association is insufficient.

Our initial analysis of overall variant burden and individual
variant association with early versus late aging failed to produce
any variant with statistically significant association. While this is
typical of GWA studies, especially those with a complex
phenotype or small sample sizes, single variant association
does prove useful for prioritizing variants by p-value. In our
analysis, two intronic variants within LMNA had the strongest
association (rs915180 and rs915179) and were also the most
predictive variants in the unfiltered data set random forest
models (Figure S8). These variants have also been previously
associated with longevity (Table S3). In fact, rs915179 is part of a
haplotype within LMNA that is specifically associated with
longevity (Conneely et al., 2012). Sebastiani et al., used
rs915179 as part of a “genetic signature” of exceptional
longevity and later confirmed this variant in a meta-analysis of
longevity (p = 0.0001) (Sebastiani et al., 2012). LMNA encodes
lamins A and C, which are nuclear envelope proteins. These
proteins are associated with Hutchinson-Gilford progeria
syndrome (HGPS), an extremely rare disease causing
premature aging and with a life expectancy of about 13 years
(Conneely et al., 2012). Interestingly, defective forms of LMNA
are produced in small amounts within cells of healthy
individuals, and there is evidence that this amount increases
with age (Rodriguez et al., 2009). This variant was also one of the
first to be associated with Alzheimer's disease in GWA studies,
indicating that it may play a pivotal role in cognitive function,
which is known to decline with increasing age. In GWA studies,
rs915180 has been associated with suicide attempts in patients
with mood disorders, as well as with cardiomyopathy, chronic
kidney disease, and birth weight (Perlis et al., 2010; Köttgen et al.,
2010; Horikoshi et al., 2013). Since this association failed to reach
genome-wide significance, future studies involving larger cohorts
are needed to further assess the association of rs915179 with
late aging.

Because the individual variant association proved inadequate
for determining variants within our data that are predictive of
aging status, we next focused our analysis on machine learning.
Random forest and SVM were performed on various
stratifications of the data, and assessment of the resulting
ROC-AUC and misclassification percentages revealed that the
random forest model built using variants with a CADD score
over 15 (high CADD) proved to be the best performing predictor
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of aging status. As previously noted, one of the benefits of using
random forest is that it ranks predictors based on how well they
add to the purity of the model (Gini coefficient). The mean
coefficient for each predictor in all trials of the high CADD exon
variants was used as a metric with which to rank variants (Figure
4A). The variant with the highest predictive power (rs1136410)
in our top performing model of aging status is located in PARP1
and causes an A > G alteration in the 17th exon (mean Gini =
1.26). PARP1 is responsible for posttranslational modification of
nuclear proteins in response to various types of DNA damage as
well as oxidative stress (Muiras et al., 1998; Beneke and Bürkle,
2007). With an essential role in base excision repair (BER) and
double strand break (DSB) repair, PARP1 has been known as the
“sensor of nicks” within DNA (Mao et al., 2011; Czarny et al.,
2017). Comparative studies among 13 mammalian species found
that the enzymatic activity of PARP1 positively correlates with
maximum lifespan in various mammals, including humans
(Bürkle et al., 1992; Muiras et al., 1998; Piskunova et al., 2008;
Noren Hooten et al., 2012). Additionally, this variant has
previously been associated with survival in patients with early
stage non-small-cell lung cancer, depression, and baseline
hippocampal volume loss in apolipoprotein E genotypee4
(APOE4) (Nho et al., 2013).

The next strongest predictor in the top performing model is
located within ERCC5/XPG (mean Gini = 1.15), located on
chromosome 13q22–33 which causes a G > C (His1104Asp)
change in the last (15th) exon of the gene (rs17655) (Zhao et al.,
2018). ERCC5 is an excision repair gene that is responsible for
forming the 3' incision during nucleotide excision repair (NER)
and is known to be extremely polymorphic (Zhao et al., 2018).
The variant is located within the C-terminal of the gene and
inhibits interactions of ERCC5 with other DNA repair proteins
(Xu et al., 2016). Damaging variants in this gene can lead to
deficiencies in the NER pathway, causing xeroderma
pigmentosum (XP) and Cockayne syndrome (CS), both of
which result in symptoms shared with phenotypic aging
(O'Donovan et a l . , 1994 ; Barnhoorn et a l . , 2014) .
Additionally, this specific variant, rs17655, is well-studied for
its association with cancer risk, especially in gastric and colon
cancer (Zhao et al., 2018). The well-established relationship
between accelerated aging and deficient DNA damage repair
(Gensler and Bernstein, 1981), in addition to the high
importance this variant has in our top performing model,
leads to the hypothesis that ERCC5 is important for
attenuating the aging process.

The next most important variant in the predictors is within
LMNA (rs513043), which causes a missense mutation (G > A) in
the 2nd codon and has a CADD score of 18.44, indicating a high
degree of deleteriousness (mean Gini = 1.03). LMNA encodes
nuclear proteins lamins A and C for which mutations in this gene
are assoc ia ted wi th numerous d i seases inc lud ing
cardiomyopathies, lipodystrophy, muscular dystrophies, and
progeroid (early aging) syndromes, such as HGPS. Again, the
nuclear lamina has been repeatedly linked to aging; in fact,
Sebastiani et al., used numerous LMNA variants to build a
“genetic signature” of longevity (Sebastiani et al., 2012).
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Lastly, a variant in ERCC4 (rs1800067) was also one of the top
predictors in the best predictive model (mean Gini = 0.81). This
variant causes a missense mutation (G > A) in the 8th exon, has a
CADD score of 36, indicating a very high degree of
deleteriousness within the gene, and has been associated with
HDL cholesterol and risk of glioma and lung cancer. ERCC4 is an
excision repair gene that forms a heterodimer with excision
repair cross complementation group 1 (ERCC1) for NER.
Reduced expression of ERCC4-ERCC1 leads to XPF-ERCC1
(XPE) progeria in humans that is characterized by systemic
accelerated aging (Niedernhofer et al., 2006). Moreover, other
studies examining genes under positive selection in the longest-
lived mammalian species, the bowhead whale, identified ERCC1
as a top hit, suggesting that this pathway may promote
maintenance of health (Keane et al., 2015). Jorgensen et al.,
showed that this variant is significantly associated with benign
breast disease (BBD), especially in patients with a family history
of breast cancer (Jorgensen et al., 2009).

Like many genomic studies of longevity and late aging, several
limitations of this study warrant comment. First, in the absence
of field-wide consensus regarding the definition of early versus
late aging, we relied on physical function to differentiate the two
groups. The parameters used to differentiate them—the ability to
walk 15 min without stopping and to climb a flight of stairs—are
well-validated (Abellan van Kan et al., 2008; Perera et al., 2014;
Perera et al., 2016) and can be viewed as integrative, i.e.,
incorporating the impact of both physiological decline and
diseases. The advantage of using such standardized
assessments of function is the ability to differentiate
participants into non-overlapping groups. The disadvantage is
that impaired function may reflect the effect of not only early
aging, but also comorbidity. However, because aging is
characterized by both constriction of physiological reserve and
the accumulation of diseases, it is difficult to disentangle the
impact of early aging and disease. It is possible that subtle effects
of genes or alleles on aging were masked by the impact of
superimposed diseases, but testing this hypothesis will require
a study large enough to identify a sufficient number of
participants who qualify as early agers in the absence of
disease. It is also possible that conditions such as comorbidity,
obesity, and frailty lie in the causal pathway from any genetic
predispositions to functional outcomes. Therefore, efforts to
control for them would attenuate any associations between
genetics and the function-based group definition. Another
limitation of this study, which is common among many
genomic studies, is the cross-sectional design; future studies
are needed to examine longitudinal trajectories. Lastly, a
validation cohort consisting of both early and late agers would
improve our confidence in the constructiveness of this model for
both early and late aging phenotypes.
CONCLUSION

In conclusion, the two assessments regarding walking and stair
climbing helped to identify a group of phenotypically late agers
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who had a better gait speed, higher activity and greater activity as
well as physical function compared to a group of phenotypic
early agers. This study found that more complex statistical
analyses encompassing epistatic effects rather than traditional
single gene association tests are useful for interpretation of rare
genomic data generated using deep sequencing methods.
Random forest provided information complementary to more
traditional statistical analyses, including the ability to correctly
classify the validation cohort of late agers 90% of the time.
Predictors in the model were within genes that are involved in
DNA repair and stability. We recognize that there are many
genes and possibly intergenic regions of the genome engaged
with genome stability and the biology of aging that were not
included in this study; however, the genes chosen for analysis
here are those with which the authors have had the greatest
familiarity and sequence knowledge. Additionally, while we did
not account for admixture in our analysis, we believe this would
not drastically alter our results, as most of our discovery cohort
and the entire validation cohort were of self-reported European
American descent. While we realize that the training set has a
low number of patients to achieve statistical certainty, we
propose that holistic analysis of rare variant data may have
promise in a larger cohort. Thus, targeted sequencing of genes
involved in aging in combination with machine learning should
be considered as a method to determine predictors of
complex phenotypes.
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