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Abstract

Single nucleotide polymorphism (SNP)-heritability estimation is an important topic in several research fields, including animal,
plant and human genetics, as well as in ecology. Linear mixed model estimation of SNP-heritability uses the structures of
genomic relationships between individuals, which is constructed from genome-wide sets of SNP-markers that are generally
weighted equally in their contributions. Proposed methods to handle dependence between SNPs include, “thinning” the marker
set by linkage disequilibrium (LD)-pruning, the use of haplotype-tagging of SNPs, and LD-weighting of the SNP-contributions.
For improved estimation, we propose a new conceptual framework for genomic relationship matrix, in which Mahalanobis
distance-based LD-correction is used in a linear mixed model estimation of SNP-heritability. The superiority of the presented
method is illustrated and compared to mixed-model analyses using a VanRaden genomic relationship matrix, a matrix used by
GCTA and a matrix employing LD-weighting (as implemented in the LDAK software) in simulated (using real human, rice and
cattle genotypes) and real (maize, rice and mice) datasets. Despite of the computational difficulties, our results suggest that by
using the proposed method one can improve the accuracy of SNP-heritability estimates in datasets with high LD.

Introduction

With the availability of genome-wide single nucleotide
polymorphism (SNP) markers, researchers are now interested
in estimating SNP-heritability/genomic heritability in animal,
plant and human genetics, as well as in ecology (Visscher
et al. 2006; Sillanpda 2011a; de los Campos et al. 2015).
However, it is generally known that SNP-heritability esti-
mation suffers from the missing heritability problem (Manolio
et al. 2009; Eichler et al. 2010; Gibson 2012). That is, the
quantitative traits that are known to have a substantial genetic
component and a high heritability estimated in pedigree data
sets show very low values of SNP-heritability: either when
they are estimated using a few single SNPs showing most
strong trait associations in genome-wide studies (Jakobsdottir
et al. 2009), or estimated using genome-wide sets of SNP
markers (Yang et al. 2010). However, recently, for some well
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studied human traits, partial concordance (60% of the pedi-
gree value) has been reached (Yang et al. 2015; Kim et al.
2017). The origin of this missing heritability is currently the
subject of heated debate. Possible explanations include loose
associations between SNPs and causal variants (Shen 2013;
de los Campos et al. 2013a), high fraction of causal effects
may be due to rare variants (Zuk et al. 2014; Goldstein 2011),
population admixture/structure (Zaitlen et al. 2014; Browning
and Browning 2011), epistasis (Zuk et al. 2012; Hemani et al.
2013) and unaccounted haplotypes of common SNPs (Bhatia
et al. 2015; Sun et al. 2016), all of which evidently have a role
in the linkage disequilibrium (LD) pattern of the genome.
Additionally, small sample sizes and gene-by-environment
interactions may also be possible reasons.

SNP-heritability (the proportion of genetic factors
explaining the total variance) is generally estimated under a
linear mixed model (Henderson 1984), in which the random
effect covariance structure between individuals is replaced
with a sample covariance matrix estimated from genome-wide
sets of SNP-markers. Here, we call this model the genomic
best linear unbiased prediction (G-BLUP) model (Meuwissen
et al. 2001; Habier et al. 2007; VanRaden 2008).

It is also possible to estimate SNP-heritability by fitting
thousands of SNPs simultaneously to the whole-genome
regression (WGR) model and applying variable selection
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for them (Meuwissen et al. 2001). This process is analogous
to performing the G-BLUP analysis with a trait-specific
relationship matrix having own variance component for
each SNP in the diagonal (Zhang et al. 2010; Resende et al.
2012; Shen et al. 2013). In general, such G-BLUP model is
equivalent to one WGR model called generalized ridge
regression model (Piepho et al. 2012; Shen et al. 2013;
Strandén and Garrick 2009). In simulations, WGR models
following the Bayesian alphabet (BayesA, Bayes B,
BayesC, etc.) have shown improved performance over G-
BLUP (de los Campos et al. 2013a, b). Moreover, WGR
models are more interpretable and so it is possible to
develop better priors which leads to the improved perfor-
mance. However, in practice, the G-BLUP model has been
adopted more often than the WGR model, due to its robust
performance in varying scenarios including different
genetic architectures (Wimmer et al. 2013). This fact is true
despite the strong assumption of equal weighting of loci in
the G-BLUP model. Additionally, there are various WGR
models proposed (Conti and Witte 2003; Sillanpdd and
Bhattacharjee 2005; Malo et al. 2008; Tsai et al. 2008;
Fridley and Jenkins 2010; Yang and Tempelman 2012; Yi
et al. 2015) in order to account for strong LD in the data.

Both G-BLUP and WGR models rely on the LD between
SNPs and QTLs. While many methods seek to increase
statistical power by better modeling of the LD, in some
cases, strong LD is a problem. For instance, when QTLs are
in strong LD, using the unweighted genomic relationship
matrix in G-BLUP can cause upward bias in the heritability
estimation (Speed et al. 2012; Fernando et al. 2017; Legarra
2016). Moreover when QTLs are in heterogeneous regions
with varying degree of LD between SNPs and QTLs in
each, the heritability estimate can be biased (Yang et al.
2015; Gusev et al. 2013; Yang et al. 2017). Therefore, there
is a need of correcting for LD in some way in G-BLUP and
WGR models.

To cope with strong LD in the G-BLUP context, the
following approaches have been proposed: (1) pruning or
“thinning” the SNP set (Purcell et al. 2007), (2) finding and
using haplotype tagging SNPs (Lin and Altman 2004; Meng
et al. 2003) and (3) using the LD weighting (Speed et al.
2012). Even if human geneticists and ecologists consider
SNP selection to be an option, animal and plant breeders are
more or less omitting it due to its minor influence on the
genomic breeding value estimates (Ober et al. 2012). In this
study, our main focus is on LD-correction and LD-
weighting. To improve SNP-heritability estimation from
genotype data, Speed et al. (2012) utilized LD information
to calculate better weights for the contribution of each SNP
to the genomic relationship matrix (GRM). This approach
was used to correct for uneven LD distribution between
SNPs in regions in which causal variants lie. Instead of
individual SNP weighting, we present a novel conceptual

framework that utilizes the linkage disequilibrium pattern
between SNPs to calculate the genomic relationship matrix.

Materials and methods

Let us consider the basic G-BLUP model:
y=Xp+72g+e¢ (1)

where y is an n x 1 vector of phenotypic observations, f is a
n x 1 vector of fixed (environmental) effects with design
matrix X, g is a n x 1 vector of random genetic effects with
design matrix Z and is a n x 1 vector of error terms,
~ N(0,I62), where o2 is the error variance. Let M be n x
m the marker matrix (n is the number of individuals and m is
the number of loci), for which the elements are coded as
—1, 0, and 1 for the homozygote, heterozygote and the other
homozygote genotype, respectively. Let the column i of
matrix P contains the allele frequencies as the difference
from 0.5 and multiplied by 2 (i.e., 2 (p; — 0.5), p; is the
frequency of the second allele). Then, the unscaled genomic
relationship matrix Gy can be calculated as:

Gy=27Z, Z=M-P. (2)

Here, the subtraction of P from M provide more credit to
the rare alleles. Following VanRaden (2008), the scaled
genomic relationship matrix (G), hereafter described as
VanRaden genomic relationship matrix (VanRaden G
matrix), can be calculated as: G = Gy/k, where the scaling
parameter k =2 p;(1 — p;). This scaling makes the scale
of G comparable to that of the additive genetic relationship
matrix calculated from the pedigree.

Here, the computation of the elements of the genomic
relationship matrix (genomic relationships between indivi-
duals based on the marker information) can be accom-
plished in many ways (Speed and Balding 2015). Most of
the current genomic relationship matrix computation
methods assume equal weighting of the markers.

Let us consider the unscaled genomic relationship matrix
(Gy) from Eq. 2): Gg=ZZ'. Here, Z=M — P, then Gy =
(M — P)(M — P)'. Furthermore, let I be an identity matrix
of order m (the number of markers). Then, Gy can be
represented as:

Go= (M —P)I(M—P). (3)

Thus, the construction of the unscaled genomic rela-
tionship matrix can be observed to include the same
weighting (the ones on the diagonal) for all markers.
However, in a breeding population, there exists correlation
between the loci due to linkage and various other factors. It
is thus important to consider this LD covariance structure in
the computation of the genomic relationship matrix.
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One of the easiest ways to account for the LD structure in
genomic relationship matrix calculation is to use the
squared Mahalanobis distance (Mahalanobis 1936; De
Maesschalck et al. 2000; Mitchell and Krzanowski 1985),
which can take the covariance structure of SNPs into
account. The concept of the Mahalanobis distance has been
used in various fields, including bioclimatic modeling
(Farber and Kadmon 2003) and outlier detection (Hodge
and Austin 2004). Given a matrix S which contains the
covariance structure of linkage disequilibrium (covariance
of SNPs), then the LD-corrected genomic relationship
matrix Gygg can be calculated as:

Gio = (M—-P)S'(M-P). (4)

Here, the right hand side of Eq. (4) represents the squared
multivariate Mahalanobis distance between individuals. The
Mahalanobis distance has the property of projecting
measurements to the space where independence holds,
and it measures a distance between the individuals therein
(see appendix for details). Note that a density function of
the multivariate normal distribution uses Mahalanobis
distance and thus it is very commonly applied procedure
in practice. To simplify the example analyses, we estimated
the LD structure for each chromosome independently (i.e.,
we assumed there is no dependence between the different
chromosomes) and merged them together to form a single
block-diagonal matrix, which contains the LD covariance
structure for all the chromosomes. VanRaden (2008) used a
genome-wide scaling factor that is averaged across all
SNPs. When the markers are assumed to be independent,
this scaling factor can be seen as, 2pI (1 — ), here, I'is an
identity matrix with the order of number of markers, p is a
vector of allele frequncies. Thus, the scaled version of the
LD-corrected genomic relationship matrix (Gyq) is calcu-
lated as follows:

_ Giao
2pS~'(1-p)

Here, matrix S contains the covariance structure of linkage
disequilibrium pattern between the SNPs. Hence, in model
(1), the random genetic effects can be assumed to follow a
normal distribution as: g ~ N (O,Gldaé), where a§ is the
genomic variance. The mixed model equation (Henderson
1984) for the model (1) is as follows:

X'X X'Z Bl XYy ©)
ZX ZZ7Z+G'allg| |Zy

Here, G corresponds to different GRMs (LD-corrected,
VanRaden G matrix or LDAK) used in this study and
a = o;/op. Scaling of GRM does not influence on the
prediction accuracy of genomic breeding values but still
influences on the variance components and therefore SNP-
heritability estimates. We used the function kin.blup in R-

(5)

Gia
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package’rrBLUP’ (Endelman 2011) to solve Eq. (6) to
estimate the genomic breeding values (g) and variance
components (the function uses restricted maximum like-
lihood (Patterson and Thompson 1971) approach) using
different GRMs with the G-BLUP model. For under-
standing the relationship between the genomic breeding
values estimated using mixed model and the SNP effects
estimated using WGR model (ridge regression) see Piepho
et al. (2012).

See appendix for details of the different approaches to
calculate the LD covariance for each marker pair in matrix S
of Eq. (4).

Example analyses

To demonstrate the superiority of our new approach, we
used the following publicly available datasets in maize, rice
(real and simulated phenotype), mice, human (simulated
phenotypes) and cattle (simulated phenotypes). Before the
analysis, we removed the duplicated markers (which
showed more than 99% correlation) and only retained SNPs
with minimum allele frequency greater than 5%. We also
compared our results to those obtained using the LDAK
(version 4.9, Speed et al. 2012) and GCTA (Genome-wide
Complex Trait Analysis, Yang et al. 2011) packages.
LDAK uses LD weighting to improve the SNP-heritability
estimation and genomic prediction accuracy whereas GCTA
uses a different scaling than VanRaden approach (see
Uemoto et al. 2015 for the differences in the scaling factor
used by different methods). “The goal of the [LDAK
weighting] is that the signal from each SNP is down
weighted so that replication of its signal by neighboring
SNPs can be compensated for” (Speed et al. 2012). Van-
Raden approach implicitly assumes SNP effects and allele
frequencies are independent, which would be true under
evolutionarily neutral model. GCTA implicitly assumes rare
variants tend to have larger effects, consistent with a model
of purifying/stabilizing selection. LDAK is available at
www.ldak.org/ and GCTA under http://cnsgenomics.com/
software/gcta/.

Simulated datasets

In order to show the superiority of our new approach, we
simulated two datasets one with high LD (rice data) and
another with relatively low LD (human data).

Simulated human dataset—Ilow LD case

Simulated human phenotypes were generated using the

GCTA package conditionally on real genotype data and
selected 10% of the total loci (from the LD pruned subset)
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serving as QTLs, where the marker effects were generated
from a standard normal distribution. For the simulation we
obtained the human HapMap3 (available under www.sa
nger.ac.uk/resources/downloads/human/hapmap3.html)
dataset and we selected population the Maasai in Kinyawa,
Kenya (MKK) with 171 individuals for our study. To imi-
tate low LD situation, we selected a subset of 3024 SNPs
from the chromosome 22 based on LD pruning using the
PLINK software. Here, the criterion for LD pruning was set
so that we had about 3000 markers. Due to LD pruning the
amount of LD in the dataset ended up being very low.
Using the subset of SNPs we generated 100 simulation
replicates of the phenotype with a heritability of 0.7 using
the GCTA package.

Simulated rice dataset—high LD case

The rice data (following section we provide more details
about the data set) showed very high LD and we used the
3290 SNPs from the second chromosome in order to
simulate the phenotypes. Based on the subset of SNPs we
created 100 simulation replicates of the phenotypes con-
ditionally on real genotype data using the GCTA package
with a heritability of 0.7. We selected 10% of the total loci
(from the LD pruned subset) serving as QTLs and the
marker effects were generated from a standard normal
distribution.

Maize dataset

We used the maize'IBM 302 population’ (Sharopova et al.
2002; Lee et al. 2002), which was developed as part of the
Maize Mapping Project, for the analysis. The population
consists of 302 lines which had genotypes at 1252 simple
sequence repeats (SSR) markers and phenotypes for the trait
‘leaf greenness’. The dataset is available at http://archive.ma
izegdb.org/qtl-data.php. We selected this dataset because
(1) it is an out-breeding population, (2) it was developed as
a part of a mapping project and (3) its genetic map positions
are available at high accuracy. Additionally, plotting the
magnitude of LD against the genetic distance in the dataset
resulted in a picture with a clear LD decay pattern (see
Fig. 1) as was expected based on points 1 and 2 above.
Hence, we used the maize’IBM 302 population’ to illustrate
our LD decay approach together with the observed LD
approach.

Rice dataset

This dataset consists of 413 diverse accessions of O. sativa
(Zhao et al. 2011) collected from 82 different countries. The
lines were genotyped using 36,901 SNP markers. Pheno-
typic information was available for 34 traits, and we

analyzed the trait’amylose content’ in this study. The dataset
is publicly available at http://www.ricediversity.org/data/.
The phenotype information was missing for 20 lines, so the
remaining 393 lines were used for our analysis. The com-
putational complexity of estimating pairwise LD for all
possible pairs of markers increases rapidly with increasing
number of loci (even if it is being computed for each
chromosome separately). Thus, after removing the mono-
morphic markers, we received 36,901 SNP markers in the
rice dataset. Of these, we selected a subset of 3315 markers,
which were as evenly distributed along the genome as
possible, for the analysis. To ensure that we did not lose too
much prediction accuracy in the smaller subset due to the
marker selection, we calculated the correlation coefficient
between the genome estimated breeding values (GEBVs)
and the true phenotypes for the subset and the whole dataset
using G-BLUP of VanRaden (VanRaden 2008). The
obtained correlation coefficients were roughly comparable,
at 0.86 and 0.88 for the subset (3315 SNPs) and the whole
dataset (36,901 SNPs), respectively. We also examined
possible exponential patterns of LD decay from the dataset
but were unable to find any clear indications of this (see
Fig. 2). Rice is a self-pollinating plant and moreover there is
an admixture between populations in this dataset as reported
by Zhao et al. (2011). So as shown in Fig. 2, it was apparent
that there is no clear exponential decay of LD in the dataset.
Therefore, we used this dataset to validate our observed LD
approach only.

1.00 -

0.75 -

0.50 -

Linkage Disqulibrium (RQ)
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Distance in centimorgans (cM)
Fig. 1 In maize, the linkage disequilibrium estimates (R?) between
pairs of marker loci plotted against the genetic distance. To estimate

the R? values we used 128 polymorphic markers selected from the
second chromosome
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Mice dataset

We selected datasets from animal studies to illustrate our
new approach in the context of animal genetics. This dataset
contains data from a heterogeneous stock mouse population
(Valdar et al. 2006a) of 2527 individuals. In this population
1940 individuals are genotyped with 12,545 biallelic SNP
markers. In this study, we concentrated on the trait 'body
weight’, which was measured at the age of 6 weeks. Due to
the computational complexity, for the mice dataset, we
selected a subset of 2336 markers out of the total 12,545
markers. The selected markers were equally distributed
along the genome. Then, we obtained the prediction
accuracies for the subset (r = 0.77) and the whole dataset (r
=0.80) using G-BLUP of VanRaden (VanRaden 2008)
approach, which indicated that the prediction accuracy was
not significantly lower for the subset. The genotype and
phenotype information of the individuals are available from
http://mus.well.ox.ac.uk/GSCAN/index.shtml/.

Cattle dataset

This dataset is publicly available as a part of the R pack-
age’SynbreedData’ (Wimmer et al. 2015). In this dataset,
500 bulls were genotyped using 7250 SNP markers. The
phenotype was generated using simulation and the pedigree

relationships between the animals are known for the dataset.
Thus, it is possible to compare the heritability estimates

0.4 -

0.3 -

0.2 -

Mean of Linkage Disqulibrium (R?)

0.1-

0e+00 1e+07 2e+07
Distance in base pairs

Fig. 2 The mean LD decay plot of 2165 SNP markers selected from
the 12th chromosome of the rice dataset. Here, the X-axis represents
the distance in base pairs, and the Y-axis corresponds to the mean of
pair wise linkage disequilibrium estimate (R?) values from a bin length
of 100
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from the pedigree-based genetic relationships under the
infinite locus model to that of marker-based genomic rela-
tionships under the finite locus model. For the cattle dataset,
we took a subset of 3998 SNPs, which were equally dis-
tributed along the genome, for the analysis. Here, also we
looked at the prediction accuracies for the subset and whole
dataset. These were r=0.83 and r=0.80, respectively,
according to the G-BLUP of VanRaden approach.

Results

Our primary interest was to illustrate the improved SNP-
heritability estimation of our new Mahalanobis distance
based LD-corrected genomic relationship matrix using the
restricted maximum likelihood (REML) method. Addition-
ally, we wanted to show the improved out-sample predic-
tion accuracy of the LD-corrected genomic relationship
matrix in the context of genome-enabled breeding value
prediction using G-BLUP approach. To achieve these goals,
we calculated the correlation coefficient (r) between the
GEBVs and the true phenotypes and compared their values
to those provided by the G-BLUP of VanRaden approach
(VanRaden 2008). The results are presented in the follow-
ing section.

SNP-heritability

In a recent study, Speed et al. (2012) pointed out the
importance of accounting for LD while estimating the
narrow-sense heritability using genome-wide SNP markers.
Subsequently, they proposed a weighting approach for
calculating an LD-corrected genomic relationship matrix for
improved genomic heritability estimation. To this end, we
compared our approaches to their approach to determine
whether our Mahalanobis distance-based LD-corrected
genomic relationship matrices could improve the herit-
ability estimates using genome-wide markers. The narrow-
sense SNP-heritabilities (hz) were estimated using our LD-
corrected genomic relationship matrix in the G-BLUP
model as: h* =02/ (6§ +0;). Here, o, and o, are the
genomic and residual variances, respectively. In following,
GCTA and LDAK estimates were obtained using GCTA
and LDAK packages respectively, whereas the other esti-
mates were obtained using irTBLUP’ package.

Estimation accuracy of SNP heritability in simulated
data sets

Analysis of human simulated data

In order to compare the estimation accuracy of SNP herit-
ability in human simulated data, first we estimated the
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narrow-sense heritability using 100 simulation replicates
with different approaches. Figure 3 summarizes the box
plots for the estimation errors (difference between the true
and estimated heritability values) to visualize the estimation
accuracy of different methods. Here, Y-axis corresponds to
the differences between the true simulated and the estimated
SNP heritability, whereas the X-axis corresponds to differ-
ent GRM estimation methods. Based on results from Fig. 3,
one can conclude that in the low LD situation, our observed
LD approach provided same estimation accuracy like the
competing methods (VanRaden and GCTA). Moreover, the
estimation accuracy of LDAK was slightly better than that
of our approach, VanRaden and GCTA. This is likely due to
the fact that LDAK has been optimized for low LD
situations.

Analysis of rice simulated data

Figure 4 summarizes the box plots for the estimation errors
(difference between the true and estimated heritability
values) to visualize the estimation accuracy of different
methods with the rice data, which corresponds to high LD
situation. Here, Y-axis corresponds to the differences
between the true simulated and the estimated SNP herit-
ability, whereas the X-axis corresponds to different GRM
estimation methods. From Fig. 4, one can conclude that in
the presence of high LD, our observed LD approach pro-
vided better estimation accuracy than the competing meth-
ods (VanRaden, GCTA, and LDAK). Thus our approach
seems to work better in presence of high LD.

0.2 -

0.0 -

Deviation from the true values

Obs. LD-G VanRaden G

Method

GCTA LDAK

Fig. 3 Low LD case: Box plots for the estimation error of heritability
based on different approaches to calculate the genomic relationship
matrix (GRM) using 100 simulation replicates with the human data.
Here the Y-axis scale corresponds to the difference between the true
simulated heritability and the estimated heritability values whereas X-
axis corresponds to the different approaches to calculate the GRM

SNP heritability in other datasets

Of the 302 lines in the maize dataset phenotype information
for the trait 'leaf greenness’ was available for 270 lines. We
also observed a clear exponential decay of LD (Fig. 1) in
the dataset. We then used an expected LD decay-based
approach (as a function of the genetic distance) to estimate
the LD-corrected genomic relationship matrix. As shown in
Fig. 1, the LD appeared to vanish rapidly after 20 cM.
Therefore, in Eq. (7), we used different values of 4 (between
20 and 30) to characterize the LD covariance structure.
Following Egs. (4) and (5), we calculated the scaled LD-
corrected genomic relationship matrix (Gyq) for each 1. We
then estimated the correlation coefficient () between the
GEBVs and the true phenotypes based on our new Gy
matrices (for different 4 values). We chose 4, which gave
the highest correlation (for whole data set) and was at A =
26.

The exponential decay of LD may be slightly different
for different chromosomes, and finding the optimal 1 is
difficult and time-consuming. Therefore, we also used our
observed LD-based approach to estimate the LD-corrected
genomic relationship matrix. First, we calculated the pair-
wise LD estimates (D) for all marker pairs on each chro-
mosome using the R-package called ‘genetics’ (Warnes and
Leisch 2006) (note that some of the LD estimates were
negative, and we kept those values unchanged). We then
merged all chromosome-specific LD matrices together to
form the LD covariance structure matrix S for the whole
genome and estimated the unscaled LD-corrected genomic

0.2-
0.1-

0.0-

Deviation from the true values
|
o

o L B

GCTA LDAK Obs. LD-G

Method

VanRaden G

Fig. 4 High LD case: Box plots for the estimation error of heritability
based on different approaches to calculate the genomic relationship
matrix (GRM) using 100 simulation replicates with the rice genotypes.
Here the Y-axis scale corresponds to the difference between the true
simulated heritability and the estimated heritability values whereas X-
axis corresponds to the different approaches to calculate the GRM
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relationship matrix (Gyqg) using Eq. (4), before scaling it
using Eq. (7). By applying the REML estimation to our
exponential LD decay based genomic relationship matrix,
G-BLUP provided an estimated genomic heritability of
0.16, with oﬁ =3.67 and of =19.46. By contrast, the
observed LD-corrected matrix led to an even higher SNP-
heritability estimate of 0.22, with O'§ =4.70 and ag =16.51.
The SNP-heritability estimate using a common genomic
relationship matrix was approximately 0.14, with a genetic
variance 0§ of 3.17 and a residual variance (63) of
19.73. Similarly, the LDAK based SNP-heritability estimate
was 0.28, with a§:7.30 and o2 =18.66, whereas, the
GCTA provided a heritability estimate of 0.14 with, 0§ =
3.14 and 62 = 19.79. The high SNP-heritability estimate of
LDAK for maize dataset, where degree of LD is low, may
be due to the default settings of weighting parameters in
LDAK which are optimized especially for low-LD datasets.

The rice population did not show any signs of an
exponential LD decay pattern (Fig. 2), so we only used the
observed LD-corrected genomic relationship matrix for the
estimation of genomic heritabilities using the G-BLUP
model. For the rice dataset where degree of LD is high,
estimates from our approach were close to VanRaden
approach. Whereas the SNP-heritability estimate of LDAK
were lower than estimates of the other methods. This may
be due to the fact that LDAK weighting parameters are
tuned for the human datasets and these parameters may not
be optimal for high-LD datasets. For the mice data, the
pedigree-based heritability estimate (obtained using additive
genetic relationship matrix calculated from the pedigree)
provides natural comparison point for genomic heritability
estimates. The genomic heritability 0.63 for mice subset of
observed LD-G approach was more close to the pedigree-
based estimate 0.74 as reported by Valdar et al. (2006b).
The estimates of other approaches were lower (0.50-0.59).
Also in cattle data, the genomic heritability 0.27 of
observed LD-G approach was again the highest and most
close to the pedigree-based estimate 0.41. The other
approaches obtained lower values. Table 1 summarizes the

genomic heritability estimates obtained using our LD-
corrected and other (VanRaden, LDAK, and GCTA)
genomic relationship matrices in G-BLUP model with dif-
ferent datasets.

Genomic prediction

We also performed a genomic prediction (out-sample pre-
diction) using five-fold cross-validation (Stone 1974) with
four (rice, maize, mice and cattle) datasets. For the five-fold
cross-validation (CV), we used 80% of the data points as
the training set and the remaining 20% as the validation set.
To remove the influence of random partitions on the accu-
racy, we repeated the cross-validation procedure 500 times
and took the mean value; Table 2 summarizes these results.
Our observed LD-based genomic relationship matrix pro-
vided better prediction accuracies for all datasets expect that
of the maize population. It is already known that population
structure has a profound effect on the genomic prediction
accuracies. Our principal component analysis (PCA) (Jol-
liffe 2002) based plots (Fig. 5) indicated the presence of
population structures for rice, mice and cattle datasets. So
we also estimated the out-sample prediction based on 500
CV replicates by including the first three principal compo-
nents in the model for the rice dataset, in order to assess the
effect of population structure on prediction accuracy.
However, this approach did not show any improvement to
the prediction accuracy in rice dataset. We also applied
stratified random sampling to assess the impact of the
population structure on the genomic prediction accuracies
with our datasets. To this end, we estimated the sub-
populations using the k-means clustering with the R-pack-
age’adegenet’ (Jombart 2008). Then, from each
subpopulation we selected 20% observations and formed
the validation set. However, the subpopulation-based cross-
validation with the different genomic relationship matrices
(common G, LDAK weighted G and observed LD-G) did
not show any improvement in the genomic prediction
accuracies (results are not shown) compared to the random

Table 1 The REML-estimated

. Type of matrix Maize Rice Mice Cattle

variance components and

narrow-sense SNP-heritability 05 o2 2 05 o> W2 6,23 o? > 62 o n?

estimates of the four G-BLUP - -

mixed models (with differing VanRaden G matrix 3.17 19.73 0.14 039 046 046 8.12 5.68 059 48.68 193.90 0.20

genomic matrices) for the maize, LDAK weighted G 7.30 18.66 0.28 0.34 0.52 040 6.14 6.25 0.50 50.19 192.02 0.21

rice, mice and cattle datasets
GCTA 3.14 19.79 0.14 038 049 043 7.01 6.04 054 5125 190.67 0.21
Expected LD-G 350 1946 015 — @ — — — — — — — —
Observed LD-G 47 1651 022 036 042 046 9.81 568 0.63 6027 186.20 0.27
Pedigree based - — - = = — —  — 074 9955 142.80 041

Additionally, similar estimates, based on the pedigree-derived additive genetic relationship matrices are
given for the mice and cattle datasets
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sampling cross-validation results (Table 2). Habier et al.
(2007) showed that the presence of close relatives in the
training dataset may inflate the genomic prediction accura-
cies. So we also checked for the proportion of close rela-
tives in our real datasets by plotting the distribution of the
upper off-diagonal elements of the genomic relationship
matrix (Fig. 6). The plot for the rice population is bimodal
so that many individuals have genomic relationship values
close to —1, which may indicate the recent admixture in the
population. From Fig. 6 it can be concluded that, close

Table 2 Average out-sample prediction accuracy (measured as the
correlation between the GEBVs and the true phenotypes) of four G-
BLUP mixed models (with differing genomic matrices) determined by
5-fold cross-validation for the maize, rice, mice and cattle datasets
calculated over 500 random partitions of data

relatives are present in the rice dataset while maize, mice
and cattle populations seem to be more unrelated.

The PCA plot based on the rice genotype information
indicated the presence of an admixed population (marked in
red in Fig. 5), which was already reported by Zhao et al.
(2011). So we decided to compare the genomic prediction
accuracies for the admixed population with different genomic
relationship matrices. For that, we selected only the lines
belonging to the admixed population as the validation set and
obtained genomic prediction accuracies using 10-fold cross
validation (note that there were insufficient amount of
observations in the admixed population to perform 20%
cross-validation, so we used 10% cross-validation) with 100
re-samples. In this case, our observed LD-based genomic
relationship matrix showed improvement with a genomic
prediction accuracy (r) of 0.38 compared to VanRaden G
matrix (r=0.32) and LDAK weighted G (r = 0.32).

Type of matrix Maize Rice Mice Cattle
VanRaden G matrix 0.22 0.44 0.50 0.18 Di .
LDAK weighted G 0.24 0.41 0.52 0.18 Iscussion
Expected LD-G 0.23 — — — . . c . . .
Observed LD-G 0.23 0.45 0.53 0.19 LD is the fundamental basis of association mapping studies
_ i i i i as well as that of “Genomic selection” (Meuwissen et al.
Fig. 5 Population structure plot Maize Cattle
for the maize, rice, mice and . d
cattle datasets. This scatter plot eg0 & ° 40 °
presents the first two principal 10 4 ¢ ' ° '. S,
components (PC1 and PC2) with o o S o gfeg® oo
each point representing a single ° ‘0' CeS “ 3 :" % o
individual. In the rice dataset, d '.":‘ : o ‘&’. .3:. . 20 -
the individuals that do not N . :3 “ g N3soe N
clearly belong to any of the three Q 0- o . ¢ 0?.‘0 "'.‘ X 2K i Q .
original populations (corners) e P o %o o ’! .,..". - %
are considered to represent the ’.’.,"3':. ;. *2° . 0- Y
out group—admixed QC :\..':: °* . ANER
individuals, and the -0 - ': = 2 :. - s .0:
corresponding points in the plot ° ee %o ‘:.0':
are indicated with a red color peo °
° -20
e b i N
Rice Mice
20 - e, %
N ° . 10 -
® o0’
N 1 ‘: ¢ 4 8§
o ° ".. [ ] .. o 0 -
-20 - & (]
.. % -10 -
40 20 0 20 40 20 ~10 0 10
PC1 PC1
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Fig. 6 Histograms of the upper off-diagonal elements of the genomic relationship matrix calculated using VanRaden (2008) approach in maize,

rice, mice, and cattle datasets

2001). Moreover, LD plays a crucial role in evolutionary
biology and provides information about the population
history and the response to selection. Many studies have
pointed out the importance of understanding the patterns
and distributions of LD in humans (Flint-Garcia et al. 2003)
as well as in other species, including animals (Qanbari et al.
2010) and plants (Ardlie et al. 2002). Meanwhile, it is
evident that the pattens of LD in a population are strongly
dependent on the population substructure (e.g, Gilad et al.
2002; Fricano et al. 2012; Chen et al. 2012). There are
various methods proposed to correct for the population
structure in association mapping studies (Yu et al. 2006;
Kang et al. 2008; Sillanpéi 2011b). However, less focus has
been given to the importance of accounting for population
structures in the estimation of genomic breeding values and
heritability. Also, the relationship between epistasis and LD
needs to be clarified in the estimation of genomic breeding
values and heritability (e.g, Phillips 2008, Hemani et al.
2014). Arguably, LD can be considered a confounding
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factor along with the epistasis, population structure and
genetic admixture.

In this study, a new approach to construct the genomic
relationship matrix in the presence of strong dependence
between collected SNPs is presented. This approach is
based on, first estimating the pairwise observed LD from the
marker data and then correcting the LD away from the
SNPs using a Mahalanobis distance based formulation of
the genomic relationship matrix. Based on our presented
analyses, this method seems to be especially helpful for
SNP-heritability estimation, but it also provides improve-
ment for genomic prediction accuracy in the presence of
population structure (because many of our tested datasets
included strong population substructures). Our results also
support substantial improvements for genomic prediction
accuracy in populations that have experienced recent events
of population admixture. This result is in contrast to the
large number of other studies in which disappointingly low
genomic prediction accuracies have been observed for
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admixed individuals (e.g., Vallee et al. 2014; Hidalgo et al.
2015). Why is genomic prediction accuracy usually much
lower for admixed or multi-breed populations? In brief, if
two populations in Hardy-Weinberg proportions and with
divergent allele frequencies are analyzed together, as is
performed in multi-breed genomic evaluations, the com-
bined (or admixed) population may have a large amount of
LD simply due to the process of combination (e.g., Ewens
and Spielman 1995). This LD may then cause false positive
signals for some loci, which do not have any connection to
the studied trait in question. In the following section, we
briefly discuss about population structure, which is mainly
co-founded with the pattern of LD in the genome.

To study the impact and to correct for the population
structure in genomic prediction as well as in the estimation
of genomic heritability, de los Campos et al. (2010), Janss
et al. (2012) and Guo et al. (2014), have considered the
eigenvalue decomposition of G-matrix, which can be uti-
lized to reparametrize the G-BLUP model to the form of
principal component regression, in which the population
structure can be separated and controlled. We argue that the
population structure problem is essentially the LD problem
in the data, and our observed LD-corrected G-BLUP model
may be capable of doing something similar to principal
component regression by transforming the estimated pair-
wise LD patterns away from the G-BLUP model. Our
example with the rice data, in which a strong population
admixture is present, suggests this type of behavior. How-
ever, sufficient validation of this claim will need to be
completed in subsequent research.

In a conclusion, we hope that our method will open new
avenues for SNP-heritability estimation as well as genomic
prediction. Despite the good results, our method seems to
generate more questions than answers. Moreover, unlike the
competing methods our new approach is not able to include
hundreds of thousands of markers in SNP heritability esti-
mation due to the computational burden: (1) to estimate the
pairwise LD for all marker pairs, and (2) to invert the LD
structure matrix S of Eq. (4). In our example analysis, the
pairwise LD calculation of the rice data with 393 lines and
3315 markers took around 90 min. For fast inversion of
large S matrix, one could consider having non-zero LD
values only at nearby markers or markers within a certain
window/band, resulting in tridiagonal, five-diagonal, or
banded matrix, where sparse matrix inversion techniques
could be applied. Of course, it is very likely that other
methods together with hundreds of thousands of SNPs may
outperform our method with much smaller number of SNPs.
Even though, there is a clear trade off between accuracy of
the heritability estimation and the computation time, we still
believe that our new proposed conceptual framework is able
to provide the basis for GRM development towards
improved SNP-heritability estimation.
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Appendix

Mahalanobis distance

We try to give insight here what is happening in
Mahalanobis distance. It is important to note that multi-
plication with matrix inversion is kind of a similar operation
than standardization (division with a square root of var-
iance) for a single variable. First, let us consider normally
distributed multivariate data with covariance matrix S,
~N (0, Saf), where O'? is a scaling factor. Then, consider
Cholesky factorization for symmetric covariance matrix S
= LL' where L is a lower diagonal (or square root) matrix
which is also called as a Cholesky factor of S. Squared
Mahalanobis distance of Eq. (4) in the main text can then be
represented using Cholesky factors as:

M—P)S'(M—P) = (M—P)(LL)"' (M —P)
= M-P)(L) (L)(M-P)
= (M- R) (L) (M- P
— (L M- B)) (L (M- PY)
=TT

Here T=L '(M — P represent the transformed variables
and T'T the squared Euclidean distance between trans-
formed variables. In other words, the Mahalanobis distance
accounts covariance between variables by transforming the
data into uncorrelated form and then computing the ordin-
ary Euclidean distance for it.

Different methods to calculate the LD between
markers
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Expected LD decay approach

In a random mating population, the magnitude of LD due
to the physical linkage (with a close linkage of the two loci)
depends on the exponential decay on the distance between
the two loci. However, the LD may also be due to reasons
other than the close linkage of the loci, such as selection,
drift or population events. Therefore, exponential decay
may not accurately describe all possible LD in the data. The
genetic map distance between the loci is measured in
Morgans and can be converted to recombination fre-
quencies using map functions (e.g., the Haldane function).
We therefore used the map position in an exponential
function to estimate the covariance structure of the LD on
each chromosome. Given, S, a matrix representing the
covariance structure of the linkage disequilibrium, then the
covariance (i, j) elements of S can be calculated as follows:

Sy = exp(—Ady) (7)

Here, d;; is the map position or distances between (i, j) in
Morgans and A is the smoothing parameter controlling the
rate of LD decay. The parameter A is highly population
specific, and the optimal 4 can be chosen by cross-
validation. Thus, we select the A that gives the highest
prediction accuracy.

Observed LD approach

The decay of the LD is affected by many factors, such as
gene flow, genetic drift and selfing. In self-pollinating
crops, LD decay is delayed due to selfing. The population
history also has a tremendous impact on the patterns of LD
(Pritchard and Przeworski 2001). Additionally, the presence
of haplotype blocks (Daly et al. 2001; Patil et al. 2001; Wall
and Pritchard 2003) makes the patterns of LD highly
unpredictable and noisy. Thus, the expected decay of LD
may not be true in all the populations under consideration.
We therefore used the observed distribution of LD instead
of the theoretical (exponential decay) distribution to obtain
the covariance structure of LD, for populations that deviate
from the exponential decay of LD. The amount of LD (D),
between alleles (A and B) at two neighboring loci can be
expressed as:

Dag = Pap — PAPg (8)

Here, P,g and PPy are the observed and expected
haplotype frequencies, respectively. The coefficient of LD
(D) is a standard measure of LD and captures the extent of
non-random allelic association between two loci. Different
variants of D, including the standardized version (D',
Lewontin 1964) and a measure of the correlation coefficient
(%, Hill and Robertson 1968), have been proposed to
quantify LD, to capture different attributes of nonrandom
association. However, LD is a complex phenomenon and no
single statistic can capture it (Hedrick 1987; Lewontin
1988; Slatkin 1994). All of these variants are directly
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related to D, so in our study, we used estimated D values to
represent the covariance structure of LD between markers.
For the calculation of the LD covariance structure (S)
matrix, we first calculated the coefficient of disequilibrium
for all marker pairs on each chromosome separately and
then merged the values together in such a way that the LD is
always zero between markers on different chromosomes.
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