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Abstract: Although the clinical assessment of enamel thickness is important, hardly any tools exist
for accurate measurements. The purpose of this study was to verify the precision of enamel thick-
ness measurements using swept-source optical coherence tomography (SS-OCT). Human extracted
maxillary central and lateral incisors were used as specimens. Twenty-eight sites were measured
in each specimen. The optical path length (OPL) at each measurement site was measured on the
OCT images, and enamel thickness (e1) was calculated by dividing OPL by the mean refractive index
of enamel, 1.63. The specimens were then sectioned, and a light microscope was used to measure
enamel thickness (e2). e1 and e2 were then compared. Measurement errors between e1 and e2 for the
central and lateral incisors were 0.04 (0.02; 0.06) mm and 0.04 (0.02; 0.07) mm [median value: (25%,
75% percentile)], respectively. No significant differences between measurement sites were noted
for measurement errors between e1 and e2. These results demonstrate that OCT can be used for
noninvasive, accurate measurements of enamel thickness.

Keywords: optical coherence tomography; refractive index; enamel thickness

1. Introduction

Restoration of porcelain laminate veneer is used to improve discolored teeth and
malformed teeth, as it is a treatment that minimizes invasion of teeth and restores aesthetics.
In the past, the elimination and chippage of porcelain laminate veneer have been reported
as causes of prognosis and reintervention of treatment [1,2]. Since the thickness of laminate
veneer is required to prevent both fracture and the transmission of unideal tooth surface
color, dentists tend to overprepare the surface of the tooth to fabricate thick laminate
veneer. This may cause the adhesion of laminate veneer to dentin, however, the different
compositions of enamel and dentin, dentinal tubular structure and intratubular fluid
movement in dentin [3,4] necessitate different surface treatments before the application of
adhesive resin cements. That is, phosphoric acid etching for enamel surface and self-etching
primer treatment for dentin are recommended. Even with selective surface pretreatment,
however, studies comparing the adhesive strength of resin cements with enamel and dentin
have indicated that stronger adhesive strength is achieved for enamel than dentin [5,6]. For
this purpose, it is important to limit tooth preparation within enamel and to avoid laminate
veneer adhering to dentin to prevent detachment. In fact, a systematic review paper
indicated that veneer preparation in dentin was reported to affect survival adversely [7].

In addition to the reduction of the risk of detachment, porcelain veneers bonded to
enamel offer stronger fracture resistance than those bonded to dentin [8]. Thus, from the
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viewpoint of both detachment and fracture, accurate measurement of enamel thickness
before the tooth preparation can reduce the risk of overpreparation to dentin. In clinical
dentistry, objective methods for measuring enamel thickness include computed tomogra-
phy (CT) and ultrasonography [9–11]. Dental CT has a voxel size of approximately 0.1 mm
generally and can therefore be used to measure enamel thickness with high precision.
However, the use of CT to measure enamel thickness also poses various problems clini-
cally, such as radiation exposure, time lag and artifacts caused by metal objects. Because
ultrasonography has a lower resolution, it is difficult to ensure that enamel thickness is
measured accurately with ultrasonography [10].

In recent years, optical coherence tomography (OCT) has been developed. OCT is a
noninvasive imaging system that can utilize near-infrared light to produce high-resolution
cross-sectional images of internal structures [12]. OCT is based on the concept of low-
coherence interferometry [13]. In OCT, the laser source is projected onto the specimen and
the backscattered signal intensity from inside the scattering medium is measured, with the
scattering and reflection of light within the specimen displayed as imaging depth. Because
imaging depth in OCT involves the calculation of optical attenuation to tissue (absorption,
scattering), it is limited to approximately 2–3 mm in most tissue types [14,15]. However,
OCT image resolution is 10–100 times more refined than ultrasonography. OCT also offers a
great advantage over conventional microscopy, which requires that specimens be processed
to undergo analysis [16,17]. Swept-source OCT (SS-OCT) in particular offers sensitivity, a
high scan rate and an increased signal-to-noise ratio [18,19].

OCT was first reported by Fujimoto et al. in 1991 [13]. OCT has been used in many
clinical applications, including gastroenterology [20], ophthalmology [21], dermatology [22]
and dentistry [23]. In the field of dentistry, the first in vitro images of dental hard and
soft tissues in a porcine model were reported in 1998 [24]. Later, the in vivo imaging of
human dental tissue was shown [25]. In recent years, the usefulness of OCT is also being
demonstrated for procedures such as the diagnosis of dental caries [26], the precision
matching of resin-based restorations [27], and material testing [28]. OCT can be used to
measure optical path length (OPL) [29]. Because OPL is the product of the refractive index
and actual thickness, OCT can be used to accurately calculate the refractive index from the
actual thickness [30]. Furthermore, OPL can be divided by the refractive index to obtain
actual specimen thickness [31]. Meng et al. reported that the refractive index of human
enamel was about 1.63 with OCT [32]. After that, it has been reported by Hariri et al.
that the refractive index of enamel is stable, because sections with and without trabecular
structures exhibited similar refractive indices of 1.63 ± 0.02 and 1.62 ± 0.02, respectively
(mean: 1.63 ± 0.02) [33].

However, no reports have verified the accuracy of OCT for measuring enamel thick-
ness. The evaluation of enamel thickness before treatment would make it possible to
obtain information necessary for prosthetic design to ensure that the procedure stops at the
enamel level.

The purpose of the present study was to investigate the accuracy of enamel thickness
measurements obtained by OCT by comparing them with actual measurements in extracted
maxillary central and lateral incisors.

2. Materials and Methods
2.1. Specimen Preparation

The extracted teeth used in this study were selected from a pool of extracted teeth that
had been stored in a physiological saline solution at room temperature immediately after
they were extracted for periodontal disease from April 2013 to April 2014. The inclusion
criteria were maxillary central incisors and lateral incisors without morphological defects
from the crown to the root. Exclusion criteria were teeth with defects of enamel, such as
caries and restorations in the labial cement–enamel junction (CEJ), marked attrition at the
incisal edge, dental prostheses, defects of enamel at ≥10 areas in the measurement sites
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mentioned below, and enamel hypoplasia. In total, 16 central incisors and 10 lateral incisors
were examined.

First, periodontal ligament of the extracted teeth was removed with dental hand
scaler, and acrylic resin (Fit Resin; Shofu, Kyoto, Japan) was used to arrange each tooth
with the tooth axis perpendicular in a resin block with a diameter of 10 mm and a height
approximately halfway to the tooth root (Figure A1a).

The distance from the incisal edge on the middle of the labial surface in the longitudinal
axis of the tooth to CEJ was divided into eight equal parts. The cross section of 1/8 of
the distance from the incisal edge was defined as H1, 1/4 the distance as H2, 1/2 the
distance as H3, 3/4 the distance as H4, and 7/8 the distance as H5. The six measurement
regions comprised the labial surface, mesiofacial surface, mesial surface, lingual surface,
distal surface, and distofacial surface in the respective five cross sections from H1 to
H5. However, the mesial and distal surfaces of H5 were excluded because they hardly
contained any enamel. Thus, a total of 28 measurement sites were set (Figure A2). A
ϕ1-mm round bur was used to mark sites on approximately 1 mm from both sides of each
of the 28 measurement sites on the specimens (Figure A1b). The central points of each of
these marked sites were used as the measurement sites.

2.2. SS-OCT Imaging

The SS-OCT system used in this study (Dental SS-OCT, Prototype 1; Panasonic Health-
care, Co., Ltd., Tokyo, Japan) employs Fourier–domain OCT technology. The light source
is a wavelength-sweeping laser with a rate of 30 kHz over a span of >100 nm centered at
1330 nm. Two-dimensional images have horizontal and axial resolutions of 20 µm and
12 µm, respectively, in air and pixel size of 2000 × 1019 (9.0 µm × 3.5 µm). This system
has a handheld intraoral probe with a complementary metal-oxide semiconductor (CMOS)
camera used to visualize the surface being scanned in real time.

The handheld probe was set at a fixed distance from the specimen stage so that the
scanning light beam was oriented approximately perpendicular to the stage. The distance
between the probe and the target tooth surface depended on the thickness of the tooth. Each
specimen was placed with the tooth axis parallel to the stage and with the measurement
region for each of the five cross sections from H1 through H5 on the uppermost surface so
that OCT images could be obtained (Figures A1c and A3). Then, one examiner measured
the distance from the tooth surface to the dentino-enamel junction (DEJ) perpendicularly
to the tooth surface from the center of the areas marked on each side of the measurement
sites with the measurement tool of the OCT system, manually. Beforehand, we confirmed
that the laser beam generated by this device sufficiently penetrated enamel and reached
DEJ in a pilot experiment. The examiner had trained to recognize DEJ on OCT images by
comparing an OCT image and a light microscopy image with 10 premolars as a preliminary
experiment. Sites that could not be measured because of caries or crown restorations
were excluded.

2.3. OCT Image Analysis

Because OCT is based on low-coherence interferometry, it can be used to measure
OPL [29]. The length rate changes of OCT images are required to convert optical depth
values measured with OCT into actual depth values [30,31]. Figure A4 shows a schematic
diagram of enamel on the specimen stage and an OCT image of change in the vertical
position of the specimen stage brought about by the specimen. The vertical position of
the specimen surface is Z0, the vertical position of the specimen stage is Z1, the specimen
thickness is d, and the specimen stage position imaged through the tissue is Z2. Figure A4b
shows that specimen thickness could be determined by subtracting the vertical position of
the specimen stage without the specimen (Z1) from the specimen surface (Z0) with OCT
images. In addition, OPL could be measured by subtracting the vertical position of the
specimen stage imaged through the specimen (Z2) from the specimen surface position (Z0).
Therefore, we can express the OPL of the specimen as Z2–Z0 and the actual specimen thick-
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ness as Z1–Z0. Assuming the specimen length rate of change is cs, the following formula
for the relationship between thickness and the length rate of change can be obtained.

e = Z1 − Z0 =
Z2 − Z0

cs
(1)

The enamel length rate of change is the same as the refractive index of enamel and is
relatively fixed at 1.63, regardless of enamel trabecular structure [33]. Therefore, enamel
thickness can be expressed with the following formula.

e =
Z2 − Z0

1.63
(2)

In the present study, this formula was used to calculate enamel thickness (e1) from
OPL on OCT images obtained as shown in Figure A3b.

2.4. Light Microscopy Measurements

After OCT measurement, each specimen was completely covered in acrylic resin, and
a diamond-saw microtome (Leica SP1600; Leica, Wetzlar, Germany) was used to prepare
sections of H1–H5. This device had an annular innerhole saw, 8.3 cm in diameter and
300 µm in thickness. Next, a light microscope (Keyence BIOREVO BZ-9000; Keyence,
Osaka, Japan) was used to measure enamel thickness by measuring the distance from the
center of the markings on the left and right to DEJ (e2) perpendicular to the tangent of
the middle of the marks (Figure A1d,e and Figure A5). e2 was measured by the same
examiner as the OCT measurement. Sites with caries or crown restorations were excluded
from measurement.

2.5. Statistical Analysis

The above 28 measurement sites were set up to include thick and thin enamel and
strongly and slightly curved enamel. Data were analyzed with the Kruskal–Wallis test to
determine significant differences among measurement sites in differences between values
calculated with mean refractive index (1.63) on OCT images (e1) and actual measurement
values (e2) determined using a light microscope. The level of significance was set at α = 0.05.
Statistical analysis was performed using IBM SPSS statistics 22.0 (Chicago, IL, USA).

3. Results

The number of valid measurement sites for 16 maxillary central incisors and 10 max-
illary lateral incisors was 363 and 208, respectively. Tables 1 and 2 shows the median
of the difference between e1 and e2 values for maxillary central incisors and lateral
incisors, respectively.

No significant differences in difference between e1 and e2 were observed for either
central or lateral incisors (p = 0.141, 0.542, respectively) for each measurement site. Figure 1
shows the difference between e1 and e2 values of all measurement sites.

Table 1. Median of difference between e1 (measured by OCT) and e2 (measured by microscopy) for
maxillary central incisors (mm).

Labial Surface Mesiofacial Surface Mesial Surface Distofacial Surface Distal Surface Palatal Surface

H1 0.02 0.05 0.03 0.05 0.06 0.03
H2 0.02 0.04 0.02 0.03 0.02 0.04
H3 0.04 0.05 0.05 0.07 0.05 0.03
H4 0.02 0.03 0.06 0.04 0.06 0.04
H5 0.04 0.03 - 0.04 - 0.04
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Table 2. Median of difference between e1 (measured by OCT) and e2 (measured by microscopy) for
maxillary lateral incisors (mm).

Labial Surface Mesiofacial Surface Mesial Surface Distofacial Surface Distal Surface Palatal Surface

H1 0.04 0.03 0.08 0.04 0.05 0.06
H2 0.07 0.05 0.07 0.07 0.04 0.06
H3 0.03 0.05 0.05 0.02 0.05 0.04
H4 0.05 0.04 0.05 0.03 0.04 0.05
H5 0.03 0.03 - 0.03 - 0.04
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4. Discussion

In this study, SS-OCT appeared to be a potential tool that can measure enamel thickness
accurately. Other objective methods for measuring enamel thickness include CT and
ultrasonography. Ultrasonography has a lower resolution than OCT, and a past report that
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measured enamel thickness using A-scan reported that the measurement error with actual
measurements was ≤10% [11]. In this study, we found that in the labial surface H2 site of
the central incisor, which was almost the same site as that used in a past report with an
ultrasound system [11], measurement precision was higher with OCT (median value: 2.5%)
than with the ultrasound system.

It has been reported that tooth surface hydration conditions influence the signal
intensities of DEJ on OCT images, and OCT images of teeth after 10 min of air blowing had
greater signal intensity of DEJ than those that were wet or were immediately subsequent
to air blowing [34]. In this study, OCT measurement was performed within 10 min after
wiping the water on the tooth surface to ensure that tooth surface hydration condition was
not much different from the clinical condition. Therefore, it seems that enamel thickness
can be measured with SS-OCT with almost the same accuracy in this study.

The measurement error seen may have been caused by the enamel refractive index
being calculated as a mean value of 1.63, which did not take into consideration differences
in refractive indices for each tooth or measurement site. In particular, the use of a refractive
index value of 1.63 for sites with thick enamel may have led to increased measurement
error, but no significant differences were noted between measurement errors for each
measurement site. Moreover, because the tooth surface is curved, the emitted laser light
beam was diagonal to some measurement sites. In this study, the scanning light beam was
perpendicular to the tooth surface to be measured but was not always perpendicular to each
measurement site. This may have affected measurement errors. However, no significant
differences in the extent of measurement errors were noted between sites near the incisal
edge, where the laser light beam was oblique and directed from the labial surface center,
to the tooth cervix region, where the scanning light was directed perpendicularly. This
suggested that the use of the enamel refractive index of 1.63 was appropriate.

One of the possible clinical applications of OCT is the measurement of enamel thick-
ness before the preparation of porcelain laminate veneer. When preparing porcelain
laminate veneers, which requires enamel reduction of approximately 0.3–0.5 mm [35,36]
and diamond depth-cut bur used in porcelain veneer preparation to have a diameter of
100 µm units generally, data of 10 µm units is not important for clinical judgments. Errors
in the enamel refractive index and the scanning beam angle of incidence may affect OCT
measurement errors. However, the fact that the median value of the measurement error
was 0.04 mm in this study suggests that OCT can be used to measure enamel thickness
with high precision. Thus, our results indicate that OCT could be clinically useful in the
measurement of enamel thickness. OCT has some possibility for dentists to measure enamel
thickness simply in real-time and to reduce enamel.

The limitation of the present study is that the measurement was done under room light.
In case of clinical situation, the brightness and color temperature in the oral cavity may vary.
In addition, laser beam application perpendicular to the tooth surface is not necessarily
easy in clinical use, especially in the case of dental crowding. These have a possibility of
influencing the measurement value. Next, in the present study we used tooth surfaces
without caries. As well as caries, white spot and the decalcification of enamel under the
surface layer are often observed in clinical situations. No information is provided in such
cases in the present study. Further modification of the device and data accumulation using
teeth with damaged surfaces are expected.

5. Conclusions

Within the limitations of this in vitro study, OCT has a possibility of providing the
accurate measurement of enamel thickness in the maxillary central incisors and lateral
incisors nondestructively. This study was performed under a controlled situation using
teeth with intact surfaces. A modified method and auxiliary devices that can provide better
measurement condition is needed to enhance reliability. In addition, the data should be
collected using teeth with damaged surfaces.
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Figure A1. Schematic diagram of the experiment. (a) Specimens were arranged in acrylic resin with
the tooth axis perpendicular; (b) A round bur with a diameter of 1 mm was used to mark sites
approximately 1 mm on the left and right side of each of the 28 measurement sites on the specimens;
(c) Enamel thickness in the center of each marked site perpendicular to the tooth axis was measured
with OCT; (d) The specimens were completely covered in acrylic resin, and sections of H1 to H5
were prepared across the tooth axis; (e) Enamel thickness was measured at the center of each pair of
marked sites on each section.
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Figure A2. (a) Measurement sites; (b) A cross section of the measurement sites. The distance from the
incisal edge (IE) on the middle of the labial surface in the longitudinal axis of the tooth to CEJ was
divided into eight equal parts. From IE, a total of five cross sections comprised 1/8 (H1), 1/4 (H2),
1/2 (H3), 3/4 (H4), and 7/8 (H5). Clockwise from the center of the labial surface, the measurement
sites were the middle of the labial surface (1), mesiofacial surface (2), mesial surface (3), lingual
surface (4), distal surface (5), and distofacial surface (6). However, the mesial and distal surfaces of
H5 were excluded.
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