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INTRODUCTION

Breast cancer is the most prevalent type of cancer among 
women around the world and has the highest fatality rate [1]. 
The most reliable detection methods are mammography and 
core needle biopsy. However, these methods are not sensitive 
or comfortable enough for women to select as routine exami-

nations. For liquid biopsy, existing markers such as carcino-
embryonic antigen or carbohydrate antigen 153 are not rec-
ommended for screening or diagnosis of breast cancer be-
cause of their low sensitivity in early detection [2]. Therefore, 
a convenient, effective method for early detection is urgently 
needed.

MicroRNAs (miRNAs) are noncoding RNAs approximately 
22 nucleotides in length. Recent evidence [3,4] demonstrates 
that miRNAs could be utilized as biomarkers for different 
cancers. They widely regulate life processes including cell pro-
liferation, differentiation, apoptosis, and metabolism through 
a complicated network of the miRNAs and their target genes. 
Mitchell et al. [5] identified miR-16, let-7a, and other miRNAs 
from plasma RNA isolated from healthy volunteers and found 
that these miRNAs remain intact and are safe from endoge-
nous RNase. Other studies [6,7] identified specific expression 
patterns of serum miRNAs for lung cancer, colorectal cancer, 
and diabetes, and found that the levels of miRNAs in unfro-
zen serum remained stable over a 4 hours period at room 
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temperature and are minimally affected by twice freezing and 
re-thawing. These result suggested there are stable and detect-
able miRNAs in serum that can serve as nonintrusive bio-
markers in tumor diagnosis.

Wang et al. [8] suggested tumor cells could communicate 
with each other by exporting specific miRNAs. miRNAs with 
consistent expression status in tumor tissue and serum sam-
ples are likely to be message molecules released from tumor 
tissue to the circulatory system, which can be used as indica-
tors for tumor detection. Previous studies [9] suggested there 
are miRNAs whose expression deregulation status was consis-
tent between tumor tissue samples and serum samples. Thus, 
effective miRNA signatures identified from tissue profiles may 
also be prospective serum miRNA signatures.

Large scale tumor data from cancer databases have been 
used widely in research to obtain reliable evidence. The Cancer 
Genome Atlas (TCGA) is one of these preeminent databases, 
which contains information on over 1,000 breast cancer cases, 
including clinicopathological information and transcriptomic 
data. The present research is based on tissue-originated public 
miRNA expression profiles from TCGA, aiming to establish a 
novel method for identifying effective miRNA signatures 
which can detect early breast cancer in patients.

METHODS

Data and serum samples 
The present study consists of two stages: signature discovery 

stage and signature validation stage. Analysis design and strat-
egies are summarized in Figure 1. 

In the discovery stage, the sequencing data normalized as 
reads per million (RPM) of mature miRNAs was downloaded 
from the breast cancer project of TCGA (containing informa-
tion from 99 stage I patients, 310 stage II patients, and 87 
healthy controls) through Broad GDAC Firehose data portal 
(http://gdac.broadinstitute.org/). These data were used in 
method establishment and identifying prospective tissue-
based signatures. 

In the validation stage, 113 breast cancer patients in early 
stages and 47 healthy controls from Sun Yat-sen University 
Cancer Center were recruited as the validation cohort. Serum 
of the subjects was collected based on the following criteria: (1) 
collected at diagnosis before receiving any surgery or treat-
ment; (2) breast cancer serum samples were collected from pa-
tients diagnosed as having early breast cancer, including inva-
sive breast cancer at stage I, stage IIA, or stage IIB; (3) control 
serum samples were collected from healthy volunteers without 
any history of cancer or inflammatory conditions currently. 

Serum samples were prepared by retaining the supernatant 

Figure 1. Flow chart of the analysis design in the present study. The ex-
pression change-based method pipeline was described on the left and 
the random forest algorithm-based method on the right. Tissue profiles 
were used in discovery stage while independent serum profiles were 
used in validation stage. Intermediate results of the expression change-
based method were compared with those of the random forest algo-
rithm-based method [11] for evaluation purpose.
miRNA=microRNA; qPCR=quantitative real-time polymerase chain re-
action.

after double centrifugation of blood samples at 4°C (10 min-
utes at 3,000 rpm and 10 minutes at 13,400 rpm) and stored at 
–80°C immediately until use. In the present study, the tumor 
stage was classified according to the revised American Joint 
Committee on Cancer tumor-node-metastasis (TNM) classi-
fication. Histopathological information was obtained by re-
viewing medical records. This study followed the principles 
outlined in the Helsinki Declaration and was reviewed and 
approved by the Institutional Review Board and Ethics Com-
mittee of Sun Yat-sen University Cancer Center (GZR2017-
186). Written informed consent was obtained from all of the 
enrolled participants.

The characteristics of patients enrolled in the present study 
were summarized in Table 1.

Establishment of expression change based method for 
signature identification

To concisely identify biomarkers of early stage breast can-
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cer, only data of early stage patients were selected from the 
complete dataset. Missing expression values were replaced by 
the stage average value, and miRNAs with data missing rate 
> 10% were eliminated. 

In the discovery stage, Student t-test was performed be-
tween the expression profiles of early stage patients and 
healthy controls. p-values were adjusted using the Benjamini-
Hochberg procedure. Adjusted p-values < 0.05 were consid-
ered statistically significant. miRNAs with high expression 
levels and high expression fold change were preferred to in-
sure detectability and reliability. Consequently, only those 
miRNAs with control average rpm > 100 and absolute fold 
change > 3.5 were further evaluated. Statistical analysis was 
performed with R software environment (version 3.3.1, 2016) 
using bayesreg.R script developed by Cyber-T workspace [10]. 

To identify the most promising prospective signature, all 
possible combinations of eligible miRNAs in the screening 
process were considered as potential signatures, and the effec-

tiveness of each signature was measured by Youden Index 
(specificity+sensitivity–1). The number of half miRNAs in 
signature was chosen as diagnostic rule. The threshold of nor-
mal expression of each miRNA was defined as a certain ex-
pression value in healthy controls, which maximized the 
Youden Index when classifying samples using this miRNA 
alone (called balanced value in the text). 

Comparison with random forest algorithm based method
For evaluation purposes, the expression change (EC)-based 

method in the present study was compared with a well-de-
signed method, which makes use of the random forest algo-
rithm (RF) [11]. 

The best results from the identification process were com-
pared with the best signatures identified by the RF-based 
method using the same data from TCGA. A subset of miRNAs 
of the same number as the candidates in the EC-based meth-
od was selected from the importance matrix of the RF-based 
method. Secondly, all possible combinations defined from this 
miRNA subset were considered as potential classifiers, the 
specificity and sensitivity of which were obtained using the di-
agnostic rule mentioned in the reference.

The comparison was performed using the following aspects: 
miRNA candidates, performance of combinations consist of 
different number miRNA candidates, and characteristics of 
the top 25 combinations.

Validation of the final signature
Further validation of the best performing signature was 

conducted with serum data of an independent cohort obtained 
through reverse transcription quantitative real-time poly-
merase chain reaction (RT-qPCR). The essential Minimum 
Information for Publication of RT-qPCR Experiments guide-
lines were followed during specimen preparation. 

In the circulating miRNAs extraction step, according to the 
manufacturer’s instructions of the miRNeasy Serum/Plasma Kit 
(Qiagen, Duesseldorf, Germany), 3.5 µL Caenorhabditis elegans 
miR-39 miRNA mimic (1.6× 107 copies/µL; Qiagen) was added 
to each 200 µL serum sample as a normalization control before 
miRNAs were extracted. Reverse transcription was performed 
using mir-X miRNA First-Strand Synthesis Kit (Takara, 
Kusatsu, Japan). RT-qPCR was performed with PowerUpTM 
SYBRTM Green Master Mix (Thermo Fisher, Waltham, USA) 
according to the manufacturer’s instructions. Most of primers 
used in qPCR reaction were designed and synthesized by 
Tiangen Biotech, Co., Ltd. (Beijing, China) according to miRNA 
sequences. Detailed sequences of the commercial primers are 
classified due to privacy policy, but the sequence of one pub-
lished primer for miR-10b-5p we used was ACACTCCAGCT-

Table 1. Clinical characteristics of breast cancer patients and healthy 
controls

Characteristic

Discovery stage Validation stage

Cancer 
tissue  

(n=409) 
No. (%)

Healthy 
control 
(n=87) 
No. (%)

Patient 
serum  

(n=113) 
No. (%)

Healthy 
control 
(n=47) 
No. (%)

Age (yr)* 58 (26–90) 56 (27–85) 49 (29–73) 51 (41–64)
Clinical TNM stage
   I 99 (24.2) - 32 (28.3) -
   II 310 (75.8) - 81 (71.7) -
ER status
   Negative 89 (21.8) - 26 (23.0) -
   Positive 298 (72.8) - 83 (73.5) -
   Unknown 22 (5.4) - 4 (3.5) -
PR status
   Negative 126 (30.8) - 37 (32.7) -
   Positive 261 (63.9) - 71 (62.8) -
   Unknown 22 (5.4) - 5 (4.4) -
HER2 status 
   Negative 2 (0.5) - 41 (36.3) -
   Positive 188 (46.0) - 67 (59.3) -
   Unknown 219 (53.5) - 5 (4.4) -
Ki-67 status
   Negative (<14%) NA - 13 (11.5) -
   Positive (≥14%) NA - 95 (84.1) -
   Unknown NA - 5 (4.4) -
Histologic subtype
   IDC 274 (67.0) - 98 (86.7) -
   ILC 89 (21.8) - 3 (2.7) -
   Other 46 (11.2) - 12 (10.6) -

ER=estrogen receptor; PR=progesterone receptor; HER2=human epider-
mal growth factor receptor 2; NA=not assessed; IDC= invasive ductal carci-
noma; ILC= invasive lobular carcinoma.
*Median (range).
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GGGTACCCTGTAGAA [12]. RT-qPCR was performed on 
Roche LightCycler® 480 System (Roche, Basel, Switzerland).

Data normalization was conducted using the 2–ΔΔCq method 
{ΔΔCq = [(Cq cancer–Cq reference gene) -mean(Cq control–Cq reference

 

gene)]} for each sample to obtain a relative expression value. Di-
agnostic rule was the same as described in the EC-based 
method. Receiver operating characteristic (ROC) curve was 
obtained to evaluate the performance of the final signature in 
the validation cohort.

RESULTS

Comparison between different normal expression range 
defining methods

In addition to the balanced value that maximized the 
Youden Index of each miRNA, the 80th percentile (or 20th, 
depending on whether the expression level of controls was 
lower than that of patients) and the 90th percentile (or 10th) 
of expression values in healthy controls were also taken into 
consideration when defining the normal expression thresh-
old. A suitable threshold should lead to the majority of the 
healthy controls having expression in the normal range. To 
compare these threshold defining methods, signature analysis 
was conducted using all three methods. Considering the best 
performance (highest specificity and acceptable sensitivity), 
we chose the balanced value as the normal range threshold in 
this study. The comparison is shown in Figure 2. 

Tissue-based miRNA candidate selection and comparison 
with random forest algorithm based method

After tissue profiling data preprocessing, 402 miRNAs were 
eligible for screening. Most of these were eliminated in the 
screening process, and 20 miRNAs were ultimately left in the 
candidate list of the EC-based method. When comparing 
these candidates to the 20 most important miRNAs from the 
RF-based method, we found eight common miRNAs. Details 
are shown in Supplementary Figure 1 (available online).

Next, we compared the performance of the signatures from 
the 20 eligible candidates in the EC-based method and signa-
tures from the 20 most important miRNAs in the RF-based 
method. Average performance of signatures composed of equal 
numbers of miRNAs were compared, and results are shown 
in Supplementary Figure 2 (available online). Additionally, 
the top 25 combinations in both methods were compared. 
The average of miRNA number per combination, specificity, 
and sensitivity were 6.920, 0.989, and 0.990 for the EC-based 
method while the values were 6.640, 0.985, and 0.960 for the 
RF-based method. Specifically, the best combination obtained 
from the RF-based method consisted of seven miRNAs, of 
which the specificity and sensitivity were 0.989 and 0.980, re-
spectively. However, the best combination identified using the 
EC-based method consisted of nine miRNAs, of which the 
specificity and sensitivity were 0.989 and 0.993 (Supplementa-
ry Tables 1 and 2, available online).

Identification of the best combination
Among all the signatures from 20 eligible candidates in the 

EC-based method, two tied for the best performance. Both 
were composed of nine miRNAs, seven of which were in 
common. In other words, there were 11 miRNAs enrolled in 
the two best combinations: miR-183-5p, miR-182-5p, miR-
141-3p, miR-21-5p, miR-21-3p, miR-10b-5p, miR-99a-5p, 
miR-378a-5p, miR-144-5p, miR-451a, and miR-486-5p. Re-
sult of Student t-test and breast cancer related references of 
these miRNAs were listed in Table 2 [13-22]. 

Validation in serum samples
To further narrow the number of miRNAs in the validation 

stage, the RPM data of a previous study [23], which had per-
formed small RNA-sequencing on serum samples from breast 
cancer patients, were taken into consideration. Four miRNAs 
in the best signature (miR-21-5p, miR-21-3p, miR-99a-5p, 
miR-10b-5p) with great fold changes and high RPM values in 
serum sequencing data and similar deregulation status as in 
the tissue samples of TCGA dataset (Table 3) were selected 
into validation stage. However, although we used two primers 
designed by Tiangen Biotech Company and one published 

Figure 2. Comparison between three threshold defining methods. Sig-
natures from the 20 microRNA (miRNA) candidates in the expression 
change-based method were grouped by the number of miRNAs, and 
the mean sensitivity and specificity were calculated respectively.
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Table 2. The expression status of 11 miRNAs of the best combinations in the present study and in other researches

miRNA
Data form TCGA Data from other article 

Fold change p-value Fold change p-value Application Reference

miR-183-5p +8.26 <0.01 +3.22 <0.01 Prognosis [13,14]
miR-182-5p +5.61 <0.01 +7.75 <0.01 Prognosis [14,15]
miR-141-3p +5.58 <0.01 NA NA NA NA
miR-21-5p +4.69 <0.01 +3.2 <0.01 Diagnosis  (no stage information, AUC=0.607) [16]
miR-21-3p +4.35 <0.01 + <0.05 [17]
miR-10b-5p –3.65 <0.01 – <0.05 Diagnosis  (stage I, II, III, AUC=0.950) [17,18]
miR-99a-5p –3.80 <0.01 NA NA Prognosis [19]
miR-378a-5p –5.29 <0.01 NA NA NA NA
miR-144-5p –8.77 <0.01 –2.50 <0.01 Prognosis [20,21]
miR-451a –8.91 <0.01 – <0.05 NA [17]
miR-486-5p –22.18 <0.01 – < 0.05 Metastasis detection [21,22]

The plus sign or minus sign before the fold change values indicated the deregulation status of miRNAs. Some values are absent because no specific value was 
listed in the corresponding reference. “+” represents upregulated while “–” represents downregulated. In the parentheses was stage information of patient cohorts 
in which the miRNA was applied as diagnostic marker.
miRNA=microRNA; TCGA=The Cancer Genome Atlas; NA=not assessed; AUC=area under curve.

Table 3. The tissue-based and serum-based expression status of the 11 best miRNAs obtained through EC-based method

miRNA
Tissue sequencing data 

(control [n=87]; early stage cancer [n=409])
Serum sequencing data 

(control [n=8]; breast cancer [n=8])

MeanC MeanE FC p-value MeanC MeanE FC

miR-183-5p 2,123.70 17,552.28 +8.26 <0.01 13,750.50 18,643.21 +1.36 
miR-182-5p 8,575.70 48,118.67 +5.61 <0.01 7,319.85 9,721.51 +1.33 
miR-141-3p 205.07 1,144.28 +5.58 <0.01 4,859.21 5,765.71 +1.19 
miR-21-5p 53,402.99 250,410.52 +4.69 <0.01 249,722.74 457,962.70 +1.83 
miR-21-3p 622.85 2,710.56 +4.35 <0.01 1,234.56 3,389.78 +2.75 
miR-99a-5p 3,014.67 794.02 –3.80 <0.01 7,917.29 3,491.94 –2.27 
miR-378a-5p 287.29 54.26 –5.29 <0.01 49.53 36.63 –1.35 
miR-10b-5p 266,581.80 73,028.62 –3.65 <0.01 3,520.15 1,773.58 –1.98 
miR-144-5p 519.16 59.18 –8.77 <0.01 21.03 34.62 +1.65 
miR-451a 2,800.20 314.28 –8.91 <0.01 1,802.82 3,164.29 +1.76 
miR-486-5p 1,774.80 80.02 –22.18 <0.01 693.11 996.39 +1.44 

Average expression values of miRNAs in control group (MeanC) and patient group (MeanE) were both listed. The plus sign or minus sign before the fold change 
values indicated the deregulation status of miRNAs. “+” represents upregulated while “−” represents downregulated.
miRNA=microRNA; EC=expression change; FC=fold change.

Figure 3. Expression levels of the three final microRNAs (miRNAs) in serum samples. The relative expression level of miRNAs was normalized to  
2–ΔΔCq value and two-sided Student t-test was used to compare miRNA expression level. 
*p-value <0.01.
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primer for miR-10b-5p, we were unable to obtain specific and 
stable amplification results of this miRNA. Therefore, miR-
10b-5p was excluded from the final signature temporarily.

According to the qPCR results, the Cq values of control 
miRNA among all the samples were stable (22.59± 0.77 cy-
cles) and were in a normal range confirmed by the provider. 
The relative expression levels of the three selected miRNAs re-
mained significantly different between patients and healthy 
controls. miR-21-5p and miR-21-3p were upregulated while 
miR-99a-5p was downregulated, which was consistent with 
the tissue data (Figure 3). Similar expression status of these 
miRNAs was also found in previous studies [19,24]. An area 
under curve (AUC) of 0.895, diagnostic specificity of 73.5%, 
and sensitivity of 97.9% were obtained when the 3-miR signa-
ture was tested in serum samples, whereas an AUC of 0.982, 
specificity of 97.6%, and sensitivity of 95.4% were obtained 
when tested in tissue samples. The high sensitivity and con-
siderable specificity suggested the 3-miR signature was well 
validated in serum data. ROC is shown in Figure 4. 

DISCUSSION

Instead of collecting samples and obtaining data from pa-
tients of all stages, the present study made use of a large set of 
early stage breast cancer miRNA expression profiles from the 
TCGA database. Since TCGA is one of the largest public mo-
lecular data sources which also contains detailed clinical in-
formation, such as the TNM stage of patients, this could lead 

to more reliable and valuable results, particularly in cancer 
early detection. Moreover, with normalized data from a larger 
cohort, as well as more detailed and uniform clinical informa-
tion, we can conduct further studies more easily, such as iden-
tifying signatures for cancer subtypes, conducting survival 
correlation analysis, and so on.

Although serum miRNA profiles were used to identify di-
agnostic signatures in many other studies [3,11,25,26], the 
present study was designed to identify signatures based on tis-
sue profiles and validate them with serum profiles. Using se-
rum profiles to determine cancer can be challenging; since 
blood circulates the entire body, factors such as exercise and 
diet can influence circulating miRNAs. In contrast, tissue 
miRNA profiles described what exactly happened in the tu-
mor and were minimally affected by irrelevant factors. 
Though the relationship between expression patterns of tissue 
miRNA and circulating miRNA is still unclear [12], previous-
ly studies [25,26] did find miRNAs whose expression deregu-
lation statuses were consistent between tissue samples and se-
rum samples. These findings suggested the expression pat-
terns of circulating miRNAs in cancer patients were somehow 
influenced by the expression change of miRNAs in tumor tis-
sues. Thus, effective miRNA signatures selected from tissue 
profiles could also be useful serum miRNA signatures. 

Another concern is the expression abundance and the ex-
pression fold change of miRNAs in signatures. miRNAs with 
low expression or little fold change were selected as diagnostic 
signatures in previous studies [11,25,26] but are impractical in 
application. In contrast, great fold change and high expression 
of miRNAs were preferred in the present study because these 
miRNAs were more likely to be the key factors in oncogenesis 
and more detectable in the serum samples as biomarkers.

After miR-21-3p, miR-21-5p, and miR-99a-5p were chosen 
as the final signature, we further investigated the expression 
levels of these miRNAs in every clinical stage using  tissue-de-
rived data from TCGA. Compared to healthy controls, the 
fold-change values of stage I group to stage III group for miR-
21-5p were +4.67, +4.69, +4.67, and +4.01, +4.45, +4.08 for 
miR-21-3p, and –3.41, –3.94, –3.51 for miR-99a-5p. Adjusted 
p-values for these results were all less than 0.01. Results of the 
stage IV group were invalid since the sample size was too 
small. According to previous studies, increased miR-21, in re-
sponse to transforming growth factor β1 signaling, is associat-
ed with tumor invasion and chemoresistance in vitro [27]. 
Specifically, overexpression of miR-21-3p could strongly aug-
ment L1 cell adhesion molecular expression in renal, endo-
metrial, and ovarian carcinoma-derived cell lines, which pro-
motes cell motility, invasion, chemoresistance and metastasis 
formation [28]. Upregulated miR-99a could suppress the pro-

Figure 4. Receiver operating characteristic curve of the final signature 
based on tissue data and independent serum data. The number of nor-
mal expressed microRNAs in signature was used as diagnostic index in 
this analysis.
AUC=area under curve.
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liferation, migration and invasion of the MDA-MB-231 breast 
cancer cells in vitro and inhibited the growth of xeno-trans-
plant tumor in vivo [29]. Although few serum-derived data of 
these three miRNAs was found, the expression levels of serum 
circulating miR-21 in different histological tumor grades from 
a recent study [30] matched our results. These findings sug-
gest the three final miRNAs play an important role in the de-
velopment of breast cancer and could serve as useful biomark-
ers for early detection of breast cancer.

It is worth mentioning that majority of the tissue samples 
used in the present study were donated by Hispanic patients, 
while all serum samples were from Chinese patients. In the 
future, more uniform study cohorts should be used when pos-
sible. A previous study [25] identified a panel of nine miRNAs 
(miR-15a, miR-18a, miR-107, miR-133a, miR-139-5p, miR-
143, miR-145, miR-365, and miR-425) that can distinguish 
early stage patients from healthy controls, achieving an AUC 
of 0.665, sensitivity of 83.3%, and specificity of 41.2% in a vali-
dation cohort. Another study [18] showed that a combination 
of serum miRNAs (miR-145, miR-155, and miR-382) can 
achieve an AUC of 0.988, sensitivity of 97.6%, and specificity 
of 100% in cancer detection but this was not validated in an 
independent cohort. A recent study [26] found a combination 
of five miRNAs (miR-1246, miR-1307-3p, miR-4634, miR-
6861-5p, and miR-6875-5p) from early stage serum samples 
using microarray profiling, which achieved an AUC of 0.971, 
sensitivity of 97.3%, and specificity of 82.9%. However, four 
miRNAs in the combination were unable to be validated by 
qPCR. All of these study had certain limitations, such as the 
number of samples in the validation cohort was small or the 
sensitivity, specificity, and accuracy were not satisfying or not 
well validated. 

In conclusion, the present study established a novel and ef-
fective method to identify miRNA signatures for breast cancer 
early detection based on large scale data from the TCGA da-
tabase, which could be applied to other cancer types in the fu-
ture. Furthermore, a prospective biomarker combination of 
three miRNA (miR-21-5p, miR-21-3p, and miR-99a-5p) for 
early detection of breast cancer was identified using this 
method and verified using Chinese clinical serum samples.
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Supplementary Table 1. Top 25 combinations obtained from the expression change-based method

Combination Specificity Sensitivity

miR-183-5p,miR-141-3p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-451a,miR-486-5p 0.988506 0.992665
miR-182-5p,miR-141-3p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-144-5p,miR-451a 0.988506 0.992665
miR-183-5p,miR-141-3p,miR-21-5p,miR-10b-5p,miR-451a 0.988506 0.99022
miR-141-3p,miR-21-5p,miR-10b-5p,miR-99a-5p,miR-451a 0.988506 0.99022
miR-141-3p,miR-21-5p,miR-10b-5p,miR-99a-5p,miR-486-5p 0.988506 0.99022
miR-21-5p,miR-200a-5p,miR-10b-5p,miR-99a-5p,miR-451a 0.988506 0.99022
miR-21-5p,miR-200a-5p,miR-10b-5p,miR-99a-5p,miR-486-5p 0.988506 0.99022
miR-183-5p,miR-182-5p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-378a-5p 0.988506 0.99022
miR-183-5p,miR-141-3p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-378a-5p,miR-486-5p 0.988506 0.99022
miR-183-5p,miR-141-3p,miR-21-5p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-451a 0.988506 0.99022
miR-183-5p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-139-5p 0.988506 0.99022
miR-182-5p,miR-141-3p,miR-21-5p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-144-5p 0.988506 0.99022
miR-182-5p,miR-141-3p,miR-21-5p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-451a 0.988506 0.99022
miR-182-5p,miR-141-3p,miR-21-5p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-486-5p 0.988506 0.99022
miR-182-5p,miR-203a-3p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-139-5p 0.988506 0.99022
miR-182-5p,miR-21-5p,miR-200a-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-451a 0.988506 0.99022
miR-141-3p,miR-203a-3p,miR-21-5p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-486-5p 0.988506 0.99022
miR-141-3p,miR-21-5p,miR-200a-5p,miR-21-3p,miR-10b-5p,miR-378a-5p,miR-486-5p 0.988506 0.99022
miR-141-3p,miR-21-5p,miR-200a-5p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-486-5p 0.988506 0.99022
miR-141-3p,miR-21-5p,miR-200a-5p,miR-10b-5p,miR-99a-5p,miR-145-5p,miR-486-5p 0.988506 0.99022
miR-141-3p,miR-21-5p,miR-200a-5p,miR-10b-5p,miR-99a-5p,miR-139-5p,miR-451a 0.988506 0.99022
miR-203a-3p,miR-21-5p,miR-200a-5p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-486-5p 0.988506 0.99022
miR-21-5p,miR-200a-5p,miR-21-3p,miR-10b-5p,miR-337-3p,miR-378a-5p,miR-486-5p 0.988506 0.99022
miR-183-5p,miR-182-5p,miR-141-3p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-144-5p 0.988506 0.99022
miR-183-5p,miR-182-5p,miR-141-3p,miR-21-5p,miR-21-3p,miR-10b-5p,miR-99a-5p,miR-378a-5p,miR-451a 0.988506 0.99022
Average 0.988506 0.9904156
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Supplementary Table 2. Top 25 combinations obtained from the random forest algorithm-based method

Combination Specificity Sensitivity

miR-21-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-195-5p,miR-429,miR-10b-3p 0.988506 0.98044
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-195-5p,miR-497-5p,miR-21-3p 0.988506 0.978215
miR-21-5p,miR-139-3p,miR-10b-5p,miR-183-5p,miR-195-5p 0.988506 0.977995
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-195-5p,miR-10b-3p 0.988506 0.97555
miR-21-5p,miR-139-3p,miR-10b-5p,miR-195-5p,miR-100-5p,miR-497-5p,miR-10b-3p 0.988506 0.97066
miR-21-5p,miR-139-3p,miR-10b-5p,miR-195-5p,miR-10b-3p 0.988506 0.968215
miR-139-5p,miR-21-5p,miR-10b-5p,miR-183-5p,miR-195-5p,miR-497-5p,miR-96-5p,miR-10b-3p 0.988506 0.968215
miR-139-5p,miR-21-5p,miR-10b-5p,miR-195-5p,miR-100-5p 0.977011 0.977995
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-183-5p,miR-195-5p,miR-497-5p 0.988506 0.963325
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-125b-5p,miR-195-5p 0.988506 0.958655
miR-139-5p,miR-21-5p,miR-204-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-195-5p 0.977011 0.968215
miR-139-5p,miR-21-5p,miR-10b-5p,miR-195-5p,miR-497-5p,miR-429 0.988506 0.95599
miR-21-5p,miR-139-3p,miR-10b-5p,miR-125b-5p,miR-195-5p,miR-497-5p,miR-21-3p,miR-10b-3p 0.988506 0.95599
miR-139-5p,miR-21-5p,miR-10b-5p,miR-195-5p,miR-497-5p,miR-21-3p 0.988506 0.95599
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-195-5p,miR-497-5p 0.977011 0.96577
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-195-5p,miR-497-5p,miR-335-5p,miR-10b-3p 0.988506 0.953545
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-125b-5p,miR-195-5p,miR-335-5p 0.977011 0.963325
miR-21-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-145-5p,miR-195-5p,miR-100-5p 0.977011 0.963325
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-195-5p,miR-125b-2-3p 0.977011 0.96088
miR-21-5p,miR-139-3p,miR-10b-5p,let-7c-5p,miR-183-5p,miR-195-5p 0.988506 0.948655
miR-139-5p,miR-21-5p,miR-10b-5p,miR-183-5p,miR-195-5p,miR-497-5p 0.988506 0.948655
miR-21-5p,miR-139-3p,miR-10b-5p,miR-195-5p,miR-497-5p,miR-10b-3p 0.988506 0.948655
miR-21-5p,miR-139-3p,miR-10b-5p,miR-99a-5p,miR-195-5p,miR-497-5p 0.988506 0.94132
miR-139-5p,miR-21-5p,miR-139-3p,miR-10b-5p,miR-125b-5p,miR-195-5p,miR-497-5p,miR-335-5p 0.977011 0.948655
miR-21-5p,miR-139-3p,miR-10b-5p,let-7c-5p,miR-195-5p,miR-497-5p 0.988506 0.933985
Average 0.9852874 0.9612888
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Supplementary Figure 1. Intersection of the top 20 microRNA (miRNA) 
candidates and the miRNAs presented in the top 25 combinations of 
expression change (EC)-based method and random forest algorithm 
(RF)-based method. The early stage breast cancer tissue data from The 
Cancer Genome Atlas were applied to both methods to obtain miRNA 
candidates and miRNA combinations.
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Supplementary Figure 2. Comparison between expression change 
(EC)-based method and random forest algorithm (RF)-based method 
using tissue data from The Cancer Genome Atlas. Sensitivity and speci-
ficity of every combination consisting of ones in the top 20 microRNA 
(miRNA) candidates of each method were calculated and were grouped 
by the number of miRNAs in combinations. As the number of miRNAs 
increased in combinations, both mean sensitivity and mean specificity 
of EC-based method can reach a high level, which presented a more 
balanced performance than RF-based method. 
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