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Abstract
Continuous electroencephalographam (EEG) monitoring contributes to prediction of neurological outcome in comatose cardiac arrest 
survivors. While the phenomenology of EEG abnormalities in postanoxic encephalopathy is well known, the pathophysiology, especially 
the presumed role of selective synaptic failure, is less understood. To further this understanding, we estimate biophysical model 
parameters from the EEG power spectra from individual patients with a good or poor recovery from a postanoxic encephalopathy. This 
biophysical model includes intracortical, intrathalamic, and corticothalamic synaptic strengths, as well as synaptic time constants and 
axonal conduction delays. We used continuous EEG measurements from hundred comatose patients recorded during the first 48 h 
postcardiac arrest, 50 with a poor neurological outcome [cerebral performance category (CPC = 5)] and 50 with a good neurological 
outcome (CPC = 1). We only included patients that developed (dis-)continuous EEG activity within 48 h postcardiac arrest. For patients 
with a good outcome, we observed an initial relative excitation in the corticothalamic loop and corticothalamic propagation that 
subsequently evolved towards values observed in healthy controls. For patients with a poor outcome, we observed an initial increase in 
the cortical excitation-inhibition ratio, increased relative inhibition in the corticothalamic loop, delayed corticothalamic propagation of 
neuronal activity, and severely prolonged synaptic time constants that did not return to physiological values. We conclude that the 
abnormal EEG evolution in patients with a poor neurological recovery after cardiac arrest may result from persistent and selective 
synaptic failure that includes corticothalamic circuitry and also delayed corticothalamic propagation.
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Significance

The temporal evolution of brain activity, commonly measured by the electroencephalographam (EEG), serves as an important prog-
nostic marker for neurological recovery of comatose patients after cardiac arrest. While early reappearance of brain activity is asso-
ciated with a good recovery, other specific EEG abnormalities are associated with a poor recovery. The pathophysiological 
mechanisms underlying these EEG patterns in patients after cardiac arrest are poorly understood. Using a method to estimate param-
eters from a biophysical model, we shed light on the pathophysiological mechanisms underlying EEG evolution in these patients. We 
demonstrate that poor outcome predominantly results from persistent synaptic failure, especially between the cortex and the thal-
amus, and delayed propagation of activity between the cortex and thalamus.

Introduction
Continuous electroencephalographam (EEG) monitoring in the 
first 24 h after cardiac arrest has a pivotal role in prognostication 
in comatose survivors after cardiac arrest (1), allowing reliable 
prediction of neurological outcome in about 50% of the patients 
(2). Neurological prognostication not only depends on identifica-
tion of specific EEG abnormalities but also on the evolution and 
timing of these abnormalities postcardiac arrest (3). In all 

comatose patients directly after cardiac arrest, the EEG is severely 
disturbed and mostly suppressed. In patients with a good neuro-
logical outcome, EEG activity typically evolves towards continu-

ous brain activity on time scales of 24 h (4, 5). A delayed (>24 h) 

evolution towards continuous activity is associated with a poorer 

outcome (1). Persistent suppression with or without synchronous 

bursts, or generalized periodic discharges (GPDs) on a flat back-

ground are invariably associated with a poor outcome (7, 2, 6).
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While the clinical relevance of EEG phenomenology in posta-
noxic encephalopathy is well known, the underlying pathophysio-
logical mechanisms of EEG patterns associated with poor or good 
outcome are incompletely understood. Only in extreme cases, the 
pathophysiology is relatively clear: if adenosine triphosphate 
(ATP) is depleted sufficiently long, irreversible loss of resting 
membrane potentials occurs, and cell swelling will follow, result-
ing in massive neuronal death accompanied by persistent iso- 
electric EEG (12, 11, 8, 10, 9). However, in the pathogenesis of 
rhythmic and periodic or diffusely slowed EEG, as observed in 
many patients with moderate to severe hypoxic/ischaemic injury, 
it is predominantly synaptic failure that results in these abnormal 
EEG patterns (14, 13, 9), where our understanding of selective dys-
function of excitatory or inhibitory synapses is incomplete (7).

Only a few studies have explored this role of synaptic damage in 
EEG abnormalities in postanoxic encephalopathy. These studies 
were mainly based on so-called mean-field models (15, 16). 
Several of these models can describe average postsynaptic mem-
brane potentials of coupled excitatory and inhibitory cortical popu-
lations as a function of spike rates, synaptic strengths, and synaptic 
time constants. The voltage fluctuations of the excitatory cortical 
neurons can subsequently be used as a proxy for EEG registrations. 
A common approach for mean-field modeling is hypothesis-driven 
manipulations of model parameters (13, 17, 18). For instance, se-
lective elimination of excitatory synapses from pyramidal neurons 
to inhibitory neurons in a mean-field model showed GPDs that re-
sembled empirically observed GPDs (17). Another modeling study 
on postanoxic encephalopathy showed that a gradual recovery of 
synaptic strength led to an EEG evolution that was consistent 
with empirical data, i.e. suppressed activity, followed by burst- 
suppression and continuous activity. Here, the amount of suppres-
sion was a function of the “hypoxic burden” (depth and duration). 
This “hypoxic burden” determined whether continuous activity 
could be retrieved as final stage (13).

Though very informative in providing a qualitative explanation 
of the evolution of EEG abnormalities, these previous approaches 
cannot retrieve subject specific trajectories of model parameters, 
such as temporal changes in synaptic properties. This contrasts 
with a recent approach using a corticothalamic mean-field model 
where model parameters are retrieved by finding the best fit be-
tween the observed and model’s power spectrum for every point 
in time, enabling real-time tracking of mean-field parameters 
over time for each individual patient (19). The model has success-
fully been used to track sleep stages in terms of temporal evolution 
of physiological parameters (19). The use of this parameter estima-
tion method yields time-resolved trajectories of both excitatory and 
inhibitory synaptic strengths and synaptic time constants. This 
method also estimates nonsynaptic parameters such as corticotha-
lamic conduction delays. It therefore allows us to test the hypoth-
esis that EEG abnormalities in patients after cardiac arrest can be 
completely explained by isolated selective synaptic failure. Here, 
we use this method to study pathophysiological mechanisms of 
EEG pattern evolution in comatose patients with a postanoxic en-
cephalopathy. Lastly, in order to analyze how specific estimated pa-
rameters are for EEG recordings from comatose survivors of cardiac 
arrest, we also apply our method and compare our results to EEG re-
cordings from comatose survivors of traumatic brain injury (TBI).

Results
We used EEG data from 100 healthy control subjects to obtain ref-
erence values for all estimated model parameters. We selected 
EEGs from 50 comatose survivors of cardiac arrest with a poor 

outcome and 50 patients with a good outcome from our previously 
published dataset (7, 3). We only selected patients who developed 
a discontinuous or continuous EEG within 48 h after cardiac arrest 
(see methods section for rationale). Fig. 1A shows an example of 
EEG segments of 7 s from two patients at t = 12 and t = 24 h after 
cardiac arrest as example. The EEG in the upper panel shows an 
evolution from burst-suppression at 12 h after cardiac arrest to 
a continuous EEG with alpha activity (8–13 Hz) at 24 h after cardiac 
arrest from a patient with a good outcome. The EEG in the lower 
panel shows an evolution from burst-suppression at 12 h after 
cardiac arrest to a nearly continuous EEG with slower theta 
rhythms (4–8 Hz) at 24 h after cardiac arrest from a patient with 
a poor outcome. For every subject, we derived a power spectrum 
for every hour of their EEG recording until 48 h postcardiac arrest. 
Fig. 1B shows the evolution of the power spectrum for the same 
patients as in Fig. 1A with a good (upper panel) and a poor out-
come (lower panel). The occurrence and a shift of the spectral 
peak in the alpha band is clearly visible in the patient with a 
good outcome (purple corresponds to t = 12 h and light green to 
t = 48 h). A similar evolution is visible in the patient with poor out-
come, but the spectral peak remains in the theta band.

We employed a corticothalamic mean-field model that de-
scribes the mean membrane potential of four connected neuronal 
populations. Details of the model and the parameter estimation 
method can be found in the methods section. In brief, the model 
includes a cortical excitatory and cortical inhibitory population 
and a thalamic relay and reticular population (Fig. 1C). The post-
synaptic membrane potential of a population modulates as a con-
sequence of synaptic input mediated by the firing activity of 
presynaptic populations. The effect of the presynaptic input on 
the postsynaptic membrane potential depends on the mean num-
ber of synapses between the presynaptic b and postsynaptic popu-
lation a (modeled as synaptic strength vab) and on the closing and 
opening rate of synaptic channels characterized by the synaptic 
decay and rise constants (α and β). The average postsynaptic 
membrane potential is transformed at the cell bodies in a popula-
tion, giving rise to the firing activity. This process results in propa-
gation of activity in a closed loop between thalamic and cortical 
populations, where firing rate propagated between the thalamus 
and the cortex is delayed by t0. Using vab, we can disentangle 
this corticothalamic system to a purely cortical loop or gain X, a 
corticothalamic gain Y and a intrathalamic gain Z. The cortical 
gain is defined in terms of the ratio of cortical excitatory versus 
cortical inhibitory synaptic strengths.

Using a Markov chain Monte Carlo random walk method (19– 
21), we estimated the temporal evolution of these six biophysical 
parameters X, Y, Z, α, β, and t0 from consecutive EEG power spec-
tra from every subject over the course of 48 h. Fig. 1D shows the 
goodness-of-fit in terms of χ2 for patients with a good and a poor 
outcome, respectively. No significant difference was observed in 
model prediction accuracy between these two groups (Mann– 
Whitney U p > 0.05).

For every parameter, the mean and standard error across sub-
jects is depicted in Fig. 1D, alongside the distribution of values 
from healthy controls (blue violin plots). Differences between 
groups across time points were assessed by nonparametric per-
mutation testing (22). For the cortical gain X, we see a separation 
between the means and their standard error for both groups in the 
initial phase (t < 24 h after cardiac arrest), followed by an overlap 
between the means and their standard error for later phases 
(t > 24 h after cardiac arrest). Hence, there is a higher cortical 
excitation-inhibition ratio in patients with a poor outcome in the 
initial phase of t < 24 after cardiac arrest. Permutation testing 
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Fig. 1. Estimating model parameters from EEG data. Panel A) shows two EEG segments from two subjects at t = 12 h and t = 24 h after cardiac arrest. 
Upper panel shows EEG data from one subject with good outcome, lower panel shows EEG data from a different subject with poor outcome. The 
consecutive power spectra for the same subjects are demonstrated in panel B). Power spectra from every hour are depicted, starting at 10 h after cardiac 
arrest (purple/dark colour) to 48 h after cardiac arrest (light green/light colour). Panel C) shows the corticothalamic mean-field model. There are two 
populations in the thalamus and cortex. Red lines correspond to inhibitory synaptic connections and green lines to excitatory synaptic connections. Panel 
D) shows the distributions (violin plots) of the goodness-of-fit (GOF) χ2 for the two groups. Here, every dot corresponds to the mean GOF across time points 
for one subject. Panel E shows the mean and standard error for all parameters, alongside the distribution of values from healthy controls (violin plots). 
Key findings in patients with a poor outcome are (1) an initial high cortical excitation-inhibition ratio; (2) a persistent loss of corticothalamic gain Y, i.e. 
relative excess of corticothalamic inhibition; (3) slow synaptic responses (high values for α and β); (4) slow propagation of activity between the thalamus 
and cortex (high values for t0). Abbreviations: cortical gain X, corticothalamic gain Y, intrathalamic gain Z, synaptic decay constant α, synaptic rise 
constant β, and time delay of propagation between thalamus and the cortex t0.
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across all time points, however, showed no significant difference 
between groups (p > 0.05). For the corticothalamic gain Y, there 
is no overlap between groups across all time points, resulting in 
a significant difference (p = 0.03). Y values for patients with a 
good outcome overlapped with the distribution of Y values from 
healthy controls, which was not the case for patients with a 
poor outcome. For patients with a poor outcome, Y is negative in 
contrast to positive values of Y for patients with a good outcome. 
This reflects dominance of inhibition in the corticothalamic loop 
in patients with a poor outcome; positive values correspond to 
dominance of excitation in the corticothalamic loop. For the intra-
thalamic gain Z, there was a upward trend for patients with a good 
outcome and a downward trend for patients with a poor outcome. 
However, there was no significant difference between groups 
(p > 0.05). For both patients with a good and poor outcome, the 
values of Z overlapped with the distribution of Z from healthy 
controls.

For the synaptic decay time α, we observed a significant differ-
ence between patients with a good and a poor outcome (P < 0.001). 
Patients with a good outcome had lower values of α, with the ten-
dency to reach the range of values of α of healthy control subjects 
at an earlier stage than patients with a poor outcome. For the syn-
aptic rise time β, there was a significant difference between groups 
(P < 0.001), with a steeper negative curve for patients with a good 
outcome and a tendency towards values of β from healthy con-
trols. Lower values for α and β correspond to a synaptic response 
with smaller width, hence the ability to generate faster rhythms. 
The parameter t0 is the only parameter indicative of axonal integ-
rity and captures the conduction velocity between the thalamus 
and the cortex. There was a significant difference in t0 values be-
tween groups (P < 0.001). Patients with a good outcome had overall 
shorter delays than patients with poor outcome. Around t = 48 h, 
patients with a good outcome had values of t0 that strongly over-
lapped with values of t0 from healthy control subjects.

We have also investigated the specificity of our findings by ap-
plying our parameter estimation method to a different group of 
comatose patients with evident EEG slowing. A previously re-
ported and fairly large sample of patients with TBI were included 
for this purpose (23). Results are shown in the supplementary 
material Fig. S1. In brief, in contrast to comatose survivors of car-
diac arrest, comatose survivors of TBI show much slower tem-
poral evolution of estimated parameters for the first 48 h after 
trauma. There was lower cortical excitation X, as well as higher in-
trathalamic gain Z in the patients with TBI. Furthermore, EEG 
slowing in TBI patients was also characterized by preserved con-
duction velocity between the thalamus and the cortex.

Discussion
We used a biophysical mean-field model to study the pathophysi-
ology of EEG abnormalities in patients with a postanoxic enceph-
alopathy and show that poor outcome is associated with an initial 
high cortical excitation-inhibition ratio, relative inhibition in the 
corticothalamic loop, overall slow recovery of time scales of syn-
aptic responses and longer delays in propagation of activity be-
tween the thalamus and cortex. Patients with a good outcome 
showed excitation in the corticothalamic loop, faster recovery of 
time scales of synaptic responses, and faster propagation of activ-
ity between the cortex and thalamus with values that were essen-
tially similar to those of healthy control subjects. Our findings 
show that poor outcome results from failure in synaptic recovery 
as well as from impaired axonal propagation (difference in t0 be-
tween groups).

In patients with a poor outcome, there was a higher cortical 
excitation-inhibition ratio in the first 24 h after cardiac arrest 
compared to patients with a good outcome. This difference nor-
malized after 24 h. The higher cortical excitation-inhibition ratio 
is supported by clinical observations such as increased risk of 
electrographic or clinical seizures in this patient population (24, 
25), or high incidence of GPDs, which may result from increased 
cortical excitability (7, 26). Note that not all parameters showed 
convergence around 48 h after cardiac arrest. This could be re-
lated to the fact that it takes more time for a complete normaliza-
tion of the EEG to occur, and hence also more time for the 
parameters to converge.

Our model suggests persistent corticothalamic synaptic failure 
in patients with a poor recovery. This finding is in line with animal 
work and postmortem data showing selective damage of reticular 
neurons in the thalamus after cardiac arrest (28, 27), leading to ex-
cessive activity in the thalamus. Since efficient communication 
between the thalamus and the cortex depends on phasic inhib-
ition or cyclic suppression in the thalamus (29), allowing short 
temporal windows of sensitivity to synaptic input, tonic activity 
in the thalamus could disrupt this loop and hence could relate 
to decreased corticothalamic synaptic strength. Other post-
mortem work also suggests that patients with thalamic damage 
had EEG abnormalities associated with poor outcome (11). 
Moreover, integrity of corticothalamic synapses is associated 
with the ability to generate alpha oscillations (31, 30) and usually 
emerge from the model if Y > 0 (31). This was in line with our em-
pirical findings, as patients with a good outcome in general had 
Y > 0. Patients with a poor outcome had negative values for Y, 
which is usually associated with slower delta and theta activity 
(31). We also show that the integrity of corticothalamic synaptic 
connections are more important to distinguish good from poor 
outcome than intracortical interactions. This is in agreement 
with the so-called mesocircuit hypothesis (33, 32). This hypothesis 
postulates that recovery of consciousness after severe brain in-
jury (both postanoxic encephalopathy and TBI) strongly depends 
on recovery of excitatory activity in a thalamocortical circuit.

Failure of synaptic transmission is a well-known consequence 
of cerebral hypoxia or ischemia (34, 13). Here we report longer syn-
aptic rise and decay times for all synapses in patients with a poor 
outcome. These parameters correspond to opening and closing 
times of ligand-gated channels in the synapse and can be trans-
lated to a synaptic impulse response function (35). The opening 
and closing times of ligand-gated channels strongly relate to the 
frequency response of postsynaptic membranes and longer syn-
aptic rise and decay times correspond to the inability to generate 
faster rhythms (alpha and beta) in patients with a poor outcome 
(36). Results agree with previous animal and in vitro work showing 
longer postsynaptic potentials after hypoxia (38, 37). This is prob-
ably the result of long-term potentiation (LTP) mediated by 
upregulation of N-methyl-D-aspartate (NMDA)-receptors due to 
excess of extracellular glutamate after hypoxia (39). We show 
that opening times of ligand-gated synaptic channels are shorter 
and normalize faster in patients with a good outcome compared 
to poor outcome, but still differs from values from healthy con-
trols. Hence, further recovery of the EEG may depend on reversing 
LTP (13).

Propagation of activity between the cortex and thalamus was 
severely delayed for patients with a poor outcome. Longer delays 
in the corticothalamic loop generally result in slower theta and 
delta rhythms (36), consistent with our empirical findings in this 
group with a poor outcome. For patients with a good outcome, 
there was evolution towards a conduction delay comparable to 
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that of healthy control subjects. Previous work showed that mild 
hypoxia induces isolated synaptic failure with intact heights and 
shapes of the action potential, suggesting intact axonal mem-
brane functioning (34). Other in vitro work has shown that 
oligodendrocytes are vulnerable to hypoxia, resulting in defects 
in myelination due to hypoxia (40, 41). Animal work has also 
shown that anoxia can lead to detachment of perinodal 
oligodendrocyte-axon loops, and thus cause axonal injury (42). 
Our finding of longer conduction delays between the cortex and 
thalamus in patients with a poor outcome and is suggestive of 
myelination defects rather than axonal damage. This is in line 
with findings from diffusion tensor imaging studies showing in-
creased radial diffusivity in patients after cardiac arrest, suggest-
ive of myelination defects (43).

An important issue regarding our estimated parameters is the 
uniqueness and specificity of our solution in this specific patient 
population. Are our estimated parameters informative for this 
specific type of pathology or will any EEG slowing irrespective of 
type of pathology or even EEG slowing during sleep fit to these 
same set of parameters? Previous work using our parameter esti-
mation method has demonstrated that slow wave activity 
during non-rapid eye movement sleep (NREM) sleep does not fit 
one-to-one to the estimated parameters that we found for our pa-
tients after cardiac arrest (44, 19): decay time of the synaptic re-
sponse α during NREM is slower than for our patient group, and 
the intrathalamic gain Z during NREM is lower as well. This relates 
to the sensitivity of our parameter estimation method to changes 
in both the slope of the power spectrum as well as height of the 
spectral peaks. During NREM sleep, delta waves have usually 
high amplitude, which will influence the slope of the power spec-
trum, and hence, also the estimated parameters. In addition, our 
results from TBI underscore that EEG slowing in any pathology 
may not necessarily map onto the same set of parameter values. 
For some parameters, we found distinct values for the two groups 
(X, Z, t0). While for other parameters, there was an overlap in par-
ameter values, e.g. corticothalamic gain Y, which could indicate 
final common pathways in coma, also emphasized by the mesocir-
cuit hypothesis (33).

Some limitations apply to our work. First, synaptic rise and de-
cay times were aggregated for all populations (excitatory, inhibi-
tory, and thalamic). This simplification is probably not justified 
by the underlying neurophysiology but was required to reduce 
the number of estimated parameters. Second, we ignored spatial 
effects. Input to our model were power spectra averaged across 
all electrodes. While it may be more realistic to estimate sensor 
specific parameters, the EEG after cardiac arrest does not show 
high regional specificity but rather homogeneous activity over dif-
ferent electrodes. Furthermore, this would have resulted in an ex-
cess of parameters. Third, our model cannot disentangle 
presynaptic and postsynaptic effects. Last, in order to estimate 
underlying neurophysiological parameters, we did not employ 
the full nonlinear model, but a linearized version of the model. 
This is probably not critical as previous work suggests that 
many empirical phenomenon can be captured using the linear-
ized version of the mean-field model (36, 44).

In conclusion, we have provided insight into potential patho-
physiological mechanisms of EEG abnormalities in postanoxic en-
cephalopathy. We show that these EEG abnormalities are mostly 
reflective of synaptic failure, though not limited to isolated synap-
tic failure as poor outcome was also accompanied with longer 
axonal conduction delays between the cortex and thalamus, 
probably reflecting myelination defects. Preservation of 

thalamocortical synaptic connections, propagation of neuronal 
activity between the cortex and thalamus, and normalization of 
synaptic responses appear crucial for evolution of the EEG associ-
ated with good outcome in patients with postanoxic encephalop-
athy. This framework and these findings pave the way to detect 
synaptic failure in individual patients.

Methods
Study population
We selected EEGs from 50 comatose survivors of cardiac arrest 
with poor outcome and 50 patients with good outcome from our 
previously published dataset (7, 3). Selection was based on three 
criteria: a cerebral performance category (CPC) score of either 1 
(poor outcome) or 5 (good outcome) at six months after cardiac ar-
rest to maximize contrast between groups; CPC of 1 only as a re-
sult of postanoxic coma (and not, for example, as a result of 
multiple organ or systemic failure); and an evolution towards a 
continuous or discontinuous EEG at 48 h postcardiac arrest. This 
last criterium is to ensure that we avoid mixing up different EEG 
abnormalities and corresponding pathways in patients with 
poor outcome. For example, the pathophysiological underpin-
nings burst-suppression with identical bursts may be different 
from the pathophysiological underpinnings of a continuous EEG 
with GPDs. Hence, EEGs with the following abnormalities were ex-
cluded during our selection: GPDs on an iso-electric background, 
burst-suppression as final stage, rhythmic activity (>2.5 Hz) or 
periodic activity (0.5–2.5 Hz), and a suppressed EEG.

To obtain a reference for all estimated biophysical parameters, 
we used eyes-closed EEG data from 100 healthy controls.

EEG preprocessing
Continuous EEG recordings were used from patients with cardiac 
arrest admitted to the ICU. Nineteen electrodes (either silver/sil-
ver chloride cup or subdermal wire) were placed according to 
the 10–20 international system. A Neurocenter EEG system with 
Refa or SAGA amplifiers (TMSi, Netherlands) was used, recording 
at a sample frequency of 256 Hz. EEG data until 48 h after cardiac 
arrest were used for further analysis using the longitudinal bipo-
lar montage. These EEG data were further preprocessed using a 
zero-phase sixth-order Butterworth bandpass filter of 0.5–40 Hz. 
We used a semi-automated algorithm to detect and remove arti-
facts within windows of 10 s in the common average. Artifacts in-
cluded empty channels, channels with large peaks or noise 
(amplitude ≥200 μV or ≤−200 μV and variance ≥1400 μV2 or ≤1 μ 
V2), or muscle artifacts. In addition, we used independent compo-
nent analysis to detect and remove the electrocardiogram (ECG) 
artifact after visual inspection of individual components (45). 
After preprocessing, we computed a power spectrum for every 
hour and every channel and averaged across channels. Power 
spectra were computed using Welch’s method with windows of 
10 s with 5 s overlap.

Corticothalamic mean-field model
We employed a corticothalamic mean-field model (46, 47, 36), 
which describes the aggregate activity of a neuronal population 
in terms of their firing rate ϕa and mean membrane potential Va 

with a ∈ {e, i, r, s}. The corticothalamic mean-field model encom-
passes two cortical populations (excitatory e and inhibitory i) 
and two thalamic populations (relay s and reticular r). The mem-
brane potential of a population fluctuates Va(t) as a result of the 

Tewarie et al. | 5



incoming firing rate ϕa(t) from other population and/or itself ac-
cording to

1
αβ

d2

dt2 +
1
α

+
1
β

􏼒 􏼓
d
dt

+ 1
􏼒 􏼓

Va(t) =
􏽘

a′
νaa′ϕa′ (t) +

􏽘

b

νabϕb(t − t0/2). (1) 

The constants α and β refer to the synaptic rise and decay con-
stants, νaa′ and νab to the synaptic strength between populations, 
where νab refers to synaptic strength between the thalamic and 
cortical populations. Propagation between thalamic and cortical 
populations is delayed by t0. At the cell body, the membrane po-
tential Va is transformed into a firing rate using a sigmoid function

Qa(t) =
Qmax

1 + exp − Va(t) − θ
( 􏼁

/σ
( 􏼁 . (2) 

The mean firing rate is further temporally damped using the 
following expression:

1
γ2

a

d2

dt2 +
2
γa

d
dt

+ 1
􏼒 􏼓

ϕa(t) = Qa(t), (3) 

with γa being the temporal damping rate, based on γ = va/ra, where 
va is the propagation velocity and ra is the mean range of axons. 
For inhibitory, relay, and reticular populations, γa ≈ ∞, hence 
ϕa(t) = Qa(t).

Estimation of model parameters
Model power spectrum
Parameter estimation for nonlinear models remains challenging. 
For example, error of estimated parameters near critical points 
or bifurcations can have severe effect on the expected behavior 
of the model. Equations 1–3 describe the full nonlinear model, 
which are first transformed to a linear model using linearization 
around a stable fixed point. Linearization is achieved by express-
ing the sigmoid function (Eq. 2) that transforms Va(t) into Qa(t) 
as Taylor expansion and retaining only the term containing the 
first derivative ρa evaluated at the fixed point. Details can be found 
in Ref. (19). Using the derivative ρa, we can express the synaptic 
strengths as gain parameters in the linear regime Gab = ρaνab. 
These gain parameters can be transformed to three gain parame-
ters describing the cortical X, corticothalamic Y, and intrathala-
mic loop gains

X =
Gee

1 − Gei
, Y =

Gese + Gesre

1 − Gsrs( ) 1 − Gei
( 􏼁 , Z = −Gsrs

αβ
α + β
( 􏼁2 . (4) 

Following this, the linear system in time domain can be rewritten 
in Fourier domain from which we can express an analytical ex-
pression for the power spectrum P(w) as a function of frequency ω

P(w) =
P0

|1 + Z′L2|2
1
|q2|

􏼒 􏼓2

. (5) 

P0 is a normalization constant (47) and q follows from the disper-
sion relation described in Ref. (19)

q2r2
e = 1 −

iω
γ

􏼒 􏼓2

−X −
Y 1 + Z′( )

1 + Z′L2 eiωt0 . (6) 

Z′ follows from a transformation of Z

Z′ = Z
α + β
( 􏼁2

αβ
, (7) 

and L follows from the transformation of the second-order differ-
ential operator describing the synaptic response (Eq. 1) in Fourier 

domain, which can be interpreted as a low-pass filter depending 
on the synaptic parameters α and β

L(ω) =
1

1 − iω/α
( 􏼁

1
1 − iω/β
( 􏼁 . (8) 

Activity in pericranial muscles results in electromyogram (EMG) 
artifacts on the EEG, for which we need to account, hence, 
Ptotal(ω) = P(ω) + PEMG(ω).

Fitting model parameters
The parameter set x = [X, Y, Z, α, β, t0, PEMG] is estimated from EEG 
data by minimizing the error between the experimentally ob-
tained power spectrum Pexp and model power spectrum Ptotal(x) 
expressed as

χ2 =
􏽘

j

Wj
Ptotal x( ) − Pexp

Pexp

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌

2

, (9) 

where j indexes the frequency bins. The weights Wj ensure equal 

weighting for every frequency decade and is proportional to 1/f . 
As parameter space is very large, we restrict parameter values 
to neurophysiologically plausible values [see Ref. (19) for values]. 

The χ2 statistic is further transformed into a likelihood function

L x( ) = exp
−χ2 x( )

2

􏼔 􏼕

. (10) 

Hence, minimizing the error translates into maximizing this like-
lihood function. Now, the Metropolis–Hastings algorithm is used 
to generate a probability distribution for each parameter using a 
Markov chain random walk (20, 21). Details of the algorithm can 
be found in Ref. (19). For every subject, we run the Metropolis– 
Hastings algorithm to obtain model parameters for individual 
power spectra. The random walk is initialized by parameters ob-
tained from a large database of healthy control subjects (44). 
This initialization will generally not affect the final output, but it 
affects the time of convergence. For every subsequent step in 
the random walk, the likelihood for this step is computed using 
Eq. 10. A new random proposed set is generated. The likelihood 
of this new set of parameters is again computed using Eq. 10. If 
these new parameters have a higher probability, this step is ac-
cepted and used to sample the probability distribution. 
Otherwise a random number is drawn from a uniform distribu-
tion. If this random number is smaller than the ratio of the prob-
ability of the new parameters to the old parameters, accept the 
step for sampling the probability distribution. If this random num-
ber is bigger than the ratio of the probability of the new parame-
ters to the old parameters, then this step is not accepted. This 
procedure is repeated many times until there is no iterative 
change in the sampled probability distribution. Fitting a sequence 
of spectra at successive times would require to track temporal 
changes in parameter values. If we assume that the power spec-
trum does not change drastically for consecutive time points ti 

and ti+1, then we can use Bayes’s theorem to inform our fit for 
ti+1 using estimated parameters from ti as prior information.

Statistics
We used nonparametric permutation testing to test significance 
between groups of patients with a good and poor outcome (22). 
We tested whether a parameter across time points was signifi-
cantly different between groups. We did not test for significance 
between groups for every time point separately to avoid a multiple 
testing problem. For every time dependent parameter xsjg(t), with 
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parameter index j, we computed the mean across subjects s for 
every group g denoted as 〈x jg(t)〉 = (1/50)

􏽐50
s=1 xsjg(t). We subse-

quently used the sum of the squared difference between group g 
(good outcome) and group g′ (poor outcome) as test statistic 
Tj =

􏽐
t (〈x jg(t)〉 − 〈x jg′ (t)〉)

2. Following this, we randomly permuted 
group membership 10,000 times and computed the test statistic 
for every realization to generate a null-distribution. The genuine 
value of the test statistic Tj was subsequently compared to the 
null-distribution and was considered to be significant if this would 
lie in the two 2.5% tail-ends of the null-distribution (p < 0.05). We 
performed in total six statistical tests (parameters X, Y, Z, α, β, t0). 
All statistics were performed in MATLAB R2021a.
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