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In this study we characterized and sequenced the genome of Arcobacter anaerophilus
strain IR-1 isolated from enrichment cultures used in nitrate-amended corrosion
experiments. A. anaerophilus IR-1 could grow lithoautotrophically on hydrogen and
hydrogen sulfide and lithoheterothrophically on thiosulfate and elemental sulfur. In
addition, the strain grew organoheterotrophically on yeast extract, peptone, and various
organic acids. We show for the first time that Arcobacter could grow on the complex
organic substrate tryptone and oxidize acetate with elemental sulfur as electron
acceptor. Electron acceptors utilized by most Epsilonproteobacteria, such as oxygen,
nitrate, and sulfur, were also used by A. anaerophilus IR-1. Strain IR-1 was also uniquely
able to use iron citrate as electron acceptor. Comparative genomics of the Arcobacter
strains A. butzleri RM4018, A. nitrofigilis CI and A. anaerophilus IR-1 revealed that the
free-living strains had a wider metabolic range and more genes in common compared
to the pathogen strain. The presence of genes for NAD+-reducing hydrogenase (hox)
and dissimilatory iron reduction (fre) were unique for A. anaerophilus IR-1 among
Epsilonproteobacteria. Finally, the new strain had an incomplete denitrification pathway
where the end product was nitrite, which is different from other Arcobacter strains
where the end product is ammonia. Altogether, our study shows that traditional
characterization in combination with a modern genomics approach can expand our
knowledge on free-living Arcobacter, and that this complementary approach could also
provide invaluable knowledge about the physiology and metabolic pathways in other
Epsilonproteobacteria from various environments.

Keywords: Arcobacter, Epsilonproteobacteria, genomics, metabolism, hox hydrogenase, ferric citrate reduction

Introduction

Free-living, environmental Epsilonproteobacteria are found to be ubiquitous in marine and
terrestrial habitats, such as hydrothermal systems, marine sediments, pelagic seawater, acid mine
drainage, lakes, springs, sulfidic caves and hydrocarbon-rich ground water (Campbell et al., 2006;
Nakagawa and Takaki, 2009). They are in general associated with sulfide rich environments
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where they play a key role in the cycling of carbon, nitrogen,
and sulfur (Campbell et al., 2006). Epsilonproteobacteria may
also facilitate the colonization of other microbial groups due
to detoxification of sulfur species, such as hydrogen sulfide
(Campbell et al., 2006). Modern meta-omics technologies have
revealed a wide distribution of free-living Epsilonproteobacteria
(Huber et al., 2010; Akerman et al., 2013; Headd and Engel,
2014; Urich et al., 2014; Pop Ristova et al., 2015; Suh et al.,
2015) and provided knowledge about their in situ metabolism
(Dahle et al., 2013; Urich et al., 2014), however, there are relatively
few cultivated representatives within this group. Isolates are
obtained within the genera Sulfurovum (Inagaki et al., 2004;
Mino et al., 2014), Sulfurospirillum (Finster et al., 1997; Stolz
et al., 1999; Luijten et al., 2003; Kodama et al., 2007), Nautiliales
(Alain et al., 2002; Takai et al., 2005; Grosche et al., 2015),
Nitratifractor (Nakagawa et al., 2005b), Sulfuricurvum (Kodama
and Watanabe, 2004), Sulfurimonas (Inagaki et al., 2003; Takai
et al., 2006; Labrenz et al., 2013), Thiomicrospira (Brinkhoff et al.,
1999; Knittel et al., 2005; Sorokin et al., 2006), Thioreductor
(Nakagawa et al., 2005a) and Arcobacter (Donachie et al.,
2005; Collado et al., 2009; Kim et al., 2010). Many of the
free-living Epsilonproteobacteria associated with hydrothermal
vents can perform oxidation of hydrogen or sulfur species
(e.g., elemental sulfur, thiosulfate and hydrogen sulfide) with
reduction of elemental sulfur, sulfite, thiosulfate, nitrate or low
concentrations of oxygen (Alain et al., 2002; Miroshnichenko
et al., 2002; Inagaki et al., 2003, 2004; Kodama and Watanabe,
2004; Nakagawa et al., 2005a, 2007; Mino et al., 2014). However,
organoheterotrophic species within Arcobacter (McClung and
Patriquin, 1980; Gevertz et al., 2000), Thiomicrospira (Takai
et al., 2004) and Sulfurospirillum (Finster et al., 1997; Stolz
et al., 1999; Luijten et al., 2003) have also been isolated from
various environments. Of these, Arcobacter is the only genus
with both pathogenic and free-living, non-pathogenic taxa. The
first cultivated representatives of the genus Arcobacter were
isolated from aborted bovine fetuses nearly 40 years ago (Ellis
et al., 1977) and classified within the genus Campylobacter. As
this genus includes many pathogens, the main focus of the
characterization of first Arcobacter isolates was to distinguish
between different species and survey the strains for resistance
to antibiotics (Neill et al., 1985; Kiehlbauch et al., 1991;
Vandamme et al., 1992). The genus Arcobacter was resolved by
Vandamme et al. (1991), and since then several new species
have been described, both pathogenic and free-living strains.
The new species have been isolated from a remarkably broad
range of habitats, such as humans and animals (Houf et al.,
2005, 2009), marine environments (Wirsen et al., 2002; Kim
et al., 2010), roots of estuarine salt march plant (McClung
and Patriquin, 1980), sewage (Collado et al., 2011; Levican
et al., 2013), shellfish (Collado et al., 2009; Figueras et al.,
2011a,b; Levican et al., 2012), hypersaline environments (Teske
et al., 1996; Donachie et al., 2005), estuarine sediments (Sasi
Jyothsna et al., 2013), and even an oil field brine (Gevertz
et al., 2000). The metabolic potential of most environmental
free-living Arcobacter species has not been examined in detail.
A lithoautotrophic lifestyle has only been described for the free-
living Arcobacter strains FWKO B and CAB (Gevertz et al., 2000;

Carlström et al., 2013), while the remaining strains are cultivated
as organoheterotrophs. Furthermore, genomic information is
available for a few Arcobacter species, and only one of the
four available genomes originate from a free-living species; i.e.,
A. nitrofigilis CI (Pati et al., 2010).

Here we have isolated and characterized the novel strain
IR-1 affiliated with Arcobacter anaerophilus originating from
nitrate-amended corrosion experiments. The thorough growth
experiments and genomic information revealed that the strain
has several unique features relative to Epsilonproteobacteria in
general and to Arcobacter in particular. The characterization
showed that the IR-1 strain has a lithoautotrophic,
lithoheterotrophic, or organoheterotrophic lifestyle coupled
to a wide selection of electron acceptors. Genomic information
from the IR-1 strain, the pathogenic A. butzleri RM4018 and
free-living A. nitrofigilis CI showed that the free-living strains
had more genes in common and in general a wider metabolic
range than the pathogenic strain. We also extend the metabolic
properties of Epsilonproteobaceteria by showing an ability to
use iron-citrate as an electron acceptor, utilize tryptone, oxidize
acetate with elemental sulfur and involve a hox hydrogenase in
the central metabolism. Unique metabolic traits for Arcobacter
were also revealed by strain IR-1, such as genes encoding
nitrogen-fixation and an incomplete denitrification pathway,
where nitrite is the end product from the reduction of nitrate.

Materials and Methods

Sampling Site and Isolation
The IR-1 strain was isolated from an enrichment culture grown
on water from the Utsira Aquifer (UA) added 1:150 injection
water (i.e., production water from Oilfield A and aquifer water
mixed 1:1), a slice of sterile iron foil (20–50 mg, 0.1 mm, Alfa
Aesar) and 12 mM So (Merck), as previously described (2014).
The UA water is anaerobic and fully saturated with CH4 and
CO2, saline (40%) and has a naturally low concentration of sulfate
(0–5 mM; Drønen et al., 2014). The bottle was shaken at 100 rpm
for 8 months at 25◦C, before the remaining iron chips were
harvested and stored at −80◦C in enrichment medium added
15% glycerol. From here fresh enrichment cultures were initiated
on Marine Broth 2216 added 5 mM NaNO3. The culture was
transferred to agar plates of Marine Broth 2216 added 5 mM
NaNO3 in anaerobic atmosphere (10% H2, 20% CO2, and 70%
N2), and single colonies were transferred to new plates twice.
Cells with a single morphology remained in the culture, and
sequencing the 16S rRNA gene of the isolate using the primers
8f (5′-AGAGTTTGATCCTGGCTCAG-3′) (Edwards et al., 1989)
and 1392r (5′-ACGGGCGGTGTGTRC-3′) (Lane et al., 1985)
confirmed that the strain was 99% identical to A. anaerophilus
strain JC83T (Sasi Jyothsna et al., 2013), hence we named the new
isolate A. anaerophilus IR-1.

Cultivation
Growth medium for the isolate was based on an anaerobic
mineral medium for nitrate reducers (NRB-medium) buffered
with bicarbonate and supplied with trace element solution SL-10
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and vitamins, as described by Myhr and Torsvik (2000). During
experiments to determine optimal growth temperature, NaCl
concentration and pH range; cultures were supplied with 30 mM
acetate and 0.05% yeast extract as energy source and 8.5 mM
nitrate as electron acceptor. For the pH range experiments, the
medium was buffered with either 30 mM bicarbonate (Sigma–
Aldrich) or 10 mM HEPES (Sigma). A. anaerophilus IR-1 was
transferred to fresh medium twice prior to the growth curve
experiments. Optical density (OD)measurements were generated
every 10–15 min at 600 nm, measured by the Cary 100 Bio
UV/VIS-spectrophotometer (Varian) in 10 mm quartz glass
cuvettes (Hellma). Instead of Gram staining, a KOH string test
was performed as described by Ryu (1938). For a metabolic
characterization of the isolate, NRB medium with 2% NaCl and
pH of 7.2–7.3 was used. Substrates and e-acceptors were added
according to Table 2. The closest relative, A. anaerophilus JC83T
(=DSM-24636), was obtained from the Deutsche Sammlung von
Mikroorganismen und Zellkulturen (DSMZ) and included in the
characterization as a reference strain.

Presence of enzymatic activity, such as urease, indoxyl
acetate hydrolysis and oxidase, was investigated using Diatabs
(Rosco Diagnostica) according to the manufacturer’s protocol.
In addition, a catalase test was performed using 30% (w/w)
hydrogen peroxide solution (Sigma) and colonies of Escherichia
coli as positive control.

Nitrite formation was quantified using colorimetry, where the
coloration generated by a nitrite test kit (Sera) was quantified in
a Cary 100 Bio UV/VIS-spectrophotometer (Varian) at 550 nm.
Here, A. anaerophilus IR-1 was cultivated on 10 mM acetate
and 5 mM nitrate for 48 h at 35◦C. The nitrite standard curve,
negative control and parallel cultures of A. anaerophilus IR-1
were measured in duplicates.

DNA Extraction and Sequencing
DNA was extracted from cells in parallel cultures of 30 ml NRB
medium added 30 mM acetate and 8.5 mM nitrate. Cells were
harvested by centrifugation at 5000 × g for 25 min, and the
DNA extraction was based on the protocol described by Marmur
(1961). In short: The pellet was dissolved in TE buffer (pH = 8)
and 1% SDS, and the mix was incubated at 65◦C for 5 min.
Then perchlorate was added to a final concentration of 1 M
and shaken well. The solution was added equal amounts of
chloroform:isoamyl alcohol (24:1), followed by centrifugation at
5000 × g for 10 min. This step was repeated twice using only
the aqueous phase. The nucleic acids were mixed 1:2 with 96%
ethanol, incubated for 30 min on ice, and finally centrifuged
at 13000 × g for 20 min at 4◦C. The pellet was washed twice
in 70% ethanol and dissolved in TE buffer (pH = 8). For the
RNase treatment, the parallel DNA extractions were pooled.
Ribonuclease A (Sigma) was added to a final concentration of
50 ng/µl, and the sample was incubated at 37◦C for 30 min. One
step of deproteinization with chloroform:isoamylalcohol (24:1)
was performed as described above. The aqueous phase was added
sodium acetate (pH = 5.2) to a final concentration of 0.3 M,
and the DNA was precipitated and purified with ethanol. The
DNA pellet was dissolved in 10 mM Tris buffer (pH = 8.0).
A total of 35 µg high quality DNA (RatioA260/280 = 1.98)

was obtained and the DNA was sequenced at the Norwegian
Sequencing Center for sequencing. A library was prepared using
the Pacific Biosciences 10 kb library protocol, and size selection
was done using BluePippin. The library was sequenced on a
Pacific Biosciences RS II instrument using P4-C2 chemistry,
where three SMRT cells were used in total.

In addition, DNA:DNA hybridization analysis of high quality
DNA of A. anaerophilus IR-1 and A. anaerophilus JC83T was
performed by DSMZ by renaturation rate measurements (De Ley
et al., 1970), under consideration of the modifications described
by Huss et al. (1983) using a model Cary 100 Bio UV/VIS-
spectrophotometer equipped with a peltier-thermostatted 6 × 6
multicell changer and a temperature controller (Varian).

Bioinformatics
Reads were assembled into contigs using the software
Hierarchical Genome Assembly Process (HGAP) v2 (Chin
et al., 2013) from Pacific Biosciences. The Prokka software
(Seemann, 2014) and the RAST-server (Aziz et al., 2008;
Overbeek et al., 2014) were used for automatic annotation of
the genome. Predicted genes were also aligned to the NCBI
database using a standalone BlastP search (Altschul et al., 1990).
For identification of peptidases and adhesion-associated proteins
encoded in the genome, the MEROPS peptidase database
(Rawlings andMorton, 2008) and Pfam protein families database
(Finn et al., 2014) were used. PacBio sequencing raw-data have
been submitted to the Sequencing Read Archive (SRA) under
BioProject PRJNA273926 and BioSample SAMN03316823.

Contigs of the assembled draft genome of A. anaerophilus IR-
1 have been deposited as a WGS project in GenBank under the
accession number JXXG01000000.

Results

Characterization of Isolate
The A. anaerophilus IR-1 strain was isolated from injection
water in an enrichment culture added UA water, zerovalent iron,
and elemental sulfur, which was used in corrosion monitoring
(Drønen et al., 2014). The 16S rRNA gene of A. anaerophilus IR-1
was 99% identical to A. anaerophilus strain JC83T (Sasi Jyothsna
et al., 2013), and the DNA:DNA hybridization analysis confirmed
that A. anaerophilus IR-1 is a new strain within A. anaerophilus
with a 76.3–80.2% DNA:DNA hybridization value in comparison
with A. anaerophilus strain JC83T.

The cells of the new strain were gram negative, curved rods,
1.5–2 µm long and 0.4–0.5 µm wide (Figure 1), and were
observed as single cells or in chains of 2–6 cells during active
growth. Cells were motile by a single polar flagellum (Figure 1),
and were particularly active at early stages of growth. Cells were
non-spore forming. The physiological characteristics of strain IR-
1 were compared to published descriptions of other Arcobacter
species (Table 1) using a selection of parameters devised
to distinguish members of the family Campylobacteraceae,
as resolved by the International Committee on Systematic
Bacteriology (Ursing et al., 1994). Strain IR-1 grew under
microaerophilic conditions at 37◦C, but not at 42◦C or under
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FIGURE 1 | Scanning electron micrographs of Arcobacter
anaerophilus IR-1. Cells are curved rods with a single polar flagellum.

aerobic conditions. Growth was observed at both 0.5 and 4%
NaCl. The strain did not utilize 1% glycine, and no hemolysis was
observed. The strain was oxidase and urease positive, but did not
have enzyme activity for catalase or indoxyl acetate hydrolysis.
The new isolate showed a unique profile of characteristics
among the chosen representatives of Arcobacter, and could be
distinguished from other Arcobacter species based on three or
more parameters (Table 1).

A more comprehensive characterization showed that the
isolate could be cultivated under anaerobic or microaerophilic

conditions. The temperature range was 15–40◦C, with an
optimum at 37◦C. The salinity range was 0.5–6% NaCl, with
an optimum at 2% NaCl. No growth was observed using 0%
NaCl in the medium. The pH optimum was 7.5 in bicarbonate
buffered medium, and pH 7.2 in the HEPES buffered medium.
Carbon sources and rich complexes, such as acetate, lactate,
peptone, pyruvate, tryptone, and yeast extract were utilized
with oxygen or nitrate as electron acceptor (Table 2). Yeast
extract, peptone and pyruvate were also fermented without
an external electron acceptor. Inorganic compounds, such
as hydrogen (H2), elemental sulfur, hydrogen sulfide, and
thiosulfate could also be utilized if CO2 or small amounts of
acetate (1 mM) was provided as carbon source (Table 2). Sugars
were not utilized. In addition to respiration with oxygen at
microaerophilic levels (3–10%); nitrate, elemental sulfur, and
ferric citrate were also identified as electron acceptors. Ferric
hydroxide and sulfate were not used as terminal acceptors.
The A. anaerophilus IR-1 could be distinguished from its
closest relative, A. anaerophilus JC83T, on the basis of lactic
acid utilization and the capacity to hydrolyse indoxyl acetate
(Table 2).

Genomic Information
Sequencing of the A. anaerophilus IR-1 genome generated 92 845
reads with an average read length of 6073 bp. The reads were
assembled into seven contigs, comprising 3.257Mbp in total. The
size-distribution and sequencing coverage of assembled contigs
suggested that three of the contigs constitute the chromosomal
genome, while the remaining four could be extra chromosomal
elements, such as plasmids. By using the Prokka annotation
tool, 3596 protein coding genes were identified (Supplementary
Table S1). The genome also contained 60 non-coding genes

TABLE 1 | Characteristics that differentiate Arcobacter anaerophilus IR-1 from other strains within the genus Arcobacter.

Characteristics 1 2 3 4 5 6 7 8 9 10 11

Growth in/on

Air at 37◦C − − − + + + ND ND + ND +
CO2 at 37◦C∗ + − − + + + + + + + +
CO2 at 42◦C∗ − − − − − (+)a + − (+)a − (+)a

0.5% (w/v) NaCl + + + − − + + + + + ND

4% (w/v) NaCl + + + + + + +b − − −b +
1% (w/v) glycine − + − + − ND + − − − −
Hemolysis − − − − − − V + − − −

Enzyme activity

Oxidase + + + + + + + + + + +
Catalase − − + − − (+) (+) + (+) + +
Urease + − + − − − − − + − −
Nitrate reduction + + + + + − + + + − +
Indoxyl acetate hydrolysis − + + + + − + + + + −

1, Arcobacter anaerophilus IR-1 (This study); 2, A. anaerophilus JC83 DSM-24636T (Sasi Jyothsna et al., 2013); 3, A. nitrofigilis DSM-7299T (McClung and Patriquin,
1980; Sasi Jyothsna et al., 2013); 4, A. marinus DSM-24769T (Kim et al., 2010; Sasi Jyothsna et al., 2013); 5, A. halophilus DSM-18005T (Donachie et al., 2005);
6, A. mytilii DSM-23625T (Collado et al., 2009); 7, A. butzleri DSM-8739T (Vandamme et al., 1992); 8, A. skirrowii DSM-7302T (Vandamme et al., 1992); 9, A. defluvii
DSM-25359T (Collado et al., 2011); 10, A. cryaerophilus DSM-7289T (Vandamme et al., 1992); 11, A. molluscorum (Figueras et al., 2011a).
+, positive; –, negative; (+), weakly positive; V, variable among strains; ND, not determined.
∗Growth at microaerophilic conditions.
aAt aerobic atmosphere.
bAt 3.5% (w/v) NaCl.
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TABLE 2 | Characteristics and substrate range of A. anaerophilus IR-1 and
the closest related species A. anaerophilus JC83T.

Characteristic A. anaerophilus
IR-1

A. anaerophilus
JC83T

Cell size 1.5–2 µm long,
0.4–0.5 µm wide

1–2 µm long,
0.1–0.3µm widea

Motility + +
DNA G + C content 30.2% mol 24.6% mola

Genome size 3.26 Mbp ND

Substrate utilization

Acetate + +
Caproate − −
Cellobiose − −
Citrate − −
D-Fructose − −
D-Galactose − −
D-Glucose − −
DL-Lactate + −
Elemental sulfur +b +b

Ferrous (Fe2+ ) iron − −
Formate − −
H2 + +
H2S + +
L-Arabinose − −
Peptone + +
Pyruvate + +
Sucrose − −
Thiosulfate +b +b

Tryptone + +
Yeast extract + +

Electron acceptors

Nitrate + +
Elemental sulfurc + +
Sulfate − −
Thiosulfate − −
Ferric (Fe3+ ) citrate + +
3% O2 + +
5% O2 + +
10% O2 + +
Air − −

Enzymatic reactions

Urease + +
Indoxyl acetate hydrolysis − +
Oxidase + +
Catalase − −

a(Sasi Jyothsna et al., 2013).
bCulture supplied with organic carbon source.
cSulfide in the medium might have formed polysulfide from sulfur.

comprising four rDNA operons (Supplementary Table S2)
localized on two different contigs, in addition to 48 tRNAs. The
GC-ratio was 30.2% mol.

Central Metabolism
From analyses of the A. anaerophilus IR-1 genome we identified
a genotype that was in agreement with the phenotype revealed

by the physiological characterization (Table 3). Presence
of genes encoding energy converting Ni/Fe hydrogenase
(hydABC), a Ni/Fe uptake hydrogenase (hupSL) and a
cytoplasmic NAD+-reducing hydrogenase (hoxEFHUY)
were congruent with the use of H2 as an electron donor.
A complete SOX system (soxABCDXYZ) and sulfide:quinone
oxidoreductase (sqr) was most likely involved in oxidation
of hydrogen sulfide, thiosulfate, and elemental sulfur. The
SOX system may also be involved in sulfite oxidation;
however, sulfite was not tested as a substrate during the
physiological characterization. Regarding central carbon
metabolism, the genome encoded a complete TCA cycle,
pentose phosphate pathway, Entner-Doudoroff pathway and
glycolysis and gluconeogenesis, with the exception of genes
encoding hexokinase/glucose 6-phosphatase. Also, genes
encoding a reductive TCA cycle were the only identified
genes associated with a CO2 fixation pathway. Key genes
for utilization of lactate and pyruvate were found, including
L-lactate dehydrogenase (ldh), pyruvate synthase (por) and
phosphoenol pyruvate synthase (pps). Two pathways for
acetate oxidation were encoded: a two-step reaction involving
acetate kinase (ack) and phosphate acetyltransferase (pta) or
a single step reaction involving acetyl coenzyme A synthetase
[both the ADP dependent (acd) and AMP forming (asc)
genes were found]. The acetyl-CoA formed could enter the
TCA cycle by citrate synthase (glt) or malate synthase (glc)
or be included in various anabolic pathways. The presence of
formate dehydrogenase (fdh) genes indicates a potential for
growth by formate oxidation, however, neither A. anaerophilus
IR-1 nor A. anaerophilus JC83T could grow on this substrate
(Table 2).

As the new strain could utilize organic rich substrates
like yeast extract, peptone and tryptone, a search in the
MEROPS peptide database was performed in order to survey
the genome for membrane associated peptidases that could
initiate the degradation of complex protein molecules. In
total, 80 different peptidases were identified, which were
classified within the families: aspartic (4), cycteine (19),
metallo (26), asparagine (2), serine (21), threonine (4) and
unknown (4). Indications of protein-rich substrate as a
preferable carbon source in A. anaerophilus IR-1 was strengthen
by identification of genes encoding dipeptide chemoreceptor
protein (tap) and dipeptide transport ATP-binding protein
(ddp) involved in chemotaxis toward peptides, and membrane
transport proteins, such as inner membrane amino-acid ABC
transporter permease protein (yecS, yhdGY), oligopeptide
transport system permease protein (oppC) and transporter
permeases for leucine, isoleucine, valine, glutamine, arginine,
glycine, and proline.

Two gene clusters encoding nitrogenase (nifDHK) were
identified in the genome of strain IR-1 (Table 3), where
one gene cluster is also present in A. nitrofigilis. These
genes have previously not been described for members
of the genus Arcobacter, however, our results suggest
that free-living strains within this genus can sustain
themselves with a nitrogen source by converting dinitrogen
to ammonia.
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Respiration
As expected, genes for aerobic respiration were found in
the genome of the microaerophilic A. anaerophilus IR-1.
Genes encoding complex I–IV of the respiratory chain
was present, including NADH ubiquinone oxidoreductase
(nuoABCDEFGHIJKLMN; complex I), succinate dehydrogenase
(frdABC; complex II), cytochrome bc1 complex (petABC;
complex III) and cytochrome c oxidoreductase (ccoNOP;
complexIV; Table 3). In addition, genes for cytochrome d
ubiquinol oxidase (cydAB) were found (complex IV). The
respiratory chain is linked to a F0F1 ATPase that generates

ATP, and genes (atpABCDEFGH) encoding both domains
were found. The Arcobacter strain IR-1 could also respire
with nitrate to form nitrite, and accordingly, nitrate reductase
(napABCDFGHL) genes were present in the genome (Table 3).
However, the denitrification pathway was incomplete, where
genes encoding nitrite reductase (nir/nrf ) and nitric oxide
reductase (nor) were lacking, while genes encoding nitrous
oxide reductase (nos) were identified (Table 3). Congruent
with the genomic information, a colorimetric method revealed
an average nitrite concentration of 0.22 mM after 48 h in
cultures grown on acetate and nitrate. Furthermore, cultures

TABLE 3 | Comparison of genes involved in central metabolisms within selected species of Arcobacter, based on RAST annotations.

Pathway A. anaerophilus IR-1 A. nitrofigilis CI A. butzleri RM4018

Genome size (Mbp) 3.26 3.22 2.33

Hydrogenase

NAD+-reducing HoxEFHUY − −
Ni/Fe hydrogenase HydABC HydABC HydABC

Ni/Fe uptake hydrogenase HupSL HupSL HupSL

Sulfur oxidation

Sox SoxABCDXYZ SoxABCDHXYZ SoxABCDXYZ

Sulfide:quinone oxidoreductase Sqr∗ Sqr∗∗ Sqr∗∗

Central carbon metabolism

Glycolysis/Gluconeogenesis + + +
Entner-Duorodorf pathway + + −
Pentose phosphate way + + +
Lactate dehydrogenase + + −
Pyruvate:ferredoxin oxidoreductase + + −
Phosphoenol pyruvate synthase (pps) + − −
Acetyl coenzyme A synthetase + + +
Malate synthase + − −
TCA + + +
rTCA + + +

Nitrogen fixation

Nitrogenase molybdenum-iron protein NifDHK NifDHK −
Oxygen reduction

NADH ubiquinone oxidoreductase NuoABCDEFGHIJKLMN NuoABCDEFGHIJKLMN NuoABDEFGIJKLMN

Succinate degydrogenase FrdABC FrdABC FrdABC

Cytochrome bc1 PetABC PetABC PetABC

Cytochrome c oxidoreductase CcoNOP CcoNOP CcoNOP

Cytochrome d ubiquinol oxidase CydAB CydAB CydAB

Nitrate reduction

Nitrate reductase NapABCDFGHL NapABCDFGHL NapABDFGHL

Nitrite reductase − NirBD NrfAH

Nitric oxide reductase (nor) − − NorB

Nitrous oxide reductase (nos) NosZ − −
Sulfur reduction

Polysulfide reductase PsrAB NrfD∗∗ −
Tetrathionate reductase TtrABC TtrABC −
Anaerobic dimethyl sulfoxide reductase DsmABC − −

Iron reduction

Ferric reductase Fre − −
Formate-dependent nitrite reductase NrfD − −

∗Present in dataset from Prokka.
∗∗Present in dataset from NCBI.
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of A. anaerophilus IR-1 grew well in medium supplemented
with elemental sulfur as terminal electron acceptor. However,
the strain may also have benefitted from polysulfide that
might have formed chemically in the medium since hydrogen
sulfide was used as reducing agent. Polysulfide reductase
genes (psrAB) were identified in the genome, suggesting
a role for reduction of polysulfide to sulfide. Genes for
tetrathionate reductase (ttrABC) were also found, which could
form thiosulfate from tetrathionate, but genes for thiosulfate
reductase were missing. Observation of anaerobic dimethyl
sulfoxide (DMSO) reductase genes (dsmABC) in the genome
indicated that DMSO could be a possible electron acceptor,
but his was never tested in vitro. Genes for dissimilatory
sulfate reduction were not found. The genomic survey also
revealed a putative ferric iron reductase (fre), which could
support the observed respiration with ferric citrate by the new
isolate.

Comparative Genomics
The genome of A. anaerophilus IR-1 was compared to the
free-living A. nitrofigilis CI (DSM 7299; Pati et al., 2010) and
the pathogen A. butzleri RM4018 (DSM 8739; Miller et al.,
2007). Genomes of A. nitrofigilis (NC_014166) and A. butzleri
(NC_009850) were obtained from NCBI and uploaded in RAST
for comparison with A. anaerophilus IR-1. The genome analyses
of A. anaerophilus (3.26 Mbp) resulted in 1432 annotated genes
in RAST, while 1542, and 1244 annotated genes, respectively,
were identified in A. nitrofigilis (3.22 Mbp) and A. butzleri
(2.33 Mbp). Duplicate genes in each genome were removed
from the dataset; leaving A. anaerophilus, A. nitrofigilis, and
A. butzleri with 1008, 1069, and 837 unique genes, respectively; of
which 633 genes were common for all three genomes (Figure 2).
The genomes of free-living A. anaerophilus and A. nitrofigilis
showed highest similarity, with 221 shared genes, while the
pathogen A. butzleri had around 60 genes in common with the
two free-living species (Figure 2). The genomes also comprised

FIGURE 2 | Comparative genomics. Unique genes from A. anaerophilus
IR-1 (1008), A. nitrofigilis CI (1069), and A. butzleri RM4018 (837) annotated in
RAST was extracted and compared.

genes that were unique for each specimen: A. anaerophilus (93),
A. nitrofigilis (157), and A. butzleri (85).

The function based comparison tool in RAST and searches in
the Prokka dataset (A. anaerophilus) or the genome dataset from
NCBI (A. nitrofigilis andA. butzleri) were used for identifying key
genes in central carbon metabolism, sulfur oxidation, hydrogen
oxidation, and respiration with oxygen, nitrate, sulfur, and
iron; thereby providing genomic comparisons of the metabolic
capacity based on selected pathways (Table 3). This approach
revealed that A. anaerophiluswas the most metabolically versatile
species, with unique genes involved in hydrogen oxidation (hox),
nitrate reduction (nosZ), reduction of sulfur species (psr, dsm),
iron reduction (fre), in addition to central carbon metabolism,
such as phosphoenol pyruvate synthase and malate synthase
(Table 3). Furthermore, the free-living strains were sharing some
metabolic properties that seemed to be absent in A. butzleri,
such as genes for nitrogen fixation (nif ), the napC subunit in
the nitrate reductase complex, tetrathionate reduction (ttr) and
several pathways in central carbon metabolism. Interestingly,
A. anaerophilus IR-1 was lacking genes encoding a nitrite
reductase, while nitrite reductase (nir/nrf ) genes were found
in the other two Arcobacter species. This indicates that both
A. nitrofigilis and A. butzleri could have a mechanism for
nitrite detoxification, which is not found in A. anaerophilus. The
A. butzleri genome also comprised nitric oxide reductase (norB),
which was not present in the other species.

Discussion

New Metabolic Properties of Free-Living
Arcobacter
Today there are 20 acknowledged species within the genus
Arcobacter, including free-living strains and pathogens isolated
from mammal and human sources. The genus is dominated
by free-living strains isolated from various environments;
however, knowledge about the metabolic capacity of these
remains incomplete. In this study, extensive cultivation
experiments with A. anaerophilus IR-1 revealed a versatile
metabolism, including lithoautotrophy, lithoheterotrophy,
and organoheterotrophy (Table 2) that was confirmed by
genome analysis. A lithoautotrophic lifestyle has previously
only been described for the free-living Arcobacter strains
FWKO B and CAB (Gevertz et al., 2000; Carlström et al.,
2013), however, this capability might be more widespread
among the members of Arcobacter than anticipated, as most
free-living species were never grown lithoautotrophically when
characterized. During lithoautotrophic and lithoheterotrophic
growth of A. anaerophilus IR-1, elemental sulfur, hydrogen
sulfide, thiosulfate or H2 were used as electron donors in
combination with organic molecules or CO2 as carbon source.
This metabolic profile is similar to those of the free-living
Epsilonproteobacteria of the genera Nautiliales, Sulfurovum, and
Sulfurimonas isolated from hydrothermal vents and marine
sediments (Alain et al., 2002; Miroshnichenko et al., 2002;
Inagaki et al., 2003, 2004; Takai et al., 2006; Cai et al., 2014;
Mino et al., 2014). The hydrogen sulfide may be oxidized
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autotrophically in A. anaerophilus IR-1 by sqr (Table 3). The
presence of sqr was unique for this Arcobacter strain, but
transcriptomic studies of microbial mats from hydrothermal
vents and sediments have shown that the gene is highly expressed
in free-living Epsilonproteobacteria (Dahle et al., 2013; Urich
et al., 2014). Oxidation of elemental sulfur and thiosulfate, which
required an organic carbon source, may be catalyzed by the
SOX system (soxABCDXYZ) using the previously described
mechanism (Friedrich et al., 2001; Bagchi and Ghosh, 2005;
Dahl et al., 2008). The genes encoding the SOX system was
found in all three Arcobacter genomes, which fits well with the
metabolic traits of Epsilonproteobacteria in general. The Ni/Fe
hydrogenase (hyd) used for hydrogen uptake was found in the
Arcobacter genomes investigated in this study and is also found
in other epsilonproteobacterial genera, such as Campylobacter,
Helicobacter, Sulfurimonas, Wolinella (Dross et al., 1992; Benoit
and Maier, 2008; Cordwell et al., 2008; Sievert et al., 2008). On
the contrary, the NAD+-reducing hydrogenase (hox) seemed
unique for A. anaerophilus IR-1 among Arcobacter and even
among Epsilonproteobacteria (Table 3). The NAD+-reducing
hydrogenase is a cytoplasmic, oxygen tolerant, bidirectional
hydrogenase that has previously been identified in Cyanobacteria
(Papen et al., 1986; Tamagnini et al., 2002),Gammaproteobacteria
(Coppi, 2005), Betaproteobacteria (Burgdorf et al., 2005),
Actinobacteria (Grzeszik et al., 1997) and phototrophic bacteria
(Rákhely et al., 2004; Long et al., 2007). The exact function
of this hydrogenase is not well understood, however, it has
been suggested to play a role in removing excess electrons
from fermentation or photosynthesis in Cyanobacteria and
phototrophic bacteria, or supply complex I with reducing
compounds (NADH) in aerobic bacteria in order to maintain
a proton motive force (Horch et al., 2012). The NADH could
also be converted to NADPH in the cytoplasm, hence the
NAD+-reducing hydrogenase could provide electron donors
for CO2 fixation in some bacteria. In A. anaerophilus IR-1,
this hydrogenase may thus be involved in regulation of the
NADH levels in the cells or possibly in NADPH generation for
CO2 fixation. An organoheterotrophic lifestyle was also verified
for the A. anaerophilus strains. To our knowledge, this is the
first time a free-living Arcobacter has been shown to degrade
tryptone with nitrate as electron acceptor, while degradation
of yeast extract and peptone is also described for Arcobacter
sp. CAB (Carlström et al., 2013). Utilization of smaller organic
molecules, such as acetate, lactate, and pyruvate, seems to be
a common trait within Arcobacter, and has been described for
several species (McClung and Patriquin, 1980; Teske et al., 1996;
Carlström et al., 2013; Sasi Jyothsna et al., 2013), including
strain IR-1. Interestingly, A. anaerophilus JC83T was unable to
utilize lactate. The observed growth upon acetate with sulfur
as the terminal electron acceptor by A. anaerophilus IR-1 has
previously not been observed among Epsilonproteobacteria,
and is so far only described for strains of Desulfuromonas and
Desulfurella within Deltaproteobacteria (Pfennig and Biebl, 1976;
Bonch-Osmolovskaya et al., 1990). Formate did not support
growth of A. anaerophilus IR-1 or A. anaerophilus JC83T in our
growth experiments, although growth on formate is previously
observed in Arcobacter sp. (Teske et al., 1996; Gevertz et al.,

2000). The fdh in E. coli is oxygen sensitive, and the fdhF gene is
induced by increasing formate concentrations and repressed by
nitrate (Pecher et al., 1983; Wang and Gunsalus, 2003). The lack
of growth of A. anaerophilus IR-1 on formate when oxygen or
nitrate was provided as electron acceptor may be explained by a
similar mechanism as in E. coli.

With a few exceptions, free-living Arcobacter are described
as microaerophilic and nitrate reducing bacteria (Gevertz et al.,
2000; Donachie et al., 2005; Collado et al., 2009, 2011; Kim
et al., 2010; Figueras et al., 2011a,b; Levican et al., 2012,
2013; Sasi Jyothsna et al., 2013); and even elemental sulfur
has been reported as electron acceptor (Gevertz et al., 2000).
We observed that the A. anaerophilus strain IR-1 could use
all of these during growth on organic or inorganic compounds
(Table 2). The genome analysis suggests that complex IV in the
electron transport chain comprise cytochrome c oxidoreductase
or cytochrome d ubiquinol oxidase when oxygen is provided as
terminal electron acceptor. In the betaproteobacterial Azoarcus
sp. BH72, a cytochrome c oxidase and a quinol oxidase are
expressed, however, they are upregulated according to oxygen
concentrations where the former dominate during aerobic
conditions and the latter during microaerophilic conditions
(Reinhold-Hurek and Zhulin, 1997). In E. coli, the cytochrome
d containing enzyme complex has a higher affinity for
oxygen (Miller and Gennis, 1983; Kita et al., 1984), and
this can thus indicate that this terminal oxidase may operate
at low oxygen concentrations in A. anaerophilus IR-1. The
cytochrome c oxidoreductase may operate at higher oxygen
concentration, but still within the range of microaerophilic
conditions.

All three Arcobacter strains included in the genome
comparison have the capability of nitrate reduction (McClung
and Patriquin, 1980; Miller et al., 2007), which is also recognized
as a common property among other epsilonproteobacterial
taxa (Vetriani et al., 2014). Genome sequencing of free-living
Campylobacter, Nitratiruptor, Sulfurimonas, Sulfurovum, and
Wolinella has revealed a complete denitrification pathway or
nitrite ammonification pathway, meaning that nitrate can be
reduced to dinitrogen or ammonium (Voordeckers et al., 2005;
Takai et al., 2006; Nakagawa et al., 2007; Kern and Simon, 2009;
Sikorski et al., 2010; Grote et al., 2012). The periplasmic enzyme
nitrite reductase (Nap) is catalyzing the nitrate reduction to
nitrite, and the nap operon (napAGHBFLD) in A. anaerophilus
IR-1, A. nitrofigilis, and A. butzleri had the same gene orientation
as commonly found in epsilonproteobacterial species (Sparacino-
Watkins et al., 2014). In these species, electrons are transferred
from the menaquinone pool to the terminal reductase (NapAB)
via a ferredoxin containing integral membrane protein (NapGH;
Kern and Simon, 2009; Sparacino-Watkins et al., 2014). However,
the free-living strains within Arcobacter might also have
the transmembrane protein NapC as an alternative electron
transition pathway to NapAB, as genes encoding NapC were
found downstream the nap operon in both A. anaerophilus
and A. nitrofigilis (Table 3). This could provide the Arcobacter
strains with a more advanced nitrate reductase complex that has
previously only been seen in Gammaproteobacteria (Sparacino-
Watkins et al., 2014). However, further studies are needed to
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confirm a function in nitrate reduction by NapC in free-living
Arcobacter strains. The remaining denitrification pathway in
A. anaerophilus IR-1 was incomplete, where only the genes
encoding nos were identified (Table 3), indicating that nitrite
produced by nitrate reductase may represent a metabolic end
product. These findings were also supported by the detection
of nitrite (0.22 mM) in cultures supplied with nitrate as
electron acceptor. In comparison, A. nitrofigilis and A. butzleri
encode nitrite reductase [NAD(P)H] (nirBD) and cytochrome
C nitrite reductase (nrfAH), respectively (Table 3), which
catalyzes the reduction of nitrite to ammonia. The periplasmic
nitrite reductase in A. butzleri has probably direct supply
of nitrite produced by nitrate reductase; however, the nitrite
reductase in A. nitrofigilis is a cytoplasmic enzyme. Here,
expression of the nitrite transporter gene found in the same gene
cluster as the nitrite reductase might be involved in shuttling
the nitrite over the membrane to the cytoplasmic enzyme
complex. In the epsilonproteobacterial Nautilia profundicola,
a different mechanism of nitrite removal is known, where
nitrite is used in an assimilatory nitrogen pathways via
hydroxylamine (Campbell et al., 2009). Genes encoding a similar
pathway were not found in the genome of A. anaerophilus
IR-1. Instead, the new Arcobacter strain seems to tolerate
increasing nitrite concentrations (up to 0.3 mM in batch
cultures).

In A. anaerophilus IR-1 a gene cluster comprising nosZDFLY
and napGH was found, which is conserved in Wolinella
succinogenes (Simon et al., 2004), while the gene cluster was
lacking in A. nitrofigilis and A. butzleri. This gene cluster
in the IR-1 strain also included two hypothetical genes
that are annotated as cytochrome c in W. succinogenes.
This gene cluster is also widely conserved among the
Epsilonproteobacteria, and seems to be a unique characteristic
of this bacterial class (Kern and Simon, 2009). The encoded
proteins provide a link between the reduction of nitrous oxide
to N2, catalyzed by NosZ, and electron transfer from the
menaquinol pool by NapGH and cytochrome c. However,
the metabolic importance of nitrous oxide reduction is
not well studied for most Epsilonproteobacteria and the
role in A. anaerophilus IR-1 metabolism remains to be
identified.

The A. anaerophilus IR-1 strain was also found to reduce
ferric iron with acetate as electron donor. The genome analysis
suggests that a NrfD protein coupled to ferric reductase
takes part in this reaction; a mechanism equivalent to the
one proposed for Melioribacter roseus, where putative ferric
reductase (fre) in the outer membrane is coupled to a
NrfCD protein located in the inner membrane via a c-type
cytochrome shuttle (Kadnikov et al., 2013). In A. anaerophilus
IR-1, the NrfD protein was identified as a membrane bound
formate-dependent nitrite reductase (Acr_01494) in the original
Prokka annotation list. However, a standalone BlastP search
using a 420 aa query sequence resulted in best hit against
polysulfide reductase (Sulfurospirillum arcachonese) with a
bit-score of 593 and 72% identity. Although the identity
of the protein was difficult to determine, the protein was
classified within the NrfD superfamily, which is involved in

electron transfer from the quinone pool to a periplasmic
receptor. Growth experiments showed that A. anaerophilus
IR-1 could only reduce the soluble ferric citrate, which
indicates that the strain requires chelated iron compounds
for iron reduction. The insoluble ferric hydroxide was not
utilized, and genes encoding conductive pili homologous to
the nanowires in Geobacter (Reguera et al., 2005) were not
found. Ferric iron minerals are abundant in anaerobic aquifers
and sediments (Nealson, 1997; Orcutt et al., 2011), and humic
substances have been shown to stimulate iron reduction in
these environments where the humic substances serve as an
electron shuttle between microorganisms and minerals (Lovley
et al., 1996; Nevin and Lovley, 2000). However, this was not
tested in vitro for strain IR-1. Overall, A. anaerophilus IR-
1 could possibly reduce chelated iron minerals in a natural
environment, and this ability expands the ecological niche of
the free-living Epsilonproteobacteria to take part in cycling of
iron.

Conclusion

Through physiological characterization and genomics of
A. anaerophilus IR-1, new knowledge about the metabolic
properties of free-living Epsilonproteobacteria has been achieved,
such as utilization of the complex organic substrate tryptone,
reduction of ferric iron citrate and presence of genes encoding
a NAD+-reducing hydrogenase (Hox). Comparative genomics
of three Arcobacter species showed that the free-living strains
had more in common compared to the pathogen strain. Their
metabolic range of lithoautotrophy and organoheterotrophy is
comparable to many free-living Epsilonproteobacteria isolated
from hydrothermal vents and marine sediments. All the
Arcobacter strains had an incomplete denitrification pathway;
hence we suggest that members of the genus Arcobacter are
nitrate reducers rather than denitrifiers. A. anaerophilus IR-1
did not have a mechanism for nitrite removal, and therefore
seems to tolerate high concentrations of nitrite, while the
other Arcobacter species encodes genes for nitrite reduction to
ammonia.
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