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CRISPR-Cas systems acquire heritable defense memory against invading nucleic acids 
through adaptation. Type III CRISPR-Cas systems have unique and intriguing features of 
defense and are important in method development for Genetics research. We started to 
understand the common and unique properties of type III CRISPR-Cas adaptation in 
recent years. This review summarizes our knowledge regarding CRISPR-Cas adaptation 
with the emphasis on type III systems and discusses open questions for type III 
adaptation studies.

Keywords: CRISPR-Cas system, type III, adaptation, ssDNA secondary structure, reverse transcriptase

INTRODUCTION

Prokaryotic cells evolved multiple strategies to defend against viruses and non-beneficial plasmids, 
including abortive infection, restriction–modification systems (Sturino and Klaenhammer, 2006; 
Rocha and Bikard, 2022), and recently discovered CRISPR (Clustered Regularly Interspaced 
Short Palindromic Repeats)-Cas (CRISPR-associated gene) systems (Makarova et al., 2011, 2020b; 
Hille et al., 2018; Nussenzweig and Marraffini, 2020). The sequence-specific and adaptive defense 
activity of a CRISPR-Cas system is acquired by adaptation, during which a short fragment 
(protospacer) of the foreign DNA is captured and integrated into the CRISPR locus at the 
leader proximal end as a spacer, simultaneously with a duplication of the first repeat (Barrangou 
et  al., 2007; Bhaya et  al., 2011; Arslan et  al., 2014; Heler et  al., 2014). A spacer in a CRISPR 
array encodes a small CRISPR RNA (crRNA), which guides an interference protein or a 
protein complex (crRNP) to destroy the previously encountered foreign nucleic acids (Barrangou 
et  al., 2007; Pougach et  al., 2010; Sorek et  al., 2013). CRISPR-Cas systems are structurally 
and functionally diverse, and are classified into six types (type I-VI) and multiple subtypes 
(Haft et  al., 2005; Makarova et  al., 2006, 2011, 2015; Kunin et  al., 2007; Shmakov et  al., 2015).

Functional studies of CRISPR-Cas systems, especially those regarding target interference, 
have inspired researchers to develop many unprecedented, convenient, and powerful tools for 
genome editing, gene expression control, disease detection and cures, and many other purposes 
(Pickar-Oliver and Gersbach, 2019). Adaptation abilities of CRISPR-Cas systems and the dynamic 
CRISPR arrays they generated have been used for bacterial strain typing (Barrangou and 
Dudley, 2016), bacterial virome detection (Choi and Lee, 2016), and even digital movie encoding 
and data storage (Shipman et  al., 2017). The tremendous contribution of CRISPR-Cas systems 
to biotechnology makes their fundamental studies invaluable, especially those investigating 
adaptation, since it is the least understood process of CRISPR-Cas functions. Type III CRISPR-Cas 
systems have distinct features during target interference (Liu et  al., 2018; Molina et  al., 2020), 

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.876174&domain=pdf&date_stamp=2022--14
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.876174
https://creativecommons.org/licenses/by/4.0/
mailto:xz82935@uga.edu
mailto:anxinmin@bjfu.edu.cn
https://doi.org/10.3389/fmicb.2022.876174
https://www.frontiersin.org/articles/10.3389/fmicb.2022.876174/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.876174/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.876174/full


Frontiers in Microbiology | www.frontiersin.org 2 April 2022 | Volume 13 | Article 876174

Zhang and An Type III CRISPR-Cas Adaptation

and have been repurposed for prokaryotic genome editing, 
gene regulation, and transcription recording, to which the other 
CRISPR-Cas systems may not be functional (Zebec et al., 2014; 
Peng et  al., 2015; Li et  al., 2016; Liu et  al., 2018; Schmidt 
et  al., 2018).

While type I, type II, and type V systems target DNAs 
(Barrangou et  al., 2007; Brouns et  al., 2008; Mulepati and 
Bailey, 2013; Anders et  al., 2014; Jiang et  al., 2015; Redding 
et  al., 2015), and type VI systems target single-stranded RNAs 
(ssRNAs; East-Seletsky et al., 2016; Liu et al., 2017b,c; Shmakov 
et  al., 2017), type III systems have been shown to have both 
DNA and RNA cleavage abilities both in vivo and in vitro 
(Marraffini and Sontheimer, 2008; Hale et  al., 2009; Staals 
et  al., 2014; Tamulaitis et  al., 2014; Peng et  al., 2015; Elmore 
et  al., 2016; Ichikawa et  al., 2017; Liu et  al., 2017a; Tamulaitis 
et  al., 2017). DNA target interference by type III systems 
requires the directional transcription of the target, as the DNase 
activity of the crRNPs is stimulated by base pairing between 
the guiding crRNAs and the transcript of the target DNAs 
(Deng et  al., 2013; Goldberg et  al., 2014; Samai et  al., 2015; 
Elmore et  al., 2016; Jiang et  al., 2016; Liu et  al., 2017a). 
Additionally, the Palm domain of Cas10 synthesizes cyclic 
oligoadenylates (cAns) as secondary messengers, which bind 
to CARF domain of Csx1 and activates the RNase activity of 
HEPN domain of Csx1 to non-specifically cleave the foreign 
DNA transcripts, and probably host transcripts as well 
(Kazlauskiene et al., 2017; Niewoehner et al., 2017; Foster et al., 
2019). While PAM recognition is required for authentication 
of the interference process of type I and type II systems (Deveau 
et  al., 2008; Mojica et  al., 2009; Sternberg et  al., 2014; Redding 
et  al., 2015), target interference by type III systems tolerates 
a broad range of protospacer flanking sequences (Marraffini 
and Sontheimer, 2010; Elmore et al., 2016; Pyenson et al., 2017).

We accumulated breakthrough findings regarding adaptation 
of type III CRISPR-Cas systems in recent years. Here, 
We summarized our knowledge regarding CRISPR-Cas adaptation 
with the emphasis on type III systems, and discussed open 
questions for type III adaptation studies.

ADAPTATION BY TYPE I  AND TYPE II 
CRISPR-CAS SYSTEMS

CRISPR-Cas adaptation procedure includes protospacer selection, 
processing, and integration (Heler et  al., 2014; Nussenzweig 
and Marraffini, 2020).

Integration by Cas1–Cas2 Complex
A CRISPR array usually associates with cas genes, and each 
Cas protein participates in one or more major steps of the 
CRISPR-Cas system-mediated defense (Bhaya et  al., 2011; 
Makarova et al., 2011). Cas1 and Cas2 proteins form a hexamer 
(four Cas1 monomers centered by two Cas2 monomers) both 
in vivo and in vitro (Nunez et  al., 2014; Wright et  al., 2017; 
Wan et  al., 2019; Wilkinson et  al., 2019), which is essential 
for adaptation of all tested CRISPR-Cas systems (Barrangou 
et al., 2007; Yosef et al., 2012; Nunez et al., 2014; Heler et al., 2015; 

Wei et  al., 2015b; Fagerlund et  al., 2017). Through the aid of 
this complex, the 3’-OH groups of the two strands of the 
prespacer (processed protospacer for integration) successively 
attack the junctions between the leader and the first repeat, 
and between the first repeat and the first pre-existing spacer 
(Nunez et  al., 2015b; Rollie et  al., 2015). By transesterification 
reactions, Cas1–Cas2 complex integrates the double-stranded 
prespacer into the CRISPR array, splitting the plus and the 
minus strand of the first repeat, and leaving two gaps (Nunez 
et  al., 2015b; Rollie et  al., 2015). DNA polymerase(s) and 
ligase(s) are thought to be  required to fill the gap and finish 
the whole process. Since DNA polymerase I  has been shown 
required for the type I  adaptation in Escherichia coli (Ivancic-
Bace et  al., 2015), it is proposed to be  the polymerase that 
fills the integration gap.

For several type I  CRISPR-Cas systems, for example, the 
type I-E system in E. coli K12, Cas1 and Cas2 are the only 
two Cas proteins required for adaptation (Datsenko et al., 2012; 
Yosef et  al., 2012; Diez-Villasenor et  al., 2013; Nunez et  al., 
2014), while most type I systems and all studied type II systems 
require other Cas proteins for protospacer recognition or 
processing (Barrangou et  al., 2007; Heler et  al., 2015; Wei 
et  al., 2015b; Liu et  al., 2017d; Kieper et  al., 2018; Lee et  al., 
2018, 2019; Shiimori et  al., 2018; Almendros et  al., 2019). 
Besides Cas proteins, the leader sequence and at least one 
repeat unit (Yosef et  al., 2012; Wei et  al., 2015a; Grainy et  al., 
2019; Kim et  al., 2019), and integration host factor (IHF) and 
some other elements are also required to ensure the integration 
to happen at the correct position (Nunez et  al., 2016; Wang 
et al., 2016; Fagerlund et al., 2017; Wright et al., 2017; Yoganand 
et  al., 2017; Rollie et  al., 2018).

The Recognition, Selection, and 
Processing of the Proper Protospacers
For well-studied type I  and type II CRISPR-Cas systems, the 
protospacers are selected along foreign DNAs by system-specific 
protospacer adjacent motifs (PAMs; Deveau et al., 2008; Mojica 
et al., 2009; Shah et al., 2013; Wang et al., 2015). PAM recognition 
is also required for the authentication of the interference process 
(Deveau et  al., 2008; Mojica et  al., 2009; Sternberg et  al., 2014; 
Redding et  al., 2015), by which the crRNP complexes of type 
I  and type II systems can protect the CRISPR loci (containing 
the same sequence as the target) within its own genome from 
interference. The Cas1–Cas2 complex of the type I-E system 
in E. coli K12 is sufficient to recognize the ATG PAM upstream 
of protospacers (Datsenko et  al., 2012; Yosef et  al., 2012; Diez-
Villasenor et  al., 2013; Nunez et  al., 2014); while some other 
type I systems require Cas4 to recognize PAM sequences (Kieper 
et  al., 2018; Lee et  al., 2018; Shiimori et  al., 2018). Cas4 is a 
RecB-like nuclease (Zhang et  al., 2012; Lemak et  al., 2014), 
and has been shown to recognize PAM and determine the 
length and the orientation of the new spacers for some of 
the type I  CRISPR-Cas systems (Kieper et  al., 2018; Lee et  al., 
2018, 2019; Shiimori et al., 2018; Almendros et al., 2019; Zhang 
et  al., 2019). The Cas9 protein of the type II system of 
Streptococcus pyogenes contains a PAM binding motif and 
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performs PAM recognition to select the proper protospacers 
(Heler et  al., 2015).

RecBCD complexes and their homologous protein complexes 
in prokaryotic cells bind to double-stranded DNA (dsDNA) 
breaks, and repair the broken DNAs by degradation and 
homologous recombination (Dillingham and Kowalczykowski, 
2008). RecBCD complexes have been shown to be  required 
for adaptation of some tested type I  systems (Ivancic-Bace 
et  al., 2015; Levy et  al., 2015; Radovcic et  al., 2018). Since 
dsDNA breaks frequently happen during DNA replication, 
extensively replicating invaders and the plasmids with high 
copy numbers become more sensitive than the cellular genome 
to adaptation (Ivancic-Bace et  al., 2015; Levy et  al., 2015). 
Moreover, RecBCD can be  hampered by chi sequences 
(Dillingham and Kowalczykowski, 2008), and the enrichment 
of the chi sites around the replication termini of the prokaryotic 
genomes helps the adaptation machineries to more specifically 
recognize foreign DNAs (Ivancic-Bace et  al., 2015; Levy 
et  al., 2015).

The processing of the protospacers from the long substrates 
to the short and mature prespacers is a prerequisite of adaptation, 
but it is the least understood step of the adaptation process. 
The existence of 3′-single-stranded DNA (ssDNA) tails of the 
prespacers substantially facilitate adaptation (Arslan et al., 2014; 
Nunez et  al., 2015a,b; Rollie et  al., 2015, 2018; Van Orden 
et  al., 2020). Cas1 is a non-specific exonuclease in vitro when 
associated with Cas2  in the adaptation complex (Wiedenheft 
et  al., 2009; Babu et  al., 2011; He et  al., 2018; Radovcic et  al., 
2018), and it trims 5′ ends of the protospacers, leaving 3’-ssDNA 
tails for the following integration (Wang et al., 2015; Fagerlund 
et  al., 2017). In Streptococcus thermophilus, Cas2 of the type 
I-E system possesses a DnaQ-like 3′-5′ exonuclease domain, 
which has been proposed to process the 3′-overhangs of the 
prespacers to promote integration (Drabavicius et  al., 2018). 
Some other non-Cas exonucleases, including DnaQ and ExoT, 
have also been shown to be  involved in the 3’-ssDNA tail 
generation of the prespacers (Ramachandran et  al., 2020).

Primed Adaptation
Target nucleic acids can escape from CRISPR-Cas-mediated 
interference by mutation(s) at pivotal positions within 
protospacers/targets or PAMs (Semenova et  al., 2011; Westra 
et  al., 2013). However, a pre-existing spacer in a CRISPR 
array, which is partially or totally complementary to a fragment 
of a molecule, can greatly stimulate adaptation against the 
same molecule (Datsenko et  al., 2012; Swarts et  al., 2012). 
To acquire new spacers from a molecule that the system has 
never processed before is termed “naïve adaptation,” whereas 
adaptation triggered by a pre-existing spacer (priming spacer) 
is termed “primed adaptation.” Primed adaptation is 
substantially more efficient than naïve adaptation (Fineran 
et  al., 2014), and directs the adaptation machinery to the 
invader DNA instead of self-genome (Datsenko et  al., 2012), 
thus providing the hosts with a co-evolutionary strategy to 
minimize the amount of CRISPR-Cas escapers. Primed 
adaptation has been studied and reported for many type 
I  and two type II CRISPR-Cas systems, and interestingly, 

the secondarily adapted protospacers during primed adaptation 
were found to distribute around the cutting sites of crRNPs, 
with only one exception (type I-E system of E. coli K12; 
Datsenko et  al., 2012; Swarts et  al., 2012; Savitskaya et  al., 
2013; Fineran et  al., 2014; Li et  al., 2014; Richter et  al., 
2014; Nussenzweig et  al., 2019; Garrett et  al., 2020; Wiegand 
et  al., 2020; Hoikkala et  al., 2021; Mosterd and Moineau, 
2021). The mechanism(s) of primed adaptation are still under 
research and debate.

ADAPTATION BY TYPE III CRISPR-CAS 
SYSTEMS

Many type III CRISPR-Cas systems, especially most type 
III-B systems, are not associated with cas1 or cas2 gene 
(Makarova et  al., 2020a), so type III systems had been 
thought to be  inert in adaptation for a long time. Instead, 
some type III systems appear to co-occur with type I systems 
and utilize crRNAs processed by the type I  systems to 
provide additional defense against the invaders (Majumdar 
et  al., 2015; Silas et  al., 2017a). Until recent years, direct 
adaptation by type III systems has been observed 
and investigated.

Reverse Transcriptase-Mediated Type III 
CRISPR-Cas Adaptation
In 2016, Silas et  al. (2016) reported adaptation by the type 
III-B system of Marinomonas mediterranea, revealing a novel 
reverse transcriptase (RT)-fused-Cas1 protein. While the reported 
RT-free systems can only adapt DNAs as CRISPR spacers, the 
type III-B system can use both RNAs and DNAs as substrates, 
and adaptation against RNAs is dependent on the RT (Figure 1A). 
This additional adaptation against RNAs makes the system 
preferentially acquire new spacers from highly transcribed 
regions versus weakly transcribed regions, which is beneficial 
for the function of the system, since target interference by 
type III systems requires transcription of the targets. Soon 
after this exciting finding, a similar RT-Cas1-Cas2 complex of 
Fusicatenibacter saccharivorans was used as a novel and efficient 
tool to record transcription event in E. coli (Schmidt et  al., 
2018). A similar RT-mediated type III adaptation against highly 
transcribed regions was reported by Gonzalez-Delgado et  al. 
(2019), and moreover, they observed a dramatic preference 
against the coding strand of the rRNA genes. They speculated 
that the rRNA-encoding strand preference was also caused by 
RT and there was a correlation between gene transcription 
and new spacer orientation. However, since RT-active type III 
systems have no strand bias during adaptation against the 
other genes (Silas et  al., 2016; Gonzalez-Delgado et  al., 2019), 
it appears less likely that the bias was caused by transcription 
and RT activity. The findings by Zhang et al. (2021) and Aviram 
et  al. (2022) indicate that the secondary structures formed by 
the coding strand of the rRNA genes (e.g., when the template 
strand is being processed by RNA polymerase) serve as additional 
and preferred substrates for CRISPR-Cas adaptation (see below).
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Type III CRISPR-Cas Adaptation Against 
Virulent Phages
The reported RT-encoding type III systems are not 
representative, because less than 10% of type III systems 
have RT activity (Silas et  al., 2016). In 2020, Artamonova 
et al. (2020) observed and reported robust adaptation against 
a virulent phage, phiFa, by a RT-free type III system of 
Thermus thermophilus. The protospacers detected by high-
throughput sequencing had a strand bias in that the template 
strands of the phage were adapted more extensively than 
the encoding strands, which was caused by counter-selection, 
since the crRNAs of the type III system needed to bind to 
the mRNAs of the phages to be functional. More interestingly, 
they found that the long terminal repeat (LTR), as the firstly 
invading part and early transcribed region of the phage, 
was adapted substantially more efficiently than the other 
parts of the phage, and the authors reasoned that maybe 
the LTR region encoded an anti-CRISPR element that blocked 

the functions of the CRISPR-Cas system. While not inconsistent 
with the data, it is more likely that the LTR formed secondary 
structures since it was a repeat-rich region, including 
palindromic, direct, and inverted repeats, and such structures 
could be  recognized by type III CRISPR-Cas system (see 
below); or only adaptation against the early transcribed genes 
could perform timely defense against the phage. Soon after, 
Zhang et  al. (2021) observed type III adaptation, followed 
by new crRNA-mediated defense, against virulent phage in 
S. thermophilus as well.

Common and Unique Properties of Type III 
CRISPR-Cas Adaptation
In 2021, Zhang et  al. (2021) for the first time provided a 
detailed analysis of the properties of type III CRISPR-Cas 
adaptation in S. thermophilus. The authors compared the 
patterns of adaptation by the type III-A and a type II-A 
CRISPR-Cas systems of S. thermophilus against different rolling 
circle replicating (RCR) plasmids and theta-replicating plasmids, 
as well as host genome. A prominent and unique feature of 
the adaptation by the type III system was the apparent 
recognition of the single-strand origins (ssos) of the RCR 
plasmids, contrasting with that of the type II system. RCR 
plasmids produce ssDNA intermediates during their replication, 
and the long and partially palindromic ssos form stem-loop 
structures to trigger the synthesis of the minus strand (Khan, 
1997; Del Solar et  al., 1998; Khan, 2000; Ruiz-Maso et  al., 
2015). The authors reasoned that the ssDNA hairpins served 
as additional and preferred dsDNA substrates for adaptation 
of the type III system (Figure  1B). Similarly, the partially 
palindromic oriT sequence of pNT1 plasmid, and the stem-
loop structures enriched regulatory regions of the genomic 
and plasmid genes, as well as the cloverleaf structures enriched 
rRNA and tRNA encoding regions of self-genome, were also 
enriched in type III adaptation but not in type II adaptation 
(Zhang et al., 2021). Most of natural plasmids of gram-positive 
bacteria and many of those of gram-negative bacteria are 
RCR plasmids (Khan, 1997). Moreover, the crucial structure 
of oriT and other DNA secondary structures are important 
for the conjugative transfer and other functions of environmental 
mobile genetic elements (Bikard et al., 2010). As a consequence, 
secondary structure recognition by the type III CRISPR-Cas 
system can be  beneficial for the system to specifically and 
efficiently eliminate the invaders. In 2022, Aviram et al. (2022) 
systematically studied the adaptation by a RT-free type III 
system of Staphylococcus epidermidis (expressed in 
Staphylococcus aureus). They observed similar adaptation 
preference against rRNA and tRNA encoding regions in host 
genome by the type III system, but not by the type II system 
in the same host, further supporting the reality of the unique 
property of type III adaptation.

There is no known reverse transcriptase encoding sequence 
in S. thermophilus genome, and Zhang et  al. (2021) did not 
observe direct correlation between type III adaptation and 
DNA transcription in S. thermophilus. However, the authors 
did observe slight preference of type III adaptation against 

A

B

FIGURE 1 | Diagrams of unique type III adaptation preference with (A) and 
without (B) reverse transcriptase activity. (A) RT represents reverse 
transcriptase, which is usually fused with Cas1–Cas2 complex, and may also 
be independent as well. Complementary DNA (cDNA) is depicted by blue. 
RNA template is depicted by pink, and the dashed lines represents potential 
digestion against the RNA template. (B) Single-stranded DNA (ssDNA) 
secondary structure is depicted by red. Hypothetical proteins or other 
elements are presented by white balls.
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highly transcribed regions of plasmids, and constant preference 
against riboswitch transcriptional attenuators. These 
riboswitches lie in the 5’ UTR of the regulated mRNAs, and 
interaction between a signaling molecule and a riboswitch 
controls formation of a transcriptional terminator hairpin 
(Henkin, 2008). Besides, a general enrichment of type III 
spacers was observed roughly at 10–50 bp downstream from 
start codons of genomic genes. Moreover, for all the regions 
mentioned here, type III spacers were specifically enriched 
at the encoding strand, which was displaced as ssDNA when 
the template strand was occupied by transcription machinery. 
These findings further indicate that DNA secondary structures 
formed by ssDNAs can serve as additional and preferred 
substrates for type III adaptation (Figure  1B). While the 
type III-A system of S. thermophilus has no direct or obvious 
correlation between the adaptation and DNA transcription 
level, in contrast, the frequency of adaptation by type III-A 
system of S. epidermidis was found to be directly and obviously 
correlated with DNA transcription level (Aviram et al., 2022), 
in a similar way with the RT-active type III systems (Silas 
et  al., 2016; Gonzalez-Delgado et  al., 2019). It is possible 
that there is an unknown and intrinsic mechanism of the 
S. epidermidis type III-A system to target highly transcribed 
region during adaptation. In contrast, it is also possible that 
S. aureus cells potentially express unknown reverse transcriptase, 
after all, many Staphylococcus species are proposed to have 
putative reverse transcriptase encoding sequences, for examples, 
see NCBI accession CAC8888864.1 and UniProtKB D2J8E1. 
For some RT-active type III systems, RT domain is fused 
with Cas6 which is not related to adaptation, instead of Cas1 
or Cas2 (Silas et  al., 2016), implicating that RT domains do 
not have to be  in the adaptation complexes to influence 
adaptation pattern; in contrast, independent cellular RTs may 

be able to generate additional substrates for type III adaptation 
as well (Figure  1A).

Like many investigated type I and type II systems, adaptation 
by the type III-A system of S. epidermidis was facilitated 
by DNA free ends, which was enhanced by AddAB DNA 
repairing complex (homologous to RecBCD) and hampered 
by chi sites (Aviram et  al., 2022), indicating that this is a 
common feature for all or most CRISPR-Cas systems. The 
lengths of all tested type III spacers fell into a roughly 
normal distribution, centered by 36 bp (Silas et  al., 2016; 
Gonzalez-Delgado et  al., 2019; Artamonova et  al., 2020; 
Zhang et  al., 2021; Aviram et  al., 2022). Direct adaptation 
by all tested type III systems are PAM-independent (Silas 
et  al., 2016; Gonzalez-Delgado et  al., 2019; Artamonova 
et  al., 2020; Zhang et  al., 2021; Aviram et  al., 2022), and 
requires only Cas1 and Cas2 proteins, but not Cas6 or any 
interference-related Cas proteins (Silas et  al., 2016; Schmidt 
et  al., 2018; Zhang et  al., 2021; Aviram et  al., 2022).

Intriguingly, although adaptation was inert after knocking 
out cas1 or cas2 genes, Zhang et  al. (2021) observed the 
duplication of the repeat and the pre-existing spacer units, 
revealing an adaptation-independent repeat-spacer replication 
event. Such replication was observed in both the type III 
and the type II systems of S. thermophilus, indicating that 
it is a universal feature of all or many of the CRISPR-Cas 
systems (Zhang et  al., 2021). DNA replication slippage in 
the repeat-rich region may help the CRISPR-Cas systems to 
replicate recently acquired spacers to enhance the expression 
of the crRNAs, as well as to lose the old spacers to keep a 
compact CRISPR array (Figure  2). While the analyses in the 
research by Zhang et  al. (2021) were unable to detect spacer 
loss, such loss had been observed in a study regarding a 
type I  CRISPR-Cas system (Rao et  al., 2017).

FIGURE 2 | Diagram of repeat-spacer loss and duplication by DNA replication slippage. Repeats and spacers are depicted by black and blue. Dashed arrows 
indicate the DNA synthesis direction.
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CONCLUSION AND OPEN QUESTIONS

As a conclusion, different labs have independently detected 
adaptation against plasmids, phages, and host genomes by 
type III CRISPR-Cas system (Silas et al., 2016, 2017b; Schmidt 
et al., 2018; Gonzalez-Delgado et al., 2019; Artamonova et al., 
2020; Zhang et  al., 2021; Aviram et  al., 2022). Interesting 
common and unique properties of type III adaptation have 
been identified. However, there are still interesting and 
important questions unanswered regarding type III adaptation. 
(1) We  do not fully understand the detailed procedure or 
entire mechanism of RT-mediated type III adaptation. Does 
RT-mediated adaptation happen during or after the RT 
reaction? How do those adaptation modules process the 
DNAs after RT reaction? Is it necessary for the cells to 
digest the template RNA before CRISPR-Cas adaptation 
(Figure  1A)? These questions remain to be  answered. (2) 
Whether type III Cas1–Cas2 complex has the intrinsic ability 
to recognize secondary structures, or other non-Cas elements 
are involved in this recognition, remains to be  studied. (3) 
The mechanism of adaptation-independent dynamics of CRISPR 
arrays and the benefits of the process remain to be  studied. 
(4) Whether primed adaptation activity exists in type III 
systems, and the mechanism of type III primed adaptation, 
remain to be  studied. Target interference of type III systems 
tolerates a broad range of PAMs (Marraffini and Sontheimer, 
2010; Elmore et  al., 2016; Pyenson et  al., 2017), and also 
tolerates apparently more mutations within the targets than 
type I  and type II systems (Maniv et  al., 2016; Pyenson 
et  al., 2017). As a result, type III systems minimize the 
potential escapers of the invading nucleic acids (Maniv et al., 
2016; Pyenson et  al., 2017). Despite this difficulty of escape, 
primed adaptation may still be beneficial for type III CRISPR-
Cas-mediated defense. As discussed above, naïve adaptation 
by the type III system preferentially uptakes the protospacers 

at the encoding strands of the promoter regions of expressed 
genes (Zhang et al., 2021). Since the target interference ability 
of the type III system requires a reverse complementary 
RNA, DNA uptake against the encoding strand will not 
directly contribute to defense. Moreover, as to the bona fide 
protospacers derived from the template strands, if the 
protospacer region was weakly transcribed or a late transcript 
in phage infection, the type III spacer-mediated defense may 
be  insufficient to efficiently clear phage or plasmid nucleic 
acids (Goldberg et  al., 2014; Rostol and Marraffini, 2019). 
In these situations, the potential primed adaptation triggered 
by the “inefficient” spacers may be  able to provide a chance 
to the system to perform efficient secondary uptake to counter 
against the invaders.
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