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Abstract

Humans race drones faster than neural networks trained for end-to-end autonomous flight.

This may be related to the ability of human pilots to select task-relevant visual information

effectively. This work investigates whether neural networks capable of imitating human eye

gaze behavior and attention can improve neural networks’ performance for the challenging

task of vision-based autonomous drone racing. We hypothesize that gaze-based attention

prediction can be an efficient mechanism for visual information selection and decision mak-

ing in a simulator-based drone racing task. We test this hypothesis using eye gaze and flight

trajectory data from 18 human drone pilots to train a visual attention prediction model. We

then use this visual attention prediction model to train an end-to-end controller for vision-

based autonomous drone racing using imitation learning. We compare the drone racing per-

formance of the attention-prediction controller to those using raw image inputs and image-

based abstractions (i.e., feature tracks). Comparing success rates for completing a chal-

lenging race track by autonomous flight, our results show that the attention-prediction based

controller (88% success rate) outperforms the RGB-image (61% success rate) and feature-

tracks (55% success rate) controller baselines. Furthermore, visual attention-prediction and

feature-track based models showed better generalization performance than image-based

models when evaluated on hold-out reference trajectories. Our results demonstrate that

human visual attention prediction improves the performance of autonomous vision-based

drone racing agents and provides an essential step towards vision-based, fast, and agile

autonomous flight that eventually can reach and even exceed human performances.

Introduction

First-person view (FPV) drone racing is an increasingly popular televised sport in which

human pilots compete to complete challenging obstacle courses in a minimum time. Using

only visual feedback from an FPV camera attached to the teleoperated unmanned aerial vehi-

cle, human pilots are able to plan and execute appropriate control actions to navigate the

drone along challenging race tracks [1, 2]. The visual-motor coordination skills required to
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achieve top-level performances in drone racing are based on many years of repeated practice

and flight experience in drone racing simulators and real-world races [2, 3]. But, how exactly is

visual perception related to aircraft control? Recent experimental evidence indicates a strong

relationship between human drone racing pilots’ eye gaze behavior and future flight trajecto-

ries and shows that the direction of eye gaze fixation precedes planned control actions [2].

Thus, visual attention measured by eye gaze fixations indicates a human pilot’s intention and

subsequent control action. Because quadrotor drones are extremely agile vehicles, they become

increasingly relevant in time-critical missions, such as search and rescue, aerial delivery, and

industrial inspection tasks. Therefore, over the last decade, research on autonomous, agile

quadrotor flight has pushed platforms to higher speeds and agility [4–12] In this line of

research a key question is: Can we design an algorithm for fully autonomous vision-based fast

and agile drone flight that performs as well as or better than human pilots? Solving this chal-

lenge is one of the most pertinent goals in autonomous vision-based quadrotor navigation,

reflected in an increasing number of simulation-based [13, 14] and real-world competitions

[15, 16]. The challenges are enormous, particularly regarding the issues of low-latency percep-

tion-aware planning and state estimation under motion blur [16]. If solved, numerous benefits

outside of drone racing would arise. This includes low-latency agile autonomous systems that

perform safe and effective missions in unknown, cluttered environments inaccessible to

humans for industrial inspection and search and rescue applications. The two leading

approaches are model-based and learning-based system design. The model-based approach

follows a classical sense-plan-control scheme, which is modular, and requires very accurate

knowledge about the drone dynamics, the drone’s state, and the ability to perform low-latency

minimum-time control onboard [8, 12, 15]. Indeed, this approach has been very successful

and has been able to outperform experienced drone racing pilots on challenging race maneu-

vers in highly controlled environments [8]. However, model-based approaches often require

external sensing and highly accurate systems knowledge, pre-planned trajectories, and do not

generalize to unknown environments or noisy sensory inputs. The alternative is infusing

learning-based methods into systems design, where sensing, planning, and control tasks are

performed by a single neural network. These so-called end-to-end neural networks have been

successfully trained and deployed for quadrotor flights of acrobatic maneuvers [11], obstacle

avoidance in the wild [17], and simulator-based drone racing [18, 19]. Surprisingly, none of

these previous works have considered imitating or making use of flight trajectories and visual-

motor coordination behavior produced by experienced human drone racing pilots. The main

objective of this work is to answer the question of whether gaze-based visual attention predic-

tion can improve the performance of end-to-end models for vision-based autonomous drone

racing beyond state-of-the-art. We address the problem of a lack of human ground truth data

during deployment by training a neural network for predicting human visual attention from

RGB images. The scope of the present work is an evaluation of the flight performances of end-

to-end controller architectures for the task of vision-based autonomous drone racing in a

highly realistic simulator.

Contributions

The main contributions of this work are:

1. We train and evaluate a visual attention prediction model for autonomous drone racing.

2. We train end-to-end deep learning networks using imitation learning that can complete a

challenging race in a vision-based drone racing task, with a performance as good as human

pilots.
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3. We demonstrate that attention prediction models outperform models using raw image

inputs and image-based abstractions (i.e., feature tracks).

4. We found a better generalization performance to previously unseen flight trajectories for

end-to-end drone racing agents using attention prediction or feature tracks when com-

pared to a raw image input baseline.

The Related Work section describes related works in the domain. The Materials and Meth-

ods section describes the datasets, network architectures, and experimental analysis methods

used in this work. The Results section presents experimental results obtained for the visual

attention prediction, control command prediction, and end-to-end drone racing performance.

The Discussion section relates the experimental findings to previous work and proposed future

work. The Conclusion section concludes the paper.

Related work

Behavioral cloning, or imitation learning, has the goal to develop neural networks that can

map from sensory inputs to control actions by learning from (human) expert data in a super-

vised fashion [20, 21]. The main benefit of imitation learning is that it does not require feature

engineering. Imitation learning approaches were initially developed and successfully deployed

for car driving applications, such as lane following and obstacle avoidance [19, 22]. A caveat

however is that training models on expert data often do not provide information about the

states that deviate from the experts, which can lead to failure if the agent encounters such

states. This can be mitigated by dataset aggregation (DAgger), where novel training data is col-

lected while training a primary policy on a reference policy [23] or by introducing displace-

ments [18] or distortions to control commands [19] to enlarge the state space for training.

Dataset aggregation has been successfully used for training end-to-end networks for autono-

mous car driving [19] and autonomous quadrotor flight [11]. Another shortcoming of imita-

tion learning is that it does not allow the network to compensate for mistakes made by the

expert. A possible solution is the use of observational imitation learning in which a network

learns to select optimal behavior while observing multiple imperfect teachers. This approach

outperformed reinforcement learning and imitation learning approaches in vision-based

autonomous drone racing in a simulator [24]. However, not only the choice of network archi-

tecture and training method but also the choice of input/output representation strongly affect

network performance. Abstractions of either input or output data typically outperform net-

works operating directly on raw image data. For instance [11], observed better performance in

autonomous acrobatic flight using feature tracks than using RGB images directly. Similarly

[25], found better 3D localization performance using grayscale instead of RGB images. Like-

wise [26], found better performances in autonomous car racing when predicting parameter-

ized trajectories for a model predictive controller (MPC) driving the car compared to letting

the network predict control commands directly. Such sensory and output abstractions seem

advantageous in network performance and generalization ability. It should also be noted that

several previous works follow hybrid approaches combining learning methods for perception

[27] and localization [28] with model-based methods for planning [29] and control [21] and

have demonstrated successes. However, these approaches often require extensive system iden-

tification and controller tuning, which are not required when using end-to-end neural net-

work controllers. In this study, we investigate whether imitating human visual attention and

flight behavior, could serve to improve the performance of state-of-the-art end-to-end models

on autonomous drone racing tasks, which requires the models to perform fast and agile flight

through mandatory waypoints (i.e., race gates). The importance of visual attention in vision-
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based navigation has not only been demonstrated in drone pilots [2]. Human car drivers move

their eye gaze to future waypoints and driving paths several seconds and meters ahead of the

current position of the car [30]. These eye gaze fixations allow the operator to compensate for

unwanted visual image motion (retinal stabilization) and estimate the current vehicle motion.

Most importantly, there is a strong temporal and spatial relationship between eye gaze fixa-

tions and subsequent control commands. Drivers execute control actions congruent with the

eye gaze deviations from the vehicle’s forward velocity at fixed temporal offsets of 400 ms for

driving on winding roads [31]. Gaze monitoring in car drivers also provides valuable informa-

tion for autonomous driving agents, in particular regarding high-level intentions, such as

whether to perform a left or right turn [32]. It can even support more efficient performance by

selecting only task-relevant information [33]. Previous works have tried to extract information

from eye gaze for steering cars, e.g., for assistive technology, hands-free operation [34], atten-

tion or intention monitoring [35], or for teaching autonomous agents to drive in virtual cities

[33]. However, those applications are usually slow, use limited control commands, and have

not directly used visual attention for fast and agile drone flight.

Materials and methods

Ethics statement

The study protocol was approved by the local Ethical Committee of the University of Zurich

and the study was conducted in line with the Declaration of Helsinki. All participants gave

their written informed consent before participating in the study. All human data taken from a

publicly available dataset were fully anonymized before we accessed them.

Human drone racing dataset

We use the publicly available “Eye Gaze Drone Racing Dataset” (Open Science Framework

repository: https://osf.io/gvdse/), originally released by [2], which consists of eye gaze, control

commands, drone state ground-truth, and the FPV video (800 × 600 pixels resolution) record-

ings from experienced drone pilots flying in a drone racing simulator (Fig 1a–1c illustrates the

experiment setup). The eye gaze data is projected onto the screen to obtain gaze locations that

correspond with the recorded videos. For this study, we randomly select flight trajectory data

from 36 collision-free flights from 18 human pilots from a figure-eight race track (see example

trajectory in Fig 1d). Flight trajectory selection is constrained by the achieved lap time, that is

we randomly select data within one interquartile range of the group median lap time (11.80

sec) and assign these data randomly to the training set (18 trajectories; median lap

time = 11.69 sec, min = 10.79 sec, max = 14.46 sec) and test set (18 trajectories; median lap

time = 11.83 sec, min = 11.05 sec, max = 14.91 sec; paired-samples t-test shows no statistical

difference in lap times between training and test set).

Because the AlphaPilot drone racing simulator used for drone state data logging by [2] is

proprietary software that did not allow for closed-loop control, we use the open-source drone

racing simulator Flightmare [36], which is tailored to machine learning tasks as required for

the present study. The quadrotor platform had an arm length of 17 cm, an all-up-weight of 1

kg, a maximum collective thrust of 21.7 N, and a maximum rotational velocity of 6 rad/s. The

RGB camera had a horizontal field-of-view of 80˚, and an uptilt angle of 25˚. We thus used the

ground-truth trajectory, eye gaze, drone, and camera settings of the original dataset by [2] to

generate a novel ground-truth dataset required for network training and evaluation. We

designed a visual environment largely identical in color and dimensions, with identical gate

sizes, positions, and shapes as used by [2]. We then rendered the drone ground-truth poses in

Flightmare to collect images of the same resolution as in the original dataset, which is
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subsequently used for attention network training. Although gaze fixations can be used to indi-

cate the pilots’ focus of attention, the uncertainty inherent in the measurements can better be

expressed using a probability distribution over the image coordinates. Using the procedure

described in [37], we generate ground-truth continuous visual attention maps At by averaging

the gaze positions recorded for each frame (in pixels) and using these fixations ft from the

frame at time t − 12 to t + 12 (a total of 25 frames at 60Hz) to define a 2D multivariate Gaussian

distribution (with a fixed diagonal variance matrix S = diag(200, 200)) centered on each fixa-

tion. For each pixel, the maximum value across these Gaussians is computed to create a visual

attention map over the image:

Atðx; yÞ ¼ max
i2ft� 12;:::;tþ12g

N ðx; y; fi;SÞ: ð1Þ

To form a valid probability distribution of the pilot’s visual attention, this attention map is

normalized to sum to one. An example of one of these ground-truth attention maps can be

seen as the output of the architecture shown in Fig 2. We filter out any laps with crashes or in

which the drone does not pass through all gates, and also perform a manual inspection of the

trajectories, removing those that are undesirable for training a controller, e.g. when pilots con-

siderably deviate from the figure-eight reference trajectory (Fig 1c). Furthermore, we only use

frames where both gaze and control ground truth is available. This results in a total of 675, 251

valid frames from 18 subjects. The gaze dataset is split into a training set with 508, 670 frames

and a test set with 166, 581 frames, with both sets containing samples from all included sub-

jects but not from the same individual experimental runs. This dataset is used for the training

and performance evaluation of the visual attention prediction network. The dataset used in

Fig 1. Experimental methods illustrated. a) Experimental setup used in [2]; b) First-person view (FPV) racing drone; c) Example FPV image showing

racing gates, gaze-based, and network-predicted attention maps. d) Reference trajectory by a human pilot showing quadrotor axes in red (x), green (y),

and blue (z). Race gates are represented by black rectangles and numbered in sequence. Black arrow indicates the direction of flight.

https://doi.org/10.1371/journal.pone.0264471.g001
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this study is available in an Open Science Framework repository (https://osf.io/uabx4/, Dataset

DOI: 10.17605/OSF.IO/UABX4).

Visual attention prediction network

Fig 2 pictures the architecture of the visual attention prediction network, based on [38], which

is designed to predict visual attention as a distribution over image pixels. The network uses

ResNet-18 [39] layers pre-trained on ImageNet [40] and is trained on individual frames. It

uses the first four residual blocks of the ResNet-18 architecture, including strided convolution

and pooling operations. To maintain a high spatial resolution for predicting attention maps,

the model is trained on RGB images of size 400 × 300 (half the original resolution), resulting in

feature maps of resolution 25 × 19 after being processed by the encoder. These features are

repeatedly upsampled and passed through convolutional layers with ReLU activations, finally

obtaining a visual attention map of the same resolution as the input image by applying a 2D

softmax to create a valid probability distribution. Similar to [37], Kullback-Leibler divergence

is used to compute the loss:

DKLðA k ÂÞ ¼
X

x;y

Aðx; yÞlog
Aðx; yÞ
Âðx; yÞ

 !

ð2Þ

where A is the ground-truth attention distribution, Â is the network’s prediction, and x and y
are image coordinates. The visual attention prediction network is trained for 5 epochs with a

batch size of 128 and using the Adam optimizer [41] with a learning rate of 2 × 10−4. During

training, we use data augmentation by randomly applying the following transformations to the

input images: brightness, contrast, saturation and hue changes, the addition of Gaussian noise,

applying Gaussian blur, and erasing of random image regions. The trained network is ulti-

mately used to obtain encoder features as input to the end-to-end drone racing agent.

End-to-end controller network

Fig 3 shows the architecture of the visual attention-prediction based end-to-end drone racing

network. The architecture is adapted from the “Deep Drone Acrobatics” (DDA) architecture

proposed in [11]. It takes as input a short history of measurements: reference states in world

coordinates consisting of rotation, linear and angular velocity (sampled from the reference tra-

jectory at 50 Hz), and a state estimate, also entailing rotation, linear and angular velocity (sam-

pled at 100 Hz). Note that unlike in [11], we do not use the original implementation in ROS

designed for real-world quadrotor flight but instead use a custom Python 3.8 implementation

Fig 2. The architecture of our attention-prediction network based on ResNet-18. The network predicts pixel-wise attention

probabilities and is therefore a Fully Convolutional Network. ResNet blocks (each with two convolutional layers) are shown in grey,

convolutional layers in purple and blue (with and without batch normalization), max-pooling layers in red and upsampling layers in

green.

https://doi.org/10.1371/journal.pone.0264471.g002
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of the code compatible with the Flightmare simulation environment. Moreover, we use

ground-truth states as a substitute for state estimates. The inputs for each of the described

branches are processed by temporal convolutions before being concatenated and passed

through the control module consisting of four linear layers and predicting mass-normalized

thrust and body rates. We introduce one major modification to the original network architec-

ture by replacing feature tracks with encoder features from visual attention prediction as an

input to the network. We flatten the features extracted by the encoder of the visual attention

network (i.e., 25 × 19 features) to a one-dimensional vector of size 475 at each time step. These

vectors are then further processed by temporal convolutions like the other inputs. The control

module is identical to the original network architecture used by [11]. For performance com-

parison, we use two baseline models, which are identical to the visual attention-prediction

based model, apart from the visual attention input. The first baseline model is an end-to-end

drone racing network receiving raw RGB images as inputs (i.e., 400 × 300 × 3 features), which

are stacked in the feature dimension and processed by a 2D convolutional network before also

being transformed to a single vector as input to the control module. The second network is an

end-to-end drone racing network receiving feature tracks as inputs. Feature tracks are an

abstraction of visual inputs, initially used in [11] to provide a better transfer from learning in

simulation to control in the real world. We use a re-implementation of feature tracks from the

VINS-Mono package [42] in Python. Feature tracks are represented as a five-dimensional vec-

tor: the location of salient image features in normalized image coordinates, the velocity of fea-

tures tracked over subsequent frames, and the number of time steps each feature has been

tracked. Features are extracted using the Harris corner detector [43] and tracked using the

Lucas-Kanade method [44]. Outliers are removed using geometric verification and key point

correspondences of more than one pixel from the epipolar line. Exactly 40 feature tracks per

time step are used as input to the respective controller (i.e., 40 × 5 features), sampled from all

tracked features. The feature-track based controller receives feature tracks after they are passed

through a reduced version of the PointNet architecture [45]) as input to the temporal convolu-

tion part of the network.

End-to-end controller training

We use the same training strategy employed in [11], using imitation learning with DAgger

[46]. We train each model on 18 reference trajectories of the training data. Using these

human-generated trajectories ensures that the quadrotor’s camera is pointed in the direction

of movement, and meaningful attention predictions can be made based on models trained on

Fig 3. Architecture of the attention-prediction based end-to-end controller.

https://doi.org/10.1371/journal.pone.0264471.g003
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human gaze data. An MPC expert with access to the ground-truth state is used that follows the

trajectory, providing labels for network predictions. It uses the simplified quadrotor model

proposed in [47]. It solves the optimization problem of minimizing the difference between the

reference trajectory and the predicted quadrotor states, subject to the quadrotor dynamics (see

[11] for more details). Exploration—and thus larger coverage of the state-space—is facilitated

by adding random noise to the expert command with a small probability, which increases

throughout data generation and network training. Additionally, the network predictions

(rather than the expert predictions) are executed if they are within a boundary close to the

expert command, the range for which also increases over time. We record data for 30 rollouts

before training for 20 epochs, which is repeated five times for a total of 150 rollouts and 100

epochs of training.

Drone racing performance evaluation

We evaluate end-to-end drone racing network performances on 18 reference trajectories of

the training set by comparing the performances between visual attention prediction, raw RGB

images, and feature track-based networks. To evaluate network generalization, we evaluate

network performance on hold-out test set trajectories that the networks have not observed pre-

viously. For each scenario, we perform 10 repetitions of the test flight to compute the number

of gates successfully passed. This metric is computed considering the period between the start

of the network-controlled flight until completing the trajectory or until collision with a gate,

the ground floor, or virtual collider boundaries placed at 30 × 15 × 8 meters around the racing

track.

Results

In this study, we trained two kinds of neural networks: one that predicts human gaze-based

visual attention from RGB images (attention prediction model) and one that uses attention

prediction to control a racing drone in a vision-based autonomous drone racing task (atten-

tion-based end-to-end controller). The following sections present a performance evaluation of

the visual attention prediction model, the control command prediction performance of the

end-to-end controller, the drone racing performance on seen trajectories (training set), and

the generalization performance to hold-out trajectories (test set).

Visual attention prediction performance

Fig 4 provides a qualitative assessment of the predictions of the visual attention prediction

model on exemplar images. When gates are in clear view of the FPV camera (as compared to,

e.g., the moment of traversal), attention predictions match ground-truth data very well both in

terms of location and accumulating probability mass in one region. This also holds when mul-

tiple gates are in view. In these cases, the network’s predictions mostly focus on the upcoming

gate, just like the human ground-truth [2].

We evaluate visual attention prediction performance by comparison to two simple base-

lines. The first consists of the mean attention map (resp. gaze position) over the training set.

For the second, we shuffle ground-truth attention map samples within each lap of the race

track in the test set, thus retaining the same overall distribution across that lap but disconnect-

ing the attention output from the RGB input. Furthermore, we compare our results with a

state-of-the-art model [48, 49], which also predicts attention maps from single RGB images.

As metrics for visual attention prediction, we use the Kullback-Leibler divergence (DKL), also

used for training our model, and the Pearson Correlation Coefficient (CC). The results are

shown in Table 1. Our visual attention prediction model (ResNet-18) outperforms the
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respective baselines in every metric. Although our model does not outperform the state-of-

the-art deep supervision model, it achieves performance close to [49] on our dataset while

being faster to train and faster during inference. Our model and [48] are more comparable in

terms of training and inference time.

Control command prediction

We analyze the prediction performance of end-to-end controllers using an offline evaluation

method. Specifically, we compare the control commands generated by the neural networks to

control commands produced by an MPC controller (which has access to the ground truth

quadrotor state), while the MPC controls the quadrotor along 18 reference trajectories on

which the networks were previously trained (training set) and hold-out trajectories the net-

works have not previously observed (test set). We use as performance metrics the Mean

Squared Error (MSE) and Mean Absolute Error (L1) for each control command (i.e., Throttle,

Roll, Pitch, Yaw) computed across the respective datasets. Table 2 shows results of the control

command prediction analysis on the training set. The attention-prediction based controller

produces control commands that more closely resemble control commands of the MPC as

Fig 4. Visual attention prediction examples. Comparison of gaze-based attention maps (ground truth, in blue) and

visual attention network predictions (in red) for FPV camera images of the left turn maneuver (showing gates 2-5, top

row) and the right turn maneuver (showing gates 7-10, bottom row).

https://doi.org/10.1371/journal.pone.0264471.g004

Table 1. Visual attention prediction performance.

DKL # CC "

Baseline mean 2.499 0.281

Baseline shuffled GT 1 0.203

Deep supervision 1.600 0.500

ResNet-18 (ours) 1.716 0.487

https://doi.org/10.1371/journal.pone.0264471.t001

Table 2. Training set control command prediction errors for end-to-end controllers.

Throttle Roll Pitch Yaw

MSE # L1 # MSE # L1 # MSE # L1 # MSE # L1 #

RGB images 0.51 0.58 0.59 0.69 0.60 0.60 0.14 0.31

Feature tracks 0.62 0.63 0.20 0.36 0.58 0.57 0.04 0.15

Attention prediction (ours) 0.45 0.54 0.23 0.39 0.51 0.56 0.04 0.14

https://doi.org/10.1371/journal.pone.0264471.t002
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compared to the image- and feature track-based controller. This indicates that the attention-

based controller selects the appropriate control commands more frequently than the image-

and feature track-based baselines when deployed on reference trajectories that the controller

was trained on.

Table 3 shows the control command prediction performance on the test set. The feature

track-based controller shows an overall better match to MPC commands as compared to the

attention- and image-based controllers. Thus, the feature-tracks based controller appears to

generalize better to previously unseen reference trajectories than the attention- and image-

based controllers.

Drone racing performance

Fig 5 shows a comparison of drone racing performance for the attention-prediction, feature

tracks, and image-based end-to-end controllers across 180 trials (i.e., 18 trajectories each

flown 10 times) on training set reference trajectories. The attention-prediction based control-

ler successfully completes 159/180 trials (88% success rate) and outperforms both image-based

(110/180 trials, 61% success rate) and feature-track based (99/180 trials, 55% success rate) end-

to-end controllers.

In Fig 6 we present an analysis of the generalization performance of the chosen end-to-end

controllers when attempting to fly reference trajectories of the test set, which none of the net-

works has previously observed. The attention-prediction based controller again achieves the

Table 3. Test set control command prediction errors for end-to-end controllers.

Throttle Roll Pitch Yaw

MSE # L1 # MSE # L1 # MSE # L1 # MSE # L1 #

RGB images 1.21 0.81 5.35 0.68 1.76 0.67 543.10 0.76

Feature tracks 1.17 0.85 0.29 0.42 0.90 0.71 0.07 0.20

Attention prediction (ours) 1.21 0.86 0.31 0.43 0.96 0.75 0.10 0.21

https://doi.org/10.1371/journal.pone.0264471.t003

Fig 5. Training set drone racing performance. Training set drone racing performance for different end-to-end controllers

showing success rates for passing the 10 consecutive gates of the race track. Average success rate and 95% confidence intervals

across 18 flight trajectories are shown.

https://doi.org/10.1371/journal.pone.0264471.g005
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highest number of successfully completed trials (130/180 trials, 72% success rate) and outper-

forms the feature tracks-based (104/180 trials, 58% success rate) and image-based (70/180 tri-

als, 39% success rate) end-to-end controllers. When comparing controller performance

between training and test set, it can be noted that the image-based controller showed a much

larger decrease in performance (-22% success rate difference) than the attention-prediction

based controller (i.e., -16% success rate difference). The feature-track based controller did not

considerably change performance (+3% success rate difference) between training and test set,

indicating that the feature-track based controller showed better generalization to previously

unseen reference trajectories.

Discussion

This study investigates whether visual attention prediction can improve the drone racing per-

formance of end-to-end neural network controllers. Our results show that using human drone

pilots’ eye gaze data we can train a neural network that reliably predicts visual attention when

no human is controlling an FPV racing drone. Using this attention prediction network, we

successfully train end-to-end neural networks that can fly a challenging race track fully auton-

omously and collision-free with up to 88% success rate across 180 attempted flight. This atten-

tion-prediction based model outperforms controllers based on raw images and feature tracks.

Several reasons may contribute to the superior performance of the attention-prediction based

controller over the RGB-image and feature-track based controllers. First, attention prediction

serves as a task-specific abstraction of image information. That is, attention prediction emu-

lates the eye gaze behavior of human pilots in a drone race, which depends on the pilot’s inten-

tion (“Pass the next gate”) and planned flight trajectory [2]. Indeed, eye gaze has been

successfully used as a high-level control input for teleoperated quadrotor navigation [50, 51].

Second, the attention-prediction model may provide useful information for quadrotor state

estimation. The attention prediction feature maps typically highlight subregions of the image

where the upcoming race gate is located (Fig 1c). This drone-racing specific selection of spatial

regions of interest is not available from feature tracks or RGB images alone. Indeed, previous

Fig 6. Test set drone racing performance. Test set drone racing performance for different end-to-end controllers showing

success rates for passing the 10 consecutive gates of the race track. Average success rate and 95% confidence intervals across 18

flight trajectories are shown.

https://doi.org/10.1371/journal.pone.0264471.g006
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work has demonstrated that attention prediction models can improve the performance of

simultaneous localization and mapping algorithms [52]. Third, attention-prediction and fea-

ture-track models reduce the number of input features per sample to the end-to-end controller

network (attention prediction: 25 × 19 features, feature tracks: 40 × 5 features) when compared

to raw RGB images (400 × 300 × 3 features). Our results go beyond the state of the art by show-

ing, for the first time, a successful behavior cloning of human eye-gaze based visual attention

and flight behavior of experienced drone racing pilots, achieving human-level, fully autono-

mous vision-based quadrotor flight. Our work differs from previous model-based and learn-

ing-based approaches to autonomous drone racing in the following ways: We do not explicitly

encode racing gate poses or relative locations (e.g., as in [15]) but let the attention-prediction

model select relevant task visual-spatial information from RGB images. Moreover, by using

multiple reference trajectories in training the learned end-to-end controllers, we demonstrate

that our controllers can complete multiple reference trajectories despite large variations

between the provided reference trajectories. Furthermore, we extend previous works using fea-

ture tracks for visual abstraction (e.g., [11]) by showing that visual attention prediction can

provide similar and even better performance in vision-based racing tasks. We interpret this

result as follows: The visual attention prediction model learns to select task-relevant image fea-

tures (i.e., vicinity to race gates) that are important for the drone racing task—as shown empir-

ically by [2]. Thus, attention prediction models convey intentionality, which is not provided

by purely image feature-based abstractions as provided by feature tracks. This perceptual

intentionality can be highly beneficial if the race track and desired trajectory is previously

known (i.e., as shown in our drone racing performance analysis on the training set). Neverthe-

less, feature tracks provide very robust performance on hold-out data, in line with previous

observations [11]. Our results extend previous work on gaze-based attention prediction origi-

nally carried out for autonomous driving [32, 33] to fast and agile quadrotor flight in three

dimensions. One may ask whether the attention-prediction based end-to-end controller could

be deployed on a quadrotor platform flying in the real world? We think that real-world deploy-

ment is feasible because in our previous work [11] a feature-track-based end-to-end controller

was successfully deployed on an NVIDIA Jetson TX2 for acrobatic flight in the real world. Fur-

thermore, in our present work, both the feature-track and attention-prediction-based control-

lers successfully performed output predictions within 40 ms sample-to-sample intervals.

However, further work will be needed to evaluate simulation-to-reality transfer for the atten-

tion-prediction model. Potential future applications of human-attention based autonomous

flight are precision agriculture [53], road traffic surveillance [54], internet of things [55, 56],

assistive technologies for hands-free remote control [50, 57], inspection [58, 59], and search-

and-rescue [60, 61].

Conclusion

This paper addresses the problem of learning fast and agile quadrotor flight from expert

human drone pilots. We consider the question of whether human visual attention prediction

can improve the performance of autonomous drone racing agents over state-of-the-art meth-

ods. To address the problem of a lack of human ground truth data during autonomous flight,

we train a neural network that predicts gaze-based visual attention from RGB images. We sys-

tematically compare the performance of end-to-end neural network controllers in an autono-

mous drone racing task. Our results show that gaze-based visual attention prediction

outperformed image-based and feature-tracks based controllers. These results provide an

essential step towards human-inspired fully autonomous learning-based vision-based fast and

agile flight.
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