
sensors

Article

Batch Processing through Particle Swarm
Optimization for Target Motion Analysis with Bottom
Bounce Underwater Acoustic Signals †

Raegeun Oh 1, Taek Lyul Song 2,* and Jee Woong Choi 1,*
1 Department of Marine Science & Convergence Engineering, Hanyang University ERICA,

Ansan 15588, Korea; rgoh@hanyang.ac.kr
2 Department of Electronic Systems Engineering, Hanyang University ERICA, Ansan 15588, Korea
* Correspondence: tsong@hanyang.ac.kr (T.L.S.); choijw@hanyang.ac.kr (J.W.C.); Tel.: +82-31-400-4156 (T.L.S.);

+82-31-400-5531 (J.W.C.)
† This paper is an extended version of our paper published in Oh, R.; Song, T.L; Choi, J.W. Bearings-Only

Target Motion Analysis using Ray Tracing. In Proceedings of ICCAIS 2019 Conference, Chengdu, China,
23–26 October 2019.

Received: 29 January 2020; Accepted: 21 February 2020; Published: 24 February 2020
����������
�������

Abstract: A target angular information in 3-dimensional space consists of an elevation angle and
azimuth angle. Acoustic signals propagating along multiple paths in underwater environments
usually have different elevation angles. Target motion analysis (TMA) uses the underwater acoustic
signals received by a passive horizontal line array to track an underwater target. The target angle
measured by the horizontal line array is, in fact, a conical angle that indicates the direction of the signal
arriving at the line array sonar system. Accordingly, bottom bounce paths produce inaccurate target
locations if they are interpreted as azimuth angles in the horizontal plane, as is commonly assumed
in existing TMA technologies. Therefore, it is necessary to consider the effect of the conical angle
on bearings-only TMA (BO-TMA). In this paper, a target conical angle causing angular ambiguity
will be simulated using a ray tracing method in an underwater environment. A BO-TMA method
using particle swarm optimization (PSO) is proposed for batch processing to solve the angular
ambiguity problem.
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1. Introduction

Acoustic signals are used to indirectly obtain information about objects located underwater. Most
passive sonar systems use multiple hydrophones in an array for enhanced performance. A horizontal
line array (HLA), used for detecting the azimuth angle of an underwater target, receives acoustic
signals with a high signal to noise ratio from designated directions using a beamforming technique.
If the target signal intensity is high enough in a designated direction, the target direction is detected.
The estimated target direction is represented as a conical angle that indicates the direction of the
incoming signal measured by the HLA. Unfortunately, it is impossible to distinguish between up and
down or right and left from the conical angle. This is called the cone of ambiguity [1].

Sequential processing and batch processing algorithms are used to estimate the target’s state,
including position and velocity, through bearings-only target motion analysis (BO-TMA). There exist
several conventional sequential processing algorithms, including the extended Kalman filter [2], the
pseudo-measurement filter [3], and the modified gain extended Kalman filter [4]. In addition to
these filters, particle filter approaches [5] and random finite set approaches [6–8] have been recently
introduced. If sufficient computational performance is achieved, sequential processing is suitable
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for implementation in real time systems. However, good sequential estimation results require small
errors in the initial state estimates, and a batch processing algorithm is used for this purpose. Batch
processing delivers stable initial values, even though it is not designed to operate in real time because
it requires a batch of stored measurements. Robust target localization performance is expected if both
types of algorithms are employed properly [9].

In most of the previous studies on sonar systems [2,3,6–9], it is assumed that the received signal
arrives at the HLA through the horizontal plane when the distance between the observer and target
is large, or when the observer and the target are located at equal depths. Therefore, the cone of
ambiguity of the HLA is simplified to left/right ambiguity, which can be easily addressed through
a ship maneuver. However, eigenray tracing results show that the received signal can arrive at the
HLA with a high elevation angle, especially along a bottom bounce path [10]. The studies in [11,12]
consider the elevation angles in BO-TMA for different sensor depths between the observer and the
target. They treat only direct paths without considering the reflection of the ray from the waveguide
boundaries (i.e., sea surface and bottom) or the refraction of the ray from the vertical sound speed
profile. However, bottom bounce paths, which are generated from the reflection of acoustic waves at
the ocean bottom, can produce inaccurate target bearings [13] that affect BO-TMA results.

The ray tracing method [14] is used to calculate the elevation angle due to the refraction and
reflection of sound waves in underwater waveguides. This method describes the path of each ray as
sound waves propagating through the underwater waveguide. In particular, it is possible to calculate
the eigenray [15], which represents the path of a ray that propagates from the source to the receiver.
The elevation angle of the target signal can be simulated through eigenray tracing, and the conical
angle can be calculated using the azimuth angle and the elevation angle.

In this paper, a study is based on the published conference paper [16] and it is conducted to confirm
the observability of TMA using the conical angle including the elevation angle of the path reflected
from the bottom interface for a given scenario. A discrete target dynamic equation is established with
the target state vector, and the conical angle measurement is obtained from the relative geometry of
the observer and the target using the ray tracing method in Section 2. Section 3 presents a method
of converting the conical angle into a bearing line in Cartesian coordinates using knowledge of the
ocean environment (i.e., bottom bathymetry and a sound speed profile). Additionally, a BO-TMA
using the particle swarm optimization (PSO) algorithm is proposed. In Section 4, simulation results for
the BO-TMA are analyzed using ray tracing. Finally, a summary and conclusion are given in Section 5.

2. Problem Formulation

2.1. Dynamic Model

The target state vector at the discrete time instance k, 1 ≤ k ≤ K, is defined as:

Xs(k) =
[
pxs(k), pys(k), vxs(k), vys(k)

]
, (1)

Us(k) =
[
uxs(k), uys(k)

]
, (2)

where pxs(k) and pys(k) are the target locations in Cartesian coordinates. Here, the x-axis indicates
East and the y-axis indicates North. Additionally, vxs(k) and vys(k) are the target velocities for each
direction, and uxs(k) and uys(k) are the target accelerations. The observer state vector is similarly
defined as:

Xo(k) =
[
pxo(k), pyo(k), vxo(k), vyo(k)

]
, (3)

Uo(k) =
[
uxo(k), uyo(k)

]
, (4)

where the subscript o indicates the observer. Then, the discrete-time system state equation can be
described by:

Xi(k + 1) = FXT
i (k) + GUT

i (k), (5)
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where Xi and Ui are the state vectors of the target (when i = s) and the observer (when i = o), and
control input, respectively. The superscript T denotes a transpose. The state transition matrix F and
input coefficient matrix G are defined, respectively, as:

F =

[
I2 ∆tI2

02 I2

]
, G =

 ∆t2
/
2 I2

∆tI2

, (6)

where I2 is the 2-dimensional identity matrix, 02 is the 2× 2 zero matrix, and ∆t is the time interval. For
system observability, we assume that the sensor outmaneuvers the target while the target is moving
with a constant velocity [17].

The horizontal plane trajectories of the target and the observer located at equal depths of 200 m
are shown in Figure 1. The total simulation time is 580 s with a sampling period of 20 s so that the total
number of scans is 30. The initial state vector of the target, Xs(1), is [0 m, 2500 m, 0 m/s, −3 m/s]
with zero acceleration over the simulation time. The initial state vector of the observer, Xo(1), is
[2000 m, −7000 m, 2.6 m/s, 1.5 m/s]. To ensure system observability, the course of the observer is
changed once from 60 to 0◦ via lateral acceleration starting at 200 s. The bearing change rate is 0.6◦ per
second. The distance between the observer and the target is decreased from a maximum distance of
9.7 km to a minimum distance of 6.9 km.
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Figure 1. Trajectories of (a) the target and (b) the observer in the horizontal plane.

2.2. Measurement Model

Conventional TMA assumes that the target information obtained from passive line array sonar
consists of only the azimuth angle in the horizontal plane, neglecting bottom bounce signals to avoid
conical angle ambiguity. In this case, the azimuth angle measured from the north axis, ϕn(k), is
expressed as:

ϕn(k) = atan2
(
pxs(k) − pxo(k), pys(k) − pyo(k)

)
, (7)

where atan2(x, y) denotes a four-quadrant arctangent function that describes the angle between the
position of the target and the north axis (positive y-axis). The azimuth angle from the north axis, ϕn(k),
is converted to the azimuth angle from the direction of the HLA, ϕl(k), by subtracting the heading
angle of the HLA, co(k), at each scan time k:

ϕl(k) = ϕn(k) − co(k). (8)

In this paper, BO-TMA along with a ray tracing method is used to achieve accurate estimation
of target localization in environments with conical angle ambiguity. The conical angle, θ(k), is
expressed as:

θ(k) = cos−1(cos(ϕl(k)) × cos(µ(k))) + v(k), (9)
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where µ(k) is the elevation angle in the vertical plane, and v(k) is the measurement noise modeled as
zero mean Gaussian noise with standard deviation σm. The sign of θ(k) is unknown from Equation (9),
and the conical angle indicates the magnitude of the angle measured from the heading direction of the
line array. Thus, the inability to know the exact direction of the arriving signal is known as left/right
ambiguity. Various angles used in this paper are shown in Figure 2. ϕl and ϕn are the azimuth angles
from due north and the direction of the HLA, respectively. co, θ, and µ are heading angle of the HLA,
conical angle, and elevation angle in the vertical plane, respectively.
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A ray tracing method is used to estimate the elevation angle of the target signal in Equation (9).
In the ocean, propagation paths of acoustic rays are strongly affected by sound speed profile and bottom
bathymetry. These environmental data can be obtained through measurements, from a database,
or from an ocean prediction model. In this study, a scenario is constructed that assumes a simple
environment. The bathymetry is assumed to be flat with a depth of 2000 m. The sound speed profile
C(z) in water is assumed to follow Munk’s sound speed profile and is given by [18]:

C(z) = C0[1.0 + ε
{
e−η − (1− η)

}
], (10)

where z is depth, and C0 is a reference sound speed equal to 1500 m/s as the sound speed at the depth
of channel axis zC (zC = 400 m), η = 2(z− zC)/zC is a dimensionless depth relative to the channel axis,
and the perturbation coefficient ε is equal to 7.4× 10−3.

The ray paths predicted by the ray tracing method using Munk’s sound speed profile are shown
in Figure 3. Although ray tracing was conducted based on observer position, the ray tracing results
obtained for opposite directions are the same due to the reciprocity of ray diagrams [14]. In addition,
the ray tracing results for all azimuth angles are the same because it is assumed that acoustical ocean
parameters are independent of azimuth angle. It is shown in this scenario that only bottom reflected
paths exist between the target and the observer, and a direct path from the target does not exist. The
elevation angle of the bottom bounce path was calculated by ray tracing to be between 23 and 29◦ at a
target distance of 9.7—6.9 km.
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Direct and bottom bounce paths are plotted with magenta and blue lines, respectively.

Figure 4 shows the simulation results of the bearing measurements from 30 scans over same
time period, which is known as BTR (Bearing-Time Record). The red dashed line that represents
the azimuth angle from the north axis ϕn(k) was plotted as additional information for assessing the
bearing error compared to the conical angle of the bottom bounce path. The bearing error is defined
as the difference between ϕl(k) and +θ(k) or its mirror angle −θ(k) due to conical angle ambiguity.
Figure 4 contains the time histories of co(k) (the observer heading angle), ϕn(k) (the true target azimuth
angle), co(k) +

∣∣∣θ(k)∣∣∣, and co(k)−
∣∣∣θ(k)∣∣∣ (two possible bearing angles for TMA that stem from the bottom

bounce path). The right/left ambiguity in the horizontal plane is shown in Figure 4 and can be resolved
by comparing the histories of co(k) +

∣∣∣θ(k)∣∣∣ and co(k) −
∣∣∣θ(k)∣∣∣. The history of co(k) −

∣∣∣θ(k)∣∣∣ has smaller
variations than that of co(k) +

∣∣∣θ(k)∣∣∣. Note that these two angle histories correspond to the history of
the true azimuth angle ϕn(k). The history of ϕn(k) in Figure 4 shows small variations for the entire
period that includes the times before and after the observer maneuver, which implies that co(k)−

∣∣∣θ(k)∣∣∣
rather than co(k) +

∣∣∣θ(k)∣∣∣ should be applied as the bearing history for this scenario in TMA. From the
selection process, the correct sign of θ(k) in Equation (9) for this scenario is negative. However, even
after choosing the bearing history with the correct sign of θ(k), co(k)−

∣∣∣θ(k)∣∣∣ still contains bearing error
when compared to the true azimuth angle history ϕn(k). Figure 4 shows that this error is ~1◦ before
the observer maneuver and ~13◦ after the maneuver. This discrepancy is due to µ(k), the elevation
angle of the bottom bounce path. Conventional TMA methods for target localization cannot avoid
localization errors resulting from bearing errors. Therefore, a new TMA method that accounts for the
bottom bounce path is needed.
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3. Target Motion Analysis with Bottom Bounce Path

3.1. Bearing Lines of Bottom Bounce Path

Bearing error is due to the elevation angle µ(k) of the bottom bounce path, which is unknown
even after selection of the correct sign of θ(k). In this study, the bearing line in Cartesian coordinates is
introduced. Define the i-th expected azimuth angle ϕ̂l(k, i) for 1 ≤ i ≤ I, which represents a possible
target azimuth angle relative to the heading direction of the HLA. According to Equation (9), ϕ̂l(k, i)
must lie within the range between zero and the conical angle θ(k), and then the elevation angle µ̂(k, i)
can be estimated as:

µ̂(k, i) = cos−1
(

cos(θ(k))
cos(ϕ̂l(k, i))

)
. (11)

The sign of ϕ̂l(k, i) is equal to the sign of θ(k). For each ϕ̂l(k, i), ray tracing for the ray launched
at an angle of µ̂(k, i) from the observer position is conducted to find the range r̂(k, i) of target location
if it exists in the direction of ϕ̂l(k, i) (Figure 5a). Since the target depth was assumed to be 200 m,
the distance at which the ray arrives at a water depth of 200 m after bottom reflection becomes the
target range in the ϕ̂l(k, i) direction. This process is repeated i = I times (Figure 5b). In this study,
the expected azimuth angle was varied every 0.5◦. Accordingly,

∣∣∣θ(k)∣∣∣ divided by 0.5◦ was used to
determine the value of I for each scan k.

For the k-th scan, I possible target positions in the horizontal plane corresponding to every ϕ̂l(k, i)
are connected in a line, which is defined as a bearing line in this paper. The possible target position
vector in Cartesian coordinates with ϕ̂l(k, i) and r̂(k, i) is denoted as:

L̂(k, i) =
[
p̂xl(k, i), p̂yl(k, i)

]
. (12)

Figure 6 is drawn in the horizontal plane and it shows the bearing lines corresponding to k = 1
and k = K. The lines (denoted by line of conical angle) indicating the measured conical angle θ(k)
in the horizontal plane for k = 1 and k = K. If the elevation angle is not considered, as in previous
studies, the bearing line is displayed as a straight line. However, the bearing line L̂(k, i) is displayed
as a curved line when the elevation angle is considered. Conventional batch estimation methods for
TMA utilize the conical angles to determine the initial target states, while the proposed TMA method
utilizes the bearing lines. The objective of the proposed TMA method is to find the optimal initial
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position and velocity of the target based on the bearing lines in Cartesian coordinates using the PSO
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Figure 5. (a) Eigenray tracing result conducted to determine the expected target range. The distance at
which the ray arrives at an expected target depth after bottom reflection becomes the estimated target
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For k-th scan, the line connecting I possible target positions estimated using the eigenray tracing is a
bearing line (red line in figure).
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3.2. Particle Swarm Optimization

The PSO algorithm is a stochastic optimization algorithm used to find the optimal positions of
particles and is based on the social behavior of animals moving in flocks [19,20]. In BO-TMA studies,
each particle representing an estimated initial target state vector consists of four elements: the positions
and velocities in the x and y directions. First, at k = 1, the particles are uniform, randomly spread along
the bearing line within the target-observer distance from 1 to 30 km. A specific velocity vector, which
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is randomly selected in the range of 0|v̂| 10 m/s, where |v̂| =
√
|v̂x|

2 +
∣∣∣v̂y

∣∣∣2, is assigned to each particle.
Then, the position of each particle at the next scan time (k = 2) is calculated using the dynamic model
shown in Section 2.1 from the position at k = 1. In this manner, a total of K positions are determined for
each particle, which forms a particle trajectory. After that, the shortest distance between each particle
position and the bearing line corresponding to the same scan time number is calculated. This distance
is then normalized by the distance between the observer and particle position at each scan time to
avoid excessive convergence to local optima, which happens because distance error increases as the
distance between the observer and the particle increases. Finally, the normalized distance errors for
all K particle positions are summed to obtain an objective function Jm for the m-th particle, which is
expressed as:

Jm =
K∑

k=1

min
i

√
(p̂xm(k) − p̂xl(k, i))2 +

(
p̂ym(k) − p̂yl(k, i)

)2

√
(p̂xm(k) − pxo(k))

2 +
(
p̂ym(k) − pyo(k)

)2
, (13)

where p̂xm(k) and p̂ym(k), respectively, are the positions in the x and y directions of the m-th particle at
scan time k; and pxo(k) and pyo(k) are the observer positions in the x and y directions at scan time k.
The total particle number used here was 200 (Table 1). Since each particle is considered a candidate for
the target, the next step is to find the initial state vector of the particle that produces the minimum
value of Jm. In this study, the PSO algorithm was used as an optimization technique to find the optimal
target trajectory. In each generation, the best values for the state vectors consisting of the positions
and velocities of the particles are evaluated by comparison with state vectors selected during previous
generations, and the state change rates of the particles are adjusted based on the experiences of the
particles and their companions. The state vectors in the next generation are updated with the sum
of the present state vectors and the adjusted state change rates of the particles [20]. The process is
expressed as [19]:

vp(n + 1, m, d) = c1vp(n, m, d) + vl(n, m, d) + vs(n, m, d), (14)

vl(n, m, d) = c2r1
{
xpl(m, d) − xp(n, m, d)

}
, (15)

vs(n, m, d) = c3r2
{
xps(d) − xp(n, m, d)

}
, (16)

and xp(n + 1, m, d) = xp(n, m, d) + vp(n + 1, m, d), (17)

where xp(n, m, d) represents the state vector of the m-th particle for the n-th generation with dimension
d. Dimension d is one of 1, 2, 3, and 4 corresponding to the positions and velocities of the particles
at k = 1, that is, p̂xm(1), p̂ym(1), v̂xm(1), and v̂ym(1), respectively. In addition, vp(n, m, d) represents
the state change rates of the particles for xp(n, m, d). Finally, vl(n, m, d) and vs(n, m, d) are the local
state change rate and the social state change rate for the m-th particle, respectively. The local state
vector xpl(m, d) is the best state vector of the m-th particle obtained from the first generation to the n-th
generation, and the social state vector xps(d) is the best state vector of the particle with the smallest
Jm of all particles up to the n-th generation. In the above equations, c1, c2, and c3 are acceleration
weight constants determined empirically through many trial runs to be 0.73, 0.1, and 0.2, respectively.
Random numbers r1 and r2 are selected in the range between 0 and 1. The process is iterated until
the state vector of each particle converges to the best state vector that satisfies the minimum position
errors. In our case, the generation is terminated when the standard deviations of the positions, σp, and
velocities, σv, of 200 particles converge to values less than 100 m and 0.2 m/s, respectively. Finally, the
trajectory of the particle with the best state vector is selected as the target trajectory.
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Table 1. Particle swarm optimization parameters used to find the optimal initial position and velocity
of target.

Parameter Symbol Value

Number of particles m 200
Number of dimensions d 4
Number of generations n σp < 100 m and σv < 0.2 m/s

Acceleration weight constants c1 c1 0.73
Acceleration weight constants c2 c2 0.1
Acceleration weight constants c3 c3 0.2

Random number r1 r1 0—1
Random number r1 r2 0—1

4. Simulation Result

For the observability test, it was assumed that the water depth was 2000 m and the bottom
topography was flat. The conical angle was calculated using the azimuth and elevation angle of the
acoustic ray path between the target and the observer. Munk’s sound speed profile was used for ray
tracing to calculate the elevation angle. To test the applicability of batch processing using the PSO
algorithm proposed in this paper, it was assumed that Gaussian noise with zero mean and standard
deviation σm was included in the conical angle measurements. Three values of σm (0.2, 0.4, and 0.6◦)
were considered for comparison purposes. For this scenario, the conical angle was estimated to change
at a rate of approximately 0.5◦/scan except during the period in which the observer heading changed.
Figure 7 shows the histories of conical angles with measurement errors corresponding to three different
standard deviations.
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Figure 7. The BTRs for conical angle measurements including Gaussian measurement error with zero
mean and standard deviation of (a) 0.2, (b) 0.4, and (c) 0.6◦.

One thousand random runs were generated for each of the three standard deviations of the conical
angle measurement errors, and TMA was carried out for each run. The results are shown in Figure 8,
in which the left column shows the scatter plots for the estimates of initial target position for the
1000 runs, and the right column shows the scatter plots of target velocity. For the different standard
deviations, the mean values of the estimated initial state vectors and their variances are listed in Table 2.
The results show that, as the standard deviation of the measurement error increases, the distribution
of the initial state vector obtained from the proposed BO-TMA becomes wider. In particular, as the
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measurement error increases, the estimated positions of the target tend to spread wider along the
bearing line at k = 1, which is reasonable because the particles were spread along the bearing line at
k = 1. The mean value of the initial state vector estimated for the standard deviation of 0.2◦ (marked by
a yellow triangle in the figure) has the best agreement with the true initial target state vector (marked
by red circle), and as the standard deviation increases, the difference increases slightly. However, the
mean values for the three cases are still in good agreement with the true values.

Table 2. The means and variances of the estimated initial state vector [p̂xm(1), p̂ym(1), v̂xm(1), v̂ym(1) ]
for three values of standard deviation of measurement error.

Standard Deviation of
Measurement Noise, σm

Mean of Initial Target State
Vector, X̂s,

[m, m, m/s, m/s]

Variance of Initial Target State
Vector, σ̂s

2,
[m2, m2, m/s2, m/s2]

0.2◦ [18, 2524, −0.2, −2.8]
[
712, 1782, 0.52, 0.52

]
0.4◦ [5, 2607, −0.4, −2.9]

[
1052, 3402, 0.62, 0.72

]
0.6◦ [−6, 2693, −0.5, −2.8]

[
1382, 4732, 0.72, 0.92

]
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Figure 8. The distribution of initial states estimated using TMA for 1000 random runs for standard
deviations of zero mean Gaussian measurement errors of (a) 0.2, (b) 0.4, and (c) 0.6◦. The true initial
state vector of the target is [0 m, 2500 m, 0 m/s, −3 m/s]. The left column shows the initial target
position estimates, and the right shows target velocity estimates. The true initial state vector of the target
and the mean of estimated state vectors are indicated by red circles and yellow triangles, respectively.
The regions within one standard deviation of the mean are indicated by black ellipses.

To investigate the accuracy of the TMA results with increasing the number of scans k, the processes
were repeated with the scan numbers of 15, 30, and 60 which correspond to the sampling periods of 40,
20, and 10 s, respectively. The standard deviation of the conical angle measurements were assumed to
be 0.4◦. The estimation results of the initial target state vector with the three scan numbers are shown
in Figure 9, and the resulting mean values and variances are listed in Table 3. Figure 9 and Table 3
indicate that more frequent collection of conical angle measurements achieves more accurate TMA
results with increased expense of computational resources.

Table 3. The means and variances of the estimated initial state vector [p̂xm(1), p̂ym(1), v̂xm(1), v̂ym(1)]
for three different measurement numbers.

Number of
Measurements, k

Mean of Initial Target State
Vector, X̂s,

[m, m, m/s, m/s]

Variance of Initial Target State
Vector, σ̂s

2,
[m2, m2, m/s2, m/s2]

15 [−18, 2655, −0.2, −3.0]
[
1382, 5092, 0.62, 0.92

]
30 [5, 2607, −0.4, −2.9]

[
1052, 3402, 0.62, 0.72

]
60 [11, 2590, −0.4, −2.9]

[
822, 2362, 0.52, 0.62

]
As shown in Figure 7, the bearing errors due to elevation angle after the observer maneuver

are larger than 10◦. Conventional TMA methods produce large localization errors in environments
dominated by acoustic rays being strongly reflected or refracted up and down. However, the proposed
BO-TMA method using ray tracing shows good localization performance in such environments, which
implies that the proposed TMA method is a more effective tool for increasing solution accuracy in
real underwater applications, especially in waveguide environments where bottom bounce paths
are dominant.
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5. Summary and Conclusion

In this paper, a BO-TMA algorithm using a ray tracing method is proposed to accurately consider
the conical angles generated by bottom bounce paths. The 3-dimensional conical angle information
was converted to bearing lines in a 2-dimensional plane using a ray tracing method. Then, the PSO
algorithm was carried out based on the constructed bearing lines to find optimal target state vectors.

The BO-TMA method using ray tracing and the PSO algorithm proposed in this paper is
summarized below.

(1) Convert the conical angles of the bottom bounce path to a bearing line using the ray tracing
technique. Set the generation number n = 1.

(2) Initialize particles with the bearing line at k = 1. Uniform, randomly spread particles on the
bearing line and assign velocities randomly selected in the range 0 ≤ |v̂| ≤ 10 m/s.

(3) For each particle with a four-element state vector, calculate the objective function Jm using the
particle trajectories and the bearing lines corresponding to k = 1, · · · , K.

(4) Find the particle that produces the minimum value of Jm.
(5) Generate the next generation particle group by applying the PSO algorithm.
(6) Go to Step (3), and then iterate the process.
(7) Terminate the iteration when the state vectors of the particles reach the termination condition.
In this paper, a ray tracing technique was used to calculate the elevation angle. The conical

angle of the target was then calculated based on the estimated elevation angle. Characteristics of
the oceanic environment are known, allowing for accurate estimation of elevation angles. However,
since the oceanic environment fluctuates temporally and spatially, errors can arise from uncertainty
in environmental information. In addition, we assumed that target depth is the same as observer
depth. Uncertainty in target depth may also result in target distance errors. Therefore, further research
into various target-observer geometries and various ocean environments is required to generalize the
results shown in this paper.
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