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Abstract

Background: In early Drosophila embryos, the germ plasm is localized to the posterior pole region and is partitioned into
the germline progenitors, known as pole cells. Germ plasm, or pole plasm, contains the polar granules which form during
oogenesis and are required for germline development. Components of these granules are also present in the perinuclear
region of the nurse cells, the nuage. One such component is Tudor (Tud) which is a large protein containing multiple Tudor
domains. It was previously reported that specific Tudor domains are required for germ cell formation and Tud localization.

Methodology/Principal Findings: In order to better understand the function of Tud the distribution and functional activity
of fragments of Tud were analyzed. These fragments were fused to GFP and the fusion proteins were synthesized during
oogenesis. Non-overlapping fragments of Tud were found to be able to localize to both the nuage and pole plasm. By
introducing these fragments into a tud mutant background and testing their ability to rescue the tud phenotype, I
determined that the C-terminal moiety contains the functional activity of Tud. Dividing this fragment into two parts reduces
its localization in pole plasm and abolishes its activity.

Conclusions/Significance: I conclude that the C-terminal moiety of Tud contains all the information necessary for its
localization in the nuage and pole plasm and its pole cell-forming activity. The present results challenge published data and
may help refining the functional features of Tud.
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Introduction

In a wide variety of animals, germ cells are formed in a

specialized region of the egg cytoplasm, called the germ plasm,

which contains characteristic electron-dense organelles, the

germinal granules [1,2]. In Drosophila, assembly of the germinal

granules, or polar granules [3], requires the function of maternal-

effect genes. Among these genes are oskar, vasa (vas), tudor (tud), and

valois (vls) which are essential for the formation of pole cells, the

germline progenitors [4]. These genes produce proteins that

localize to the polar granules [5–9]. Three polar granule

components, Tud, Vls, and Vas, are also present in a distinct

structure at the periphery of nurse cell nuclei, the nuage [6,9,10].

tud was the first member of the posterior group of genes

identified in Drosophila. tud is necessary for germline specification

but is largely dispensable for abdomen formation [11,12]. Polar

granules are reduced in number and size in strong tud mutants

[11,12]. By comparison to the other nuage and polar granule

components Tud displays specific characteristics: it is not required

for the repression of heterochromatin retrotransposons [13] and

furthermore Tud is bound to the fibrous material connecting polar

granules and mitochondria [14]. A role for Tud in the association

of polar granules with mitochondria is questionable because in tud

null mutant oocytes the polar granules are abnormal in size and

electron density, but still remain associated with mitochondria

[12]. However, tud is involved in the transport of mitochondrial

ribosomal RNAs from mitochondria to polar granules [14] and

thus the assembly of mitochondrial-type ribosomes in these

structures, which is necessary for pole cell formation [15].

The main structural feature of Tud protein is the presence of

multiple repeats of a conserved domain, called the Tudor domain,

which is found in proteins from a wide variety of organisms

(reviewed in [16]). Tudor domain-containing proteins have been

shown to interact with other proteins and efficient binding requires

either methylated arginine or methylated lysine residues in the

target protein [17–21]. For example, the Tudor domain of the

Survival Motor Neuron protein binds directly to Sm proteins during

spliceosome assembly [17,21–23]. Two repeats of a Tud domain

were identified in the N-terminal domain of the Fragile X Mental

Retardation Protein, and one of these domains was shown to

interact with methylated lysine [24]. Structural analysis of Tud

domains from different proteins revealed that these domains can

either fold into a single barrel-like structure [23] or form an

intertwined structure consisting of two Tud domains [25]. Tud

protein was shown in vitro to interact with the Capsuléen

methyltransferase and Vls, which are components of the methylo-

some in Drosophila [9,26]. The methylosome is responsible for the

production of symmetrical di-methyl-arginine (sDMA) residues.
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Tud has been shown to interact with Sm [26] and Aubergine

[27,28] proteins in an sDMA-dependent manner, confirming that

Tud, like other proteins in the family, bind to methylated substrates.

Characterization of multiple tud alleles, as well as the analysis of

transgenic lines expressing tagged-Tud versions, have been reported

[29]. Embryos produced by females carrying certain tud alleles form

some germ cells, and these embryos grow up into fertile adults

[11,29]. One such mutant includes tudA36 which has a point mutation

in the first Tudor domain, suggesting that this Tudor domain may not

be crucial for germ cell formation. By contrast, tudB42, a point

mutation in another Tudor domain, produces no germ cell. Because

point mutations in tudA36 and tudB42 affect the equivalent arginine in

these Tudor domains, a more specific function in germ cell formation

for the domain affected in tudB42 has been suggested [29]. However,

because TudB42 is not localized at the posterior pole [29], whether the

Tudor domain altered in TudB42 is necessary for the biochemical

activity of Tud remains to be elucidated.

One Tud version, called mini-Tud D1 protein, localized to the

nuage but not to the germ plasm whereas another one, called

mini-Tud D3 protein, failed to localize to the nuage during late

oogenesis but localized well to the germ plasm of oocytes and early

embryos. Because mini-Tud D3, but not mini-Tud D1 protein, is

able to support germ cell formation, the authors conclude that

Tud localization to the nuage is not absolutely required for germ

cell formation and that specific Tudor domains control Tud

protein localization [29].

Here I sought to determine by analyzing the activity of

contiguous fragments which part of Tud mediates its localization

in the nuage and pole plasm during oogenesis and to identify the

functional part of Tud.

Results

Multiple domains in Tud direct its localization to nuage
and pole plasm

The tud gene encodes a relatively large protein of 2515 amino

acid residues with an approximately molecular mass of 285 kDa

[6]. By using hydrophobic cluster analysis the Tud protein has

been reported to contain 8 Tudor and 2 more divergent Tudor-

like domains [30] (Figure 1A). Based on sequence similarity, an

additional domain (located between domains 29 and 3) has been

putatively identified by Talbot et al. [31]. Several discrete

segments of Tud were previously shown to bind either Vls [9] or

SmB [26] and thus I was interested to find out which parts of Tud

could direct its localization to nuage and pole plasm. For this

purpose transgenic lines that synthesize a series of different Tud

polypeptides fused to GFP were generated. The transgenes were

expressed during oogenesis under the control of the vas promoter

[32]. Three segments of Tud, JOZ (amino acid residues 3-273),

9A1 (residues 198-1199) and 3ZS+L (residues 1198-2515) [33]

together comprising the complete Tud protein (Figure 1A), were

cloned in frame with the GFP protein.

The relative amount of Tud polypeptides synthesized in

transgenic females was first monitored. Western blot analysis of

ovarian extracts using anti-GFP antibodies revealed detectable

levels of Tud-GFP polypeptides in all transgenic flies (Fig. 1B).

The distribution of the Tud polypeptides in the ovaries of

transgenic flies was then determined. With the exception of the

Tud-JOZ polypeptide, which accumulates in the nuclei of both

nurse cells and oocyte (Fig. 2A), the two other Tud polypeptides

were detected in the nuage and pole plasm (Fig. 2B–C). Notably, the

Tud-9A1 polypeptide was also found in particles dispersed in the

cytoplasm of nurse cells and in the oocyte of previtellogenic egg

chambers (Fig. 2B, left panel). Tud-9A1 was found to be targeted to

the posterior cortex of vitellogenic stage 10 oocytes but was

undetected in the nuage at this stage (Fig. 2B, right panel).

Interestingly the C-terminal 3ZS+L polypeptide was still detected in

the nuage when it accumulated at the posterior pole of the oocyte

(Fig. 2C, right panel). This pattern of distribution resembled that

seen for the full length Tud protein. When the 3ZS+L encoding

sequence was cleaved into two segments producing the 3ZS+L-N

and 3ZS+L-C polypeptides (residues 1198–1981 and 1941–2515,

respectively, [9] Anne and Mechler, 2005), both polypeptides could

still be targeted to the oocyte posterior pole, but with a lower

efficiency than the original 3ZS+L fragment (Fig. 2D–E). The

ability of the different non-overlapping Tud polypeptides to localize

to the nuage and pole plasm indicates a functional redundancy in

Tud concerning its subcellular targeting.

Whether the localization of two GFP fusion proteins, 9A1 and

3ZS+L, is maintained at the posterior pole during early embryogen-

esis was then investigated. Both proteins were detected at the posterior

pole of early embryos. However, the staining signal was found to be

reduced for GFP-9A1 (Fig. 3A) compared to GFP-3ZS+L (Fig. 3B).

Tud activity toward pole cell formation resides in its
C-terminal moiety

These results showing that distinct Tud segments could be

incorporated in the pole plasm prompted me to investigate

Figure 1. Synthesis of GFP-Tud fusion proteins in Drosophila
ovaries. (A) Representation of the Tud protein with Tudor (1–8) and
Tudor-like (19-29) domains depicted in purple. Fragments of Tud [33]
used to design the transgenes are indicated below the map. (B) (Upper
panel) Western blot analysis of GFP-Tud fusion proteins synthesized in
ovaries of transgenic females using anti-GFP antibodies followed by
alkaline phosphatase-conjugated antibodies. (Lower panel) The blot
was then probed for ribosomal P40, as loading control.
doi:10.1371/journal.pone.0014378.g001

Tudor and Pole Cell Formation
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whether any of the Tud polypeptides displayed tud activity. The

different GFP-Tud transgenes were introduced into a tud1

background and the formation of pole cells in eggs laid by

transgenic tud1 females was analyzed. This mutation corresponds

to a strong tud allele, which displays a strict grandchildless

phenotype [11]. Moreover, tud1 ovaries synthesize no detectable

Tud protein [29]. From the five tested transgenic lines, only the

largest C-terminal Tud-3ZS+L construct was found to be able to

restore the formation of pole cells (Fig. 4D). All other transgenes

were negative. These results indicate that the expression of tud

sequences encoding three Tudor domains is sufficient to target the

Tud polypeptides into the pole plasm but inadequate to promote

pole cell formation. Synthesis of a larger tud fragment encompass-

ing the C-terminal moiety of the protein is thus necessary for pole

cell formation.

Tud-3ZS+L is recruited by the short Osk protein isoform
As Tud protein is present in polar granules [6] and the short

Osk isoform recruits all components of the polar granules [7],

whether this Osk form directs the incorporation of Tud-3ZS+L in

the pole plasm was investigated. For this analysis the UAS-osk-

M1R-K10 transgene in which the 39 UTR of the osk mRNA has

been replaced by that of K10 and the initiation codon of the long

Osk isoform substituted by a codon encoding an arginine residue

was used. This transgene, in combination with the nos::Gal4

germline driver, directed the synthesis of high levels of the short

Osk isoform in both nurse cells and oocyte [34]. Examination of

UAS-osk-M1R-K10/Pvas-GFP-Tud-3ZS+L; nos-Gal4 ovaries showed

a complete co-localization between Tud-3ZS+L and short Osk in

the nurse cells and oocyte (Fig. 5B–C), indicating that short Osk

was able to recruit Tud-3ZS+L in the pole plasm.

Tud production during early embryogenesis
Previous analysis of Tud production during embryogenesis

revealed the occurrence, in addition to the full-length (285 kDa)

protein of two additional polypeptide bands of lower molecular

masses (205 and 135 kDa) in early embryos (0–2 hours of

development) [6]. Primary antibodies used in this study were

rabbit anti-Tud made against an internal portion of Tud (886-

1199) and a second antiserum directed against the carboxy-

terminal region of Tud; both antibodies gave the same pattern [6].

To confirm these results western blot analysis of early embryos was

Figure 2. Spatial distribution of GFP-Tud fusion proteins
during oogenesis. GFP-Tud proteins were detected in fixed egg
chambers. Panels of the left display previtellogenic egg chambers
whereas panels on the right exhibit vitellogenic egg chambers. (A) The
GFP-Tud-JOZ fusion protein accumulated in nurse cell and oocyte
nuclei. In a stage 10 egg chamber no localization of this protein could
be detected at the posterior pole of the oocyte. (B) The GFP-Tud-9A1
fusion protein could be found in the nuage and dispersed in punctuate
structures in the cytoplasm. In stage 10 egg chamber the fusion protein
accumulated at the posterior pole of the oocyte. (C) The GFP-Tud-
3ZS+L fusion protein was present in both nuage and oocyte of
previtellogenic egg chambers and localized in the pole plasm of a late
stage 9 egg chamber. (D–E). Both GFP-Tud- 3ZS+L-N and GFP-Tud-
3ZS+L-C fusion proteins corresponding to the N- and C-moieties of GFP-
Tud-3ZS+L, respectively, displayed a pattern of distribution in both
nuage and pole plasm similar to the original GFP-Tud- 3ZS+L fusion
protein with the exception that the staining intensity was lower and
that the pole plasm accumulation of the N-terminal moiety was
significantly reduced.
doi:10.1371/journal.pone.0014378.g002

Figure 3. Spatial distribution of GFP-Tud fusion proteins
during early embryogenesis. GFP-Tud proteins were detected in
fixed 0-2 hour embryos produced by females synthesizing the GFP-Tud-
9A1 (A) or GFP-Tud-3ZS+L (B) fusion proteins. Although both fusion
proteins could be detected at the posterior pole of the early embryo,
the pole plasm localization of GFP-Tud-9A1 was significantly reduced
compared to that of GFP-Tud-3ZS+L.
doi:10.1371/journal.pone.0014378.g003

Tudor and Pole Cell Formation
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performed using the primary antibodies made against the C-

terminal region of Tud protein (residues 2189–2515) (TUD65)

[14]. This antiserum recognizes a protein of the predicted size in

ovarian and embryonic extracts (Fig. 6). In contrast to the

previously reported pattern, it did not recognize lower molecular

mass polypeptides in early 0–2 hour embryos. In 2–4 hour

embryonic extracts it does, however, recognize two high molecular

mass polypeptides. From these results I thus conclude that Tud

protein remains largely uncleaved before pole cells form.

Discussion

Tud functional region
As an initial step to elucidate the biochemical activity of Tud I

asked whether a limited region of the molecule would support the

formation of pole cells. The expression of a series of essentially

non-overlapping fragments of Tud fused to GFP revealed that the

C-terminal half of Tud containing six Tudor domains (the 3ZS+L

fragment) allowed the formation of pole cells in tud embryos laid by

transgenic females. This finding is partially in contrast to the data

of Arkov et al. [29] reporting that the first Tudor-like domain

should be associated with the five C-terminally located Tudor

domains to produce a functional Tud protein. The reason for

including the first Tudor-like domain resides in the characteriza-

tion of the tudA36 mutation containing a substitution in this domain

[29]. However, this mutation supports a significant level of germ

cell formation, as does the tud4 mutation affecting the domain 4

(which corresponds to domain 7 in Arkov et al. [29]), whereas

tudB42 in domain 7 (which corresponds to domain 10 in Arkov

Figure 4. A C-terminal segment encompasses the Tud function.
(A) Wild-type embryos at the syncytial blastoderm stage, or corre-
sponding embryos derived from (B) homozygous tud1 females and tud1

females expressing (C) GFP-Tud-9A1, (D) GFP-Tud-3ZS+L, and (E) GFP-
Tud-3ZS+L-C transgenes. Vas (red) and DNA (green). Only the GFP-Tud-
3ZS+L transgene can restore pole cell formation in tud1 embryos.
doi:10.1371/journal.pone.0014378.g004

Figure 5. Recruitment of GFP-Tud3ZS+L by short Osk protein.
Distribution of Osk and GFP-Tud-3ZS+L in (A) wild-type and (B) UAS-
osk-M1R; nosGal4 stage 9 egg chambers. Osk protein and GFP-Tud-
3ZS+L co-localized only in pole plasm. Overexpression of the short form
of Osk during oogenesis led to ectopic accumulation of Osk and GFP-
Tud-3ZS+L (Upper panels) at the anterior pole of the oocyte and (Lower
panels) in cytoplasmic particles in the nurse cells.
doi:10.1371/journal.pone.0014378.g005
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et al. [29]) completely abolishes germ cell formation [29]. Whether

a shorter Tud polypeptide containing less than 6 Tudor domains

but more than 3, as tested here, would be able to promote pole cell

formation in tud mutant remains to be investigated.

Additionally, an HA-tagged version of Tud containing the first

and the last five Tudor domains (produced from the mini-tud D3

construct) has been reported to localize to the pole plasm, albeit at

a much reduced level compared to full-length HA-Tud, and to

partially rescue tud mutation [29]. By contrast, the 9A1 fragment,

which localizes at the posterior pole of the early embryo at a

reduced level compared to the 3ZS+L fragment, does not rescue

tud mutation. Although it is not clear whether the absence of

rescuing activity of 9A1 correlates with the reduction of its

posterior localization, taken altogether, these results suggest that

the 9A1 fragment lacks functionnal sequences required for Tud

activity. These elements are only present in the 3ZS+L fragment.

Interestingly, previous western blot analyses performed using

antibodies directed against the C-terminal region of Tud revealed

the occurrence of two additional polypeptide bands of lower

molecular masses in early embryos [6]. The smallest band of

135 kDa may correspond approximately to the size of the 3ZS+L

fragment. The present finding that the fragment containing the six

C-terminal located Tudor domains is sufficient to direct pole cell

formation suggests that Tud may be processed in early embryos in

order to be fully active. The production of Tud proteins during

early embryogenesis was checked using specific anti-Tud antibod-

ies but in contrast to previously reported findings the present data

do not support processing of Tud protein during early embryo-

genesis. Whether internal cleavage of Tud should be proceeded to

generate Tud fragment to fulfill the Tud function remains

therefore an open question. I nevertheless conclude that the

functional activity of Tud resides in its C-terminal part.

Nuage and pole plasm localization of Tud
The ability of Tud segments to localize to the nuage or the pole

plasm were tested by fusing these segments to GFP and then by

visualizing their distribution in early and stage 10 transgenic egg

chambers. In stage 10 egg chambers the two Tud polypeptides

9A1 and 3ZS+L, which encompasse most of the Tud protein,

accumulated in the pole plasm but only the C-terminal fragment

could be detected in the nuage. Surprisingly an HA-tagged version

of Tud containing the first 1544 amino acids and the last 72 amino

acids (produced from the mini-tud D1 construct) has been reported

to localize to the nuage but not to the germ plasm [29]. Because

the 9A1 fragment is contained within this construct it was

surprising to detect the 9A1 fragment at the posterior pole of stage

10 oocyte. The reason for this discrepancy remains elusive. When

the 3ZS+L fragment was divided into two parts both segments

were visualized in the pole plasm but not in the nuage. It should be

noted that despite a comparable nuage accumulation of these two

fragments the targeting of the 3ZS+L-C fragment to the pole

plasm is more efficient than that of the 3ZS+L-N fragment. The

possibility that the 3ZS+L-N fragment becomes unstable in late

egg chambers cannot be ruled out. Interestingly, truncation of the

last 32 amino acids (TudA7) abrogates pole plasm localization,

suggesting that sequences outside of the Tudor domains are

essential for correct targeting of Tud at this location. In contrast to

stage 10 egg chambers all tested constructs were able to localize to

the nuage during early oogenesis. Although nuage localization is

progressively lost during oogenesis it is possible that the nuage-

localized Tud proteins present in early egg chambers correspond

to the ones targeted to the pole pasm at stage 9. Whether robust

pole plasm accumulation requires nuage localization cannot

therefore be confirmed or invalidated.

Materials and Methods

Fly strains
The recipient stock for P element transformation used in this

study was w1118. The UAS-osk-M1R line [34] was kindly given and

A. Ephrussi. Flies were grown at 25uC on corn/agar medium. Dry

yeast was added to the medium the day before females were

dissected for ovary preparation.

Molecular Biology
Plasmid constructs were generated by amplification of the

desired fragments by PCR (High Fidelity PRC Master; Roche),

and were subcloned into the Pvas-GFP vector [32]. The Pvas-GFP

vector and the tud cDNA plasmids were kindly provided by A.

Nakimura and R. Boswell, respectively.

Detection of GFP signal
Ovaries were dissected in PBS, fixed in 4% paraformaldehyde

in PBS for 10 minutes, washed four times for 10 min in PBT, and

mounted in Glycerol:PBS, 1:1, onto glass slides. Data were

acquired as single images with a Nikon Ellipse microscope.

Immunocytochemistry
For whole-mount immunostaining, the following antibodies

were used: anti-Vas from rat (gift of P. Lasko), and monoclonal

anti-GFP (JL-8) from mouse (Clontech). Immunoreactivity was

Figure 6. Immunoblot detection of Tud protein during
oogenesis and early embryogenesis. Protein extracts from ovaries
and early embryos were run on 6% SDS-polyacrylamide gels, transferred
to an Immobilon-P membrane and probed with anti-Tud antibodies
(TUD65). The relative molecular masses of the marker protein bands are
indicated on the left.
doi:10.1371/journal.pone.0014378.g006

Tudor and Pole Cell Formation
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detected with Alexa Fluor 488- (Molecular Probes) conjugated

secondary antibodies (1:200). Images were acquired on a Nikon

Eclipse C1si laser scanning confocal microscope and processed

with Adobe Photoshop and ImageJ software.
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