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Basic and applied research are increasingly adopting transcranial electrical stimulation
(tES) for modulating perceptual, cognitive, affective, and motor processes. Industry
and defense applications of tES hold potential for accelerating training and knowledge
acquisition and sustaining work-related performance in the face of fatigue, workload,
and stress. This mini-review article describes the promises and perils of tES, and
reviews research testing its influence on two broad applied areas: sustaining and
dividing attention, and operating in virtual environments. Also included is a discussion
of challenges related to viable mechanistic explanations for tES effectiveness, attempts
at replication and consideration of null results, and the potential importance of
individual differences in predicting tES influences on human performance. Finally, future
research directions are proposed to address these challenges and help develop a fuller
understanding of tES viability for enhancing real-world performance.

Keywords: neuroergonomics, transcranial electrical stimulation, vigilance, multitasking, driving, navigation, virtual
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INTRODUCTION

Transcranial electrical stimulation (tES) involves administering low intensity electrical current
to superficial cortical regions by way of two or more electrodes mounted on the surface of the
scalp (Nitsche et al., 2008; Silva et al., 2008; Woods et al., 2016). Electrical current propagates
through the scalp, skull, and dura mater and into cortical tissue; experiments with animals
and modeling efforts demonstrate that tES can produce subthreshold depolarization of cortical
pyramidal and glial cells (Ruohonen and Karhu, 2012; Molaee-Ardekani et al., 2013; Rahman et al.,
2013). This is only one of many putative explanations for tES effects on human performance,
the mechanisms of which remain somewhat elusive (Bestmann et al., 2015). It is generally
accepted that tES modulates neuronal and neurotransmitter activity, underlying its effects on
perceptual, cognitive, affective and motor processes seen in clinical, rehabilitation, educational,
and recreational contexts. There are several methods for administering tES in the laboratory, with
multiple methodological parameters demonstrated to independently and/or interactively influence
the specificity, directionality, robustness and reliability of tES effects on human performance
(Paulus, 2011; Reed and Cohen Kadosh, 2018; Yavari et al., 2018). This is a large and complex
parameter space that deserves considerable attention from the scientific communities and is
an important hurdle to overcome before tES can be applied reliably, selectively, and safely in
real-world contexts.
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This complexity has been compounded by a recent
commercialization of tES for applications outside of the
laboratory (Wurzman et al., 2016). It is important to note that
most consumer-grade tES devices are not regulated by the
United States Food and Drug Administration (FDA), are not
considered low risk (FDA, 2016), and should be viewed with
skepticism. Technological advances have, however, opened
the door for neuroergonomics research to pursue tES research
outside of the laboratory, which will benefit from the theories,
tools, and techniques developed in the lab. Understanding
the circumstances under which tES reliably alters human
performance will help define and prioritize the real-world
contexts and tasks that may prove suitable for tES application.
The present review considers two broad areas that may prove
fruitful for translational tES research: sustaining and dividing
attention, and operating in virtual environments (Table 1).

tES AND APPLIED TASKS

Most tES research concerned with human performance focuses
on modulating cognitive control processes by stimulating
the dorsolateral prefrontal cortex (DLPFC; Brunoni and
Vanderhasselt, 2014). The DLPFC supports a range of processes
involved in controlling top-down control of complex voluntary
actions, including solving complex tasks, inhibiting habitual
responding, and correcting errors (MacDonald et al., 2000;
Koechlin and Summerfield, 2007). Traditionally, DLPFC is
targeted using bipolar electrode montages (i.e., one anode
and one cathode). Complementing this work, researchers have
begun to use multi-electrode montages arranged to target
additional brain regions guided by finite element modeling,
such as the hippocampus (Nikolin et al., 2015; Brunyé et al.,
2018a), resting state motor network (Fischer et al., 2017),

temporoparietal junction (Slaby et al., 2015), and inferior
frontal cortex (Hussey et al., 2015; Hogeveen et al., 2016).
Beyond adjusting the spatial properties of montages, recent work
has also examined the temporal parameters of tES, including
modifying dose (i.e., multiple days; longer administration times;
Iyer et al., 2005; Reis et al., 2009; Hill et al., 2016), delivery
time (i.e., online vs. offline stimulation; Pirulli et al., 2013),
and frequency or phase properties (i.e., transcranial random
noise stimulation, or tRNS; transcranial alternating current
stimulation, or tACS; Filmer et al., 2014; Santarnecchi et al.,
2015). This methodological variability is pervasive across basic
and applied domains.

Sustaining and Dividing Attention
Sustained attention, or vigilance, involves maintaining alertness
and focus to goal-related but infrequent stimuli over extended
periods of time (Davies and Parasuraman, 1982). Example
work-related tasks include airport luggage screening, air traffic
control, military checkpoints and image analysis, industrial
quality control, driving, andmanymedical tasks such as histology
screening (Warm et al., 2008). In these cases, operators are
trained to maintain attentiveness to ensure the detection of
rare but valuable targets. Studies have shown that vigilance
declines as the time on task increases, as reflected by a
decrease in target detections and increase in reaction times
(Mackworth, 1948; Helton et al., 2007; Warm and Parasuraman,
2009). Functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) have consistently revealed
that sustaining attention recruits a network of brain regions
including lateral prefrontal cortices, parietal lobes, and the
temporoparietal region (Pardo et al., 1991; Coull et al.,
1998; Breckel et al., 2011), making vigilance tasks an ideal
target for tES.

TABLE 1 | Overview of primary brain regions implicated in applied tasks, and existing research examining transcranial electrical stimulation (tES) effects on each applied
task category.

Applied task Brain regions implicated Existing tES research

Sustained attention Lateral prefrontal cortices
Parietal lobes
Temporoparietal region

McIntire et al. (2014), Nelson et al. (2014), Mauri et al. (2015),
Kasten et al. (2016) and Loffler et al. (2018)

Threat detection and identification Lateral PFC
Anterior cingulate cortex
Amygdala

Clark et al. (2012) and McKinley et al. (2013)

Divided attention, multitasking Dorsolateral PFC
Intraparietal sulcus
Posterior lateral PFC
Cerebellum

Filmer et al. (2013a,b), Nelson et al. (2016), Hsu et al. (2017)
and Hsu et al. (2018)

Navigation and wayfinding Medial and right inferior parietal cortex
Posterior cingulate cortex
Left PFC
Medial temporal region
Parahippocampal gyrus
Hippocampus
Retrosplenial complex

Brunyé et al. (2014, 2018a) and Hampstead et al. (2014)

Vehicle driving Dorsolateral PFC
Pre-supplementary motor area
Superior parietal cortex
Lateral occipital cortex
Cerebellum

Beeli et al. (2008a,b) and Sakai et al. (2014)
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Several studies have examined the link between prefrontal
tES and vigilance task performance. First, Nelson et al. (2014)
examined whether tDCS targeting the left DLPFC with anodal
stimulation (relative to cathodal stimulation over the same
region) would influence performance on a simulated air traffic
control task. Anodal stimulation caused an increase in hit
rates and decrease in false alarm rates relative to the cathodal
and sham conditions, and this effect persisted throughout the
40-min task. Thus, there was some evidence that anodal tDCS
targeting the left DLPFC can reduce some of the typical vigilance
decrements seen in hit and false alarm rates, but not reaction
times. In a second study, McIntire et al. (2014) examined
whether anodal tDCS over the left DLPFC (with an extra-cephalic
cathode) would mitigate sleep-deprivation induced vigilance
decrements. They found that tDCS (vs. sham) induced sustained
performance on two vigilance tasks (a psychomotor vigilance
task and the Mackworth clock task), in the form of accuracy
and response times. Using tACS, studies are equivocal: one
showed no reliable effect of alpha-band tACS targeting posterior
brain areas on visual vigilance performance (Kasten et al.,
2016), and another showed a reduced vigilance decrement with
gamma-band tACS over the visual cortex (Loffler et al., 2018).
Using tRNS, one study showed that tRNS reduced reaction times
during sustained vigilance on a continuous performance task
(Mauri et al., 2015).

Some vigilance tasks involve highly specialized knowledge,
such as with medical imaging, airport luggage screening, and
monitoring radar systems for emergent threats (Lesgold et al.,
1988; Patel et al., 2005; Ericsson et al., 2006). Some research
has assessed whether tES may hold value for accelerating the
acquisition of knowledge and skills required to successfully
perform threat detection and identification tasks (Parasuraman
and McKinley, 2014). Clark et al. (2012) administered anodal
tDCS to the right inferior frontal cortex or right parietal cortex,
and assessed the rate and amount of learning in a concealed
object learning task. They found that both tDCS montages
produced robust and reliable increases in accuracy, reflecting
accelerated learning of the vigilance and threat detection task.
A second study found similar results with anodal tDCS targeting
the ventrolateral PFC, with increased performance on a learning
task involving threat detection (object recognition; McKinley
et al., 2013). Thus, there is some evidence that anodal tDCS
targeting the PFC can reduce the typical vigilance decrements
seen with extended time on task, and accelerate the learning
of critical cues that are important for detecting threats during
vigilance tasks.

Just as sustaining attention underlies a wide range of
outcomes, dividing attention, or multitasking is a common
demand imposed by several real-world tasks. Decades of
research have demonstrated considerable costs to accuracy
and response times when operators attempt to multitask, and
these decrements are typically attributed to central interference
imposed by competing tasks and responses (sometimes referred
to as a central bottleneck; Pashler, 1994; Marois and Ivanoff,
2005). The posterior lateral PFC (pLPFC) has been identified
as playing a critical role in the stimulus-response mappings
that underlie effective dual-tasking components of multitasking

(Jiang and Kanwisher, 2003; Dux et al., 2006, 2009). A few
studies have examined whether tES targeting the left pLPFC
would modulate multitasking performance, and results are
equivocal. One study examined whether anodal or cathodal
stimulation of the left pLPFC would modulate reaction
times on simultaneous auditory and visual tasks (Filmer
et al., 2013a). Cathodal tDCS reduced typical multitasking
costs relative to anodal or sham stimulation, suggesting that
cathodal stimulation may reduce neural noise and increase
the signal to noise ratio in the pLPFC (Dockery et al.,
2009; Miniussi et al., 2013). In a second study, the same
research group demonstrated that anodal and cathodal tDCS
targeting the left pLPFC reduced the typical performance
advantages seen with multitasking training (Filmer et al., 2013b).
Thus, there is evidence that cathodal pLPFC stimulation may
improve multitasking performance, but that anodal or cathodal
stimulation of the same region may interfere with multitasking
training effectiveness. In both cases, the authors point to a
critical causal role of this brain region for stimulus-response
mapping, though the discrepant findings remain unresolved
(Nikolin et al., 2019).

In a final study, Nelson et al. (2016) targeted the left
DLPFC with anodal tDCS and found increased multitasking
throughput capacity relative to sham stimulation. It is possible
that a relatively domain-general increase in attentional
control via DLPFC stimulation can induce enhancements
on multitasking tasks, without specifically targeting the
pLPFC (Strobach and Antonenko, 2017). This possibility is
supported by studies demonstrating enhanced dual-tasking
performance with tDCS targeting the inferior frontal (Strobach
et al., 2015) and dorsolateral prefrontal cortices (Zhou
et al., 2014). There is also evidence that tACS targeting
theta oscillations in the PFC can induce multitasking
improvements (Hsu et al., 2017, 2018). No research has
directly examined the effects of tRNS on multitasking
performance, though some suggest limited utility of tRNS
for altering aspects of executive function reliant on the PFC
(Mulquiney et al., 2011).

Operating in Virtual Environments
Virtual reality tools are becoming increasingly integrated into
applied psychology paradigms to create immersive, lifelike
scenarios that mimic the demands encountered outside of the
lab. While combining neurostimulation and virtual reality holds
potential for several applied domains (Teo et al., 2016), two
specific examples are navigation and driving.

Navigating between waypoints in large-scale environments
relies on a collection of cognitive processes, including spatial
attention, perception, mental rotation, visualization, and
working memory (Byrne et al., 2007). This diversity of
processing demands is matched by a highly distributed
network of brain regions (Vogt et al., 1992; Brotchie et al.,
1995; Xu and Chun, 2006; Burgess, 2008; Harvey et al., 2012;
Wiener et al., 2016; Boccia et al., 2017), each of which presents
targeting opportunities for tES (Brunyé, 2018). In one study,
researchers targeted the right medial temporal lobe with a
multi-electrode tDCS montage and demonstrated no main effect
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of anodal stimulation on the ability to efficiently navigate a
virtual environment (Brunyé et al., 2014); they did, however,
find some evidence that it benefitted individuals with relatively
low spatial sense of direction. In a second virtual navigation
study, researchers used finite element modeling to inform
electrode positions targeting the right hippocampus and
parahippocampus with anodal tDCS, and found no significant
influence on a virtual navigation task involving spatial encoding
andmemory retrieval (Brunyé et al., 2018a). Continuing research
may benefit from leveraging functional connectivity between
cortical and subcortical regions, targeting cortical targets to
indirectly modulate brain activity in medial brain regions
(Hampstead et al., 2014; Brunyé, 2018), and possibly extending
research to tACS and tRNS.

Like spatial navigation, vehicle driving engages a multitude
of perceptual and cognitive processes, resulting in effectively
processing driving-related information and translating that into
effective and safe control strategies. One brain region frequently
implicated in this task is the right and left DLPFC: studies
demonstrate activity in the right DLPFC in a vehicle-following
task requiring the maintenance of a specific lead distance, left
DLPFC activity in a rural driving simulation, and right DLPFC
activity when attending to traffic rules during driving (Spiers and
Maguire, 2007; Just et al., 2008; Uchiyama et al., 2012). Still others
find no evidence of DLPFC activity during simulated or actual
vehicle driving tasks (Calhoun et al., 2002; Horikawa et al., 2005;
Jeong et al., 2006).

To our knowledge, only three published studies to date
have examined tES influences on driver behavior, all using
tDCS (no tACS or tRNS). In the first, Beeli et al. (2008a)
administered anodal or cathodal tDCS over the left or
right DLPFC during simulated driving, and found that both
anodal stimulation conditions caused a reduction of risky
driving behavior (increased following distance, reduced speed).
Another study replicated these findings and demonstrated
that speed violations and revolutions per minute were also
reduced during a simulated driving scenario with anodal
tDCS over left or right DLPFC relative to sham (Beeli
et al., 2008b). Finally, Sakai et al. (2014) administered anodal
or cathodal stimulation over the right or left DLPFC, and
found that right anodal improved following distances and
lane-keeping performance relative to sham or left anodal
stimulation. Thus, there is some evidence that variations of
DLPFC stimulation can enhance certain safety-related aspects
of driving.

tES CHALLENGES FOR APPLICATION

We point to three primary challenges in considering tES
for application to applied contexts and tasks. First, safe
and effective tES administration relies on a highly complex
and underspecified parameter space (Soekadar et al., 2016).
These include variation in targeted brain regions, electrode
positioning and sizing, stimulation intensity, timing and
duration, and the polarity (anodal, cathodal) of tDCS and
frequency of tACS. Furthermore, challenges associated with the
state-dependence of the cortex and differential responsiveness

to tES (Dockery et al., 2009; Bikson et al., 2013; Antal
et al., 2014) may prove especially important for real-world
applications. Specifically, the complexity of endogenous neural
activations during real-world tasks may modulate tES effects on
behavior in unknown ways. These parameters are complicated
by the complexity of current propagation through tissue
and varied neuronal morphology, the non-linear excitability
gradients of tES, varied device quality and reliability, and
the potential for participants to detect differences between
active and sham conditions. These challenges warrant caution
among practitioners who seek to apply tES in contexts
outside of the laboratory where they may realize reduced
control over these factors. This is especially relevant given
the heightened interest in extending applied cognitive tasks
to immersive, ambulatory virtual environments, particularly
in rehabilitation contexts (Rothwell, 2012; Viana et al., 2014;
Massetti et al., 2017).

Second, recent research has suggested that individual
differences in brain morphology, knowledge, skills and abilities
play a role in predicting tES impacts. As noted previously,
spatial skills predicted whether tDCS influenced navigation
performance (Brunyé et al., 2014); it could be the case that
those with high spatial skills have relatively optimized neural
network dynamics during complex spatial tasks, and tES can
interfere with those relatively refined activity patterns. Similar
influences of individual differences in predicting tES influences
have been found in several recent studies: high creative potential
is linked to increased breadth of semantic associations with left
frontopolar tDCS (Brunyé et al., 2015), workingmemory capacity
and educational level are linked to increased neural activity
and cognitive function with left DLPFC tDCS (Berryhill and
Jones, 2012; Jones et al., 2015), and trait mathematics anxiety
is linked to whether left DLPFC tDCS improves arithmetic task
performance (Sarkar et al., 2014). Continuing research will likely
find additional predictive value in trait-based measures, and
the field will continue to benefit from neuroimaging in at least
three ways: individualized targeting of brain regions (Bikson
et al., 2012), closed-loop stimulation triggering using structural
and functional brain imaging (McKendrick et al., 2015), and
improved mechanistic understandings of tES effects at the level
of neurons, neural networks, and behavior (Filmer et al., 2014;
Soekadar et al., 2016).

Third, at least partially due to the complex parameter
space of tES and individual variability in the robustness
and directionality of behavioral responses, it is important to
consider studies demonstrating null and negative effects of tES.
Recent meta-analyses are equivocal in determining whether tES
induce reliable effects on perceptual and cognitive processes
in healthy adults (Jacobson et al., 2012; Chhatbar and Feng,
2015; Horvath et al., 2015a,b). Furthermore, some studies have
found unexpected negative results of tDCS targeting the DLPFC,
suggesting that tES is not a one-size-fits-all solution for all
individuals, contexts, and tasks (Zwissler et al., 2014; Crivelli
and Balconi, 2017; Brunyé et al., 2018b). Moving forward,
we argue for the use of more rigorous and reproducible
methods in tES research, especially when it comes to less
standardized applied tasks and outcome measures. This may
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include establishing required sample sizes, procedures, predicted
effect sizes, and analysis approaches in advance (e.g., through
preregistered reports). Furthermore, while tDCS is increasingly
used in relatively applied contexts, research using tACS and tRNS
in applied domains is largely limited to areas such as motor
learning (Nitsche et al., 2003) and procedural skill acquisition
(Tecchio et al., 2010).

CONCLUSION

tESmay prove valuable formodulating applied task performance,
though research in this area warrants careful consideration
of several individual-, context-, and task-related factors that
may predict the robustness and directionality of tES effects.
Whereas most applied research with tES has administered tDCS,
tACS and tRNS have also shown potential to modulate cortical
activity and behavior. Even in highly applied and dynamic tasks,
such as navigation and driving, tES appears to carry some

performance benefits. This is compelling because as tES is slowly
incorporated into highly complex real-world environments and
tasks, there is potential that its robustness and reliability may
diminish relative to results found in controlled laboratory
and simulation environments. Continuing research will benefit
from transitioning tES out of the laboratory and simulation
environment and examining such a possibility.
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