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Abstract

Unique features of immunity early in life include a distinct immune system particularly reliant on 

innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses 

to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, 

we now add an increasingly appreciated concept that the innate immune system displays 

epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named 

“trained immunity”. Exposure of neonatal leukocytes in vitro or neonatal animals or humans in 

vivo to specific innate immune stimuli results in an altered innate immune set point. Given the 

particular importance of innate immunity early in life, trained immunity to early life infection 

and/or immunization may play an important role in modulating both acute and chronic diseases.

Introduction

Immune responses consist of a complex system of cellular and humoral components that 

recognize self from non-self, eliminate the latter, thereby realizing a crucial function of 

neutralization of invading pathogenic microorganisms. These defense mechanisms are 

essential for the survival and perpetuation of all multicellular organisms. The adaptation of 

immune responses to a previously encountered infection, in order to respond with an 

increased efficacy upon reinfection, gives a distinct evolutionary advantage to the host. In 

humans, this function is fulfilled by specific immune responses such as the production of 

antibodies (Abs) or the generation of T-cell clones specific towards a particular pathogen. 

These responses are also known as adaptive immunity, because they occur as an adaptation 

to infection by that pathogen. Adaptive immunity often confers lifelong protection to 

reinfection with the same pathogen through the rapid clonal expansion of memory T- and/or 

B-cells that induce a rapid and effective response (1).
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Importantly, specific immune responses during a primary infection require several days and 

up to two weeks to develop an effective antimicrobial effect. The host defense during these 

first days of infection is assured by innate immunity. In contrast to T- and B-cells, the cells 

of the innate immune system such as granulocytes, macrophages or natural killer (NK) cells 

are immediately available to fight efficiently and kill a broad range of pathogens, but it has 

been thought that they do not confer specificity or immunological memory to the innate host 

defense.

Remarkably, the last few years of research have dramatically changed the dogma of innate 

immunity being “non-specific”. Indeed, the different classes of pattern recognition receptors 

(PRRs) such as the Toll-like receptors (TLRs), C-type lectin receptors (CLRs), nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs), and RIG-I helicases present 

on leukocytes surfaces are responsible for the semi-specific activation of cells of the innate 

immune system through the specific recognition of pathogen-associated molecular patterns 

(PAMPs) of pathogenic microorganisms (2). Moreover, in addition to providing early 

defense against infections, the innate immune response plays an essential role in triggering 

and driving the acquired immune system to respond effectively to infection (3,4). Moreover, 

the dogma of innate immunity lacking memory has also started to be questioned (5). Several 

studies during the last decades showed enhanced immune responses upon reinfection in 

invertebrates lacking adaptive immunity, such as cockroaches (6), shrimps (7), or mealworm 

beetles (8). Interestingly, invertebrates also demonstrated enhanced secondary responses (9) 

and transmission of protection to offspring (10). Recently, Witteveldt et al. showed that such 

innate immune memory might even be used for the vaccination of invertebrates (11).

The adaptive characteristics of innate immunity, enabling it to respond with an enhanced 

efficiency during a reinfection, are evident in vertebrates as well. Enhanced heterologous 

(often also referred to as “non-specific”) innate immune protection can be mediated by 

epigenetic reprogramming of innate immune cells and has been called trained immunity 

(12). The discovery of trained immunity may change our understanding of the scope and 

nature of immunological responses.

Summary of current evidence for the Trained Immunity phenomenon

Evidence for trained immunity has been found in plants, invertebrates (e.g., insects) and, 

more recently, mammals (see Table 1). Somatic rearrangement of immunological receptors 

is used by vertebrates to induce adaptive immune responses (13), while alternative splicing 

of pattern-recognition genes is employed by the host defense of invertebrates to confer 

adaptation to infection (14). For example, Anopheles gambiae mosquitoes use alternative 

splicing of the immunoglobulin (Ig)-domain coding gene “Down syndrome cell adhesion 

molecule” (Dscam) to produce a highly diverse set of >31,000 potential alternative splice 

forms, which enable specific recognition and protection against bacteria and parasites (15). 

Thus, both somatic rearrangement and alternative splicing result in a receptor repertoire that 

is sufficiently diverse to discriminate between broad varieties of different pathogens, and 

provide adaptive functions to the immune system.
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In addition to the mechanisms that lead to a broad panel of pathogen-recognition receptors, a 

second type of adaptive immune response has been recently described, in which functional 

reprogramming of innate immune cells induces an increased response to a secondary 

infection. The function of the prototypic innate immune NK cells can be enhanced by a 

primary viral infection, leading to protection against reinfection with viral pathogens 

(16-18). Infection of mice with cytomegalovirus induced proliferation of NK cells bearing 

the virus-specific Ly49H receptor. After a contraction phase at the end of the infection, these 

NK cells reside in lymphoid organs for several months, and can rapidly degranulate and 

produce cytokines upon viral reinfection (16). In addition, after hapten sensitization, long-

lived NK cells are responsible for the contact hypersensitivity response, independent of B 

and T lymphocytes (19). Moreover, memory NK-cells can also develop adaptive immunity 

to structurally diverse antigens, an activity that requires the chemokine receptor CXCR6 

(20). Overall, memory is increasingly considered an important characteristic of NK-cell 

responses.

In addition to NK cells, monocytes/macrophages also display adaptive characteristics. 

Multiple murine studies have demonstrated that immunization with the anti-tuberculosis 

vaccine Bacille Calmette-Guérin (BCG) protects not only against mycobacteria, but also 

against infections with Listeria monocytogenes, Salmonella typhinirium, Staphylococcus 

aureus (S. aureus), Candida albicans (C. albicans) or Schistosoma mansoni (21-24). 

Interestingly, T-cell-independent mechanisms mediated by activated tissue macrophages 

contribute to this protection (21,23,24). In addition, in children in West Africa, BCG 

vaccination has been shown to confer heterologous beneficial effects with decreased 

morbidity due to infections other than tuberculosis, and decreased overall mortality (25,26). 

As the protection against other infections reported in these studies is heterologous (“non-

specific”), it is unlikely that a specific adaptive immune response is the protective 

mechanism responsible. Indeed, it has been proposed that epigenetic reprogramming of 

monocytes, based of modulation of histone methylation profiles, leads to an enhanced 

function of monocytes and heterologous (“non-specific”) protection to infections induced by 

BCG vaccination (27).

In addition to BCG vaccination, other specific challenges with live, attenuated agents have 

produced heterologous responses. After injection of an attenuated non-germinative strain of 

C. albicans, mice were protected not only against a virulent C. albicans strain, but also 

against the Gram-positive bacterium S. aureus (28). Such protection is also induced in 

athymic mice, indicative of a T-cell-independent mechanism (29). Protection against 

reinfection is dependent on typical innate immune host response mechanisms such as 

macrophages (28) and the production of pro-inflammatory cytokines (30). The molecular 

mechanism of this protection is mediated by the dectin-1/Raf-1 pathway activated by β–

glucans on the cells wall of Candida, leading to a “primed” epigenetic profile based on 

specific hypermethylation of histones (31). Thus, epigenetic reprogramming of monocytes is 

a key novel feature of innate immune memory, (trained immunity), and is likely to be of 

general importance after certain infections or immunizations.
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Evidence that Trained immunity occurs in early life

Several in vitro studies suggest that the innate immune system has memory features in early 

life, indeed right from birth. Stimulation of human newborn cord blood mononuclear cells in 

vitro, for example with Staphylococcus epidermidis, enhances expression of a variety of 

PRRs including TLRs, providing a potential mechanistic basis for greater innate immune 

responses to subsequent challenges (32).

Both murine and human in vivo studies have indicated that stimulation of the neonatal innate 

immune system can alter the set point of innate immunity such that responses to subsequent 

stimuli are altered. Intra-peritoneal administration of TLR agonists (TLRAs) to newborn 

mice enhance subsequent cytokine- and phagocyte-based responses to bacterial infection 

with associated improvement in survival from polymicrobial sepsis induced by intra-

peritoneal injection of a cecal slurry (33). Of note, bloodstream infection in critically ill 

preterm human newborns is associated with enhancement of pathogen-specific mononuclear 

cell PRR expression in the setting of Gram-positive bacteremia (TLR2, MyD88) and Gram-

negative bacteremia (TLR4, MD-2, and MyD88) (34). A novel newborn murine model of 

intravenous infection with S. epidermidis in the first 24 hours of life confirms selective 

TLR2 up-regulation in liver mRNA (35). These observations suggest that the neonatal innate 

immune system can remember previous activation such that responses to subsequent 

microbial challenge are altered.

Further evidence that early life trained immunity could be clinically relevant in vivo is 

provided by a recent study indicating that histologic chorioamnionitis, known to be 

associated with increased TLR expression in the chorioamniotic membranes (36), is 

associated with a reduced risk of late-onset bacterial sepsis, including a lower risk of S. 

epidermidis bacteremia (37). Along these lines, among the smallest, most premature infants, 

early onset sepsis (EOS; i.e., that within the first 72 hours of life), is associated with a 

diminished risk of late onset sepsis (LOS; i.e., that occurring after 72 hours of life) (38). As 

EOS and LOS can be caused by distinct bacteria, this clinical observation raises the 

possibility that innate immune engagement during EOS enhances innate immune responses 

such that the risk of LOS is diminished.

Immunization of human newborns may also trigger trained immunity. A key approach to 

boost vaccine immunogenicity in functionally immunocompromised individuals, such as the 

very young and the elderly, is the addition of adjuvants. The self-adjuvanted BCG vaccine, 

live attenuated Mycobacterium bovis, activates multiple TLRs and NOD2, triggers trained 

immunity (27, 39) and is associated with reduced all cause mortality, largely due to 

infections other than tuberculosis, in the first month of life (40).

Implications

Basic research/immunology

In this review we have raised the question of whether the current dogma that innate 

immunity lacks memory characteristics can still be supported. We have provided an 

overview of a growing body of literature that strongly suggests that innate immune 

Levy and Netea Page 4

Pediatr Res. Author manuscript; available in PMC 2014 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responses have adaptive characteristics. This emerging concept of mechanisms that enable 

innate immune memory through trained immunity has several crucial implications. Firstly, 

the discovery of trained immunity broadens the perspective through which we understand 

host defense to infection. While immune memory has been considered until now as 

exclusively mediated by specific T/B-cell responses, the theory of trained immunity posits 

that that innate immune responses can adapt as well, strengthening, for example, broad NK-, 

monocyte- and macrophage-based defense in response to prior infection.

Of note, classical immune memory and trained immunity also differ in fundamental ways. 

One crucial aspect is that of molecular mechanisms employed: somatic rearrangement vs. 

epigenetic reprogramming, as detailed above. Another key aspect concerns the specificity of 

trained immunity. While some studies in invertebrates show specificity in protection against 

certain pathogens or rejection during transplantation models, most studies in plants and 

insects reveal heterologous (“non-specific”) effects in which the initial infection protects 

against a larger array of secondary infections. The protection observed during trained 

immunity in mammals also suggests that immunological memory of innate immune 

responses is broad and not limited to a single category of pathogens, and is thus 

fundamentally different from the classical adaptive immunological memory. It is tempting to 

speculate that in mammals the specificity of trained immunity was lost in evolution, as its 

biological relevance diminished, when adaptive immunity conferred the specificity needed 

during reinfection. The description of adaptive responses within innate immunity will likely 

lead to important novel insights in the mechanisms of immunomodulation on the one hand, 

and in defining novel (and more effective) vaccination strategies on the other hand.

Translational studies

Trained immunity has important implications for development of novel therapeutic 

modalities:

i. “Stand alone” immunomodulators. Molecules that activate the innate immune system via 

engagement of PRRs can enhance host defense against a range of microbes. Future studies 

will likely assess the potential of stand-alone PRR agonists, such as TLRAs, to boost host 

defense against a range of pathogens. For example, pre-treatment with TLRAs can enhance 

defense against polymicrobial sepsis in newborn mice (33). Of note, imiquimod, a TLR7A 

that activates interferon-α secretion from plasmacytoid dendritic cells (pDCs) is FDA-

approved as a topical antiviral against human papilloma virus (warts) and has also been 

studied off-label for treatment of mulluscipox (41). A rapidly growing number of novel 

TLRAs have been identified and their activity differs with age (42) such that trained 

immunity effects may be age-specific. The recent recognition of trained immunity may 

inform future studies of TLRAs to boost host defense in vulnerable populations and 

potentially also reduce the risks of allergy and asthma, for example via balancing Th2/Th1 

polarization in accordance with the hygiene hypothesis (43).

ii. Heterologous effects of currently administered vaccines. Vaccines vary in their ability to 

engage the innate immune system. For example, Alum, the most commonly used vaccine 

adjuvant, may exert its adjuvant activity via a range of mechanisms, including activation of 

the inflammasome and release of danger-associated molecular pattern molecules (44,45). Of 
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note, a birth dose of Alum-adjuvanted pneumococcal conjugate vaccine was associated with 

subsequent Th2-polarization of TLRA-induced mononuclear cell cytokine responses in vitro 

(46), suggesting that Alum adjuvant may trigger long-term (i.e., at least several months-

long) Th2-polarized immunity. While Th2 responses may be triggered in a distinct manner 

from the aforementioned NK-/monocyte-based trained immunity, they do suggest 

polarization of antigen-presenting cell function through imprinting, likely reflecting 

epigenetic modulation similar to that contributing to trained immunity. Several studies 

suggest that BCG may alter responses to other immunizations. For example, as compared to 

infants who did not receive BCG, BCG-immunized infants have demonstrated higher 

concentrations of anti-pneumococcal polysaccharide IgGs (significantly so for serotype 9V 

and 18C) and of anti-Haemophilus influenzae type b IgG and anti-tetanus toxoid IgG (47). 

In contrast, titers of anti-HBs IgG were lower in the BCG-immunized group than the non-

BCG-immunized group.

iii. Development of novel adjuvanted vaccine formulations. Beneficial heterologous effects 

have been described for live vaccines such as BCG and measles virus vaccine (48). In this 

context, future vaccine development and clinical trials should take into account not only 

pathogen-specific immunity, but possibly heterologous immunomodulatory effects, some of 

which may be mediated by trained immunity. Ideally, novel vaccine formulations may be 

developed that not only induce pathogen-specific immunity but also have heterologous 

innate immune-enhancing effects that may reduce the risk of other unrelated infections 

and/or reduce the risk of allergy and atopy (43).

In conclusion, innate immunity expresses a memory function that underlies broad 

heterologous immunity to antigenically diverse pathogens. Mechanisms underlying trained 

immunity include epigenetic reprogramming of monocytes and macrophages, and possible 

NK-cells. Much remains to learned about both the immunologic mechanisms underlying 

trained immunity and the potential of innate immune memory to elicit broad beneficial 

effects from select “stand alone” immune response modifiers to novel adjuvanted vaccine 

formulations.
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Table 1

Studies demonstrating the presence of memory characteristics of innate immunity in plants, invertebrates and 

mammals

Organism Infection type Biological effect Specificity Mechanism

Plants – “systemic acquired resistance”

Plants (refs. 49-53) Viruses, bacteria, fungi Protection against reinfection Variable Salicylic acid Epigenetic mechanisms

Non-vertebrates - Insects

Beetle (ref.8) LPS, or bacterial 
prechallenge

Protection against reinfection - Transgenerational priming

Drosophila (ref.54) S. pneumonia
B. bassiana
S. marcescens

Protection + Serine protease CG33462

Anopheles gambiae (ref.55) Midgut flora Protection against Plasmodium + Toll-dependent haematocyte-differentiation factor

Mammals “trained immunity”

Mice (refs. 28,29,31) C. albicans BCG Protection against candidiasis - Monocyte epigenetic reprogramming

Mice (ref.16, 20) Murine CMV
Hypersensitization

NK-dependent + Ly49+ NK cells
Hepatic CXCR6+

NK cells

Humans (ref.27) BCG vaccination Protection against non-related 
infections

- Monocyte reprogramming
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