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Abstract

Motivation: Kinetic models contain unknown parameters that are estimated by optimizing the fit to

experimental data. This task can be computationally challenging due to the presence of local op-

tima and ill-conditioning. While a variety of optimization methods have been suggested to sur-

mount these issues, it is difficult to choose the best one for a given problem a priori. A systematic

comparison of parameter estimation methods for problems with tens to hundreds of optimization

variables is currently missing, and smaller studies provided contradictory findings.

Results: We use a collection of benchmarks to evaluate the performance of two families of opti-

mization methods: (i) multi-starts of deterministic local searches and (ii) stochastic global optimiza-

tion metaheuristics; the latter may be combined with deterministic local searches, leading to hybrid

methods. A fair comparison is ensured through a collaborative evaluation and a consideration of

multiple performance metrics. We discuss possible evaluation criteria to assess the trade-off be-

tween computational efficiency and robustness. Our results show that, thanks to recent advances

in the calculation of parametric sensitivities, a multi-start of gradient-based local methods is often a

successful strategy, but a better performance can be obtained with a hybrid metaheuristic. The

best performer combines a global scatter search metaheuristic with an interior point local method,

provided with gradients estimated with adjoint-based sensitivities. We provide an implementation

of this method to render it available to the scientific community.

Availability and implementation: The code to reproduce the results is provided as Supplementary

Material and is available at Zenodo https://doi.org/10.5281/zenodo.1304034.

Contact: jan.hasenauer@helmholtz-muenchen.de or julio@iim.csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mechanistic kinetic models provide a basis to answering biological

questions via mathematical analysis. Dynamical systems theory can

be used to interrogate these kinetic models, enabling a more system-

atic analysis, explanation and understanding of complex biochem-

ical pathways. Ultimately, the goal is the model-based prediction of

cellular functions under new experimental conditions (Almquist

et al., 2014; Kyriakopoulos et al., 2018; Link et al., 2014; van Riel,

2006). During the last decade, many efforts have been devoted to

developing increasingly detailed and, therefore, larger systems biol-

ogy models (Karr et al., 2012; Smallbone and Mendes, 2013;

Srinivasan et al., 2015). Such models are often formulated as
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nonlinear ordinary differential equations (ODEs) with unknown

parameters. As it is impossible to measure all parameters directly,

parameter estimation (i.e. model calibration) is crucial for the devel-

opment of quantitative models. The unknown parameters are typic-

ally estimated by solving a mathematical optimization problem

which minimizes the mismatch between model predictions and

measured data (Ashyraliyev et al., 2009; Banga and Balsa-Canto,

2008; Jaqaman and Danuser, 2006; Raue et al., 2013).

Parameter estimation for dynamical systems is an inverse prob-

lem (Villaverde and Banga, 2013) that exhibits many possible chal-

lenges and pitfalls, mostly associated with ill-conditioning and non-

convexity (Schittkowski, 2013). These properties, which are in

general only known a posteriori, influence the performance of opti-

mization methods. Even if we restrict our attention to a specific class

of problems within the same field (e.g. parameter estimation in

systems biology), there are often large differences in performance be-

tween different applications (Kreutz, 2016). Hence, methods need to

be benchmarked for a representative collection of problems of inter-

est in order to reach meaningful conclusions. In this study, we con-

sider the class of medium to large scale kinetic models. These

models pose several challenges, such as computational complexity,

and an assessment of the performance of optimization methods is

particularly important (Babtie and Stumpf, 2017; Degasperi et al.,

2017; Villaverde et al., 2015).

The calibration of large-scale kinetic models usually requires the

optimization of a multi-modal objective function (Chen et al., 2010;

Ljung and Chen, 2013; Moles et al., 2003), i.e. there will be several

local optima. Local optimization methods, such as Levenberg-

Marquardt or Gauss-Newton (Schittkowski, 2013), which converge

to local optima, will only find a global optimum for appropriate

starting points. Convergence to a suboptimal solution is an estima-

tion artifact that can lead to wrong conclusions: we might think that

the mechanism considered is not suitable to explain the data, while

the real reason might be that the method failed to locate the global

optimum (Chachuat et al., 2006). In order to avoid suboptimal solu-

tions, many studies have recommended the use of global optimiza-

tion techniques (Ashyraliyev et al., 2009; Banga and Balsa-Canto,

2008; Chen et al., 2010; Mendes and Kell, 1998). One of the earliest

and simplest global optimization methods is the multi-start, which

consists of launching many local searches from different initial

points in parameter space, assuming that one of them will be inside

the basin of attraction of the global solution. It has been shown that

multi-starts of local optimization methods can be sufficient for suc-

cessful parameter estimation in kinetic models (Fröhlich et al.,

2017b; Raue et al., 2013), although the use of other approaches,

such as metaheuristics, has also been advocated (Gábor and Banga,

2015; Villaverde et al., 2015).

The comparison of global optimization methods was the topic of

several research papers. Interestingly, the evaluation results led to

apparently contradictory conclusions, advocating the use of either

multi-start local optimization (Hross and Hasenauer, 2016; Raue

et al., 2013), or global optimization metaheuristics (Egea et al.,

2009a, 2010; Gábor and Banga, 2015; Moles et al., 2003). These

contradictions cannot be explained by the no-free lunch theorems

for optimization (Wolpert and Macready, 1997), since (i) the prob-

lems analyzed possessed relatively similar characteristics (i.e. the

comparisons did not consider every possible class of problems); and

(ii) they were formulated in continuous search domains, where these

theorems do not hold (Auger and Teytaud, 2010). Hence, we sug-

gest two alternative explanations: (i) the comparisons were carried

out by researchers who had substantially more experience with (the

tuning of) one type of the considered methods, and (ii) the

performance metrics differed and might even have been biased to-

wards particular approaches. To circumvent these issues, we estab-

lished an intensive collaboration between experienced users of

multi-start local optimization (the HZM group) and metaheuristics

(the CSIC group). Through a joint development of performance met-

rics and evaluation procedures we attempted to ensure a fair com-

parison of different approaches.

In this study, we present the results of this collaboration: the

development of a performance metric suited for the comparison

of different methods, and the evaluation of the state-of-the-art in

parameter estimation methodologies. Based on these results we

provide guidelines for their application to large kinetic models in

systems biology. To this end, we use seven previously published

estimation problems to benchmark a number of optimization

methods. The selected problems are representative of the medium

and large scale kinetic models used in systems biology, with sizes

ranging from dozens to hundreds of state variables and parame-

ters (see Table 2 for details). To the best of our knowledge, this

is the first time that a systematic evaluation of parameter estima-

tion methods is conducted on a set of problems of this size and

characteristics. We compare several variants of state-of-the-art

optimization methods which have been recently reported as com-

petitive options for large problems, including multi-start (Raue

et al., 2013) and hybrid metaheuristics (Villaverde et al., 2015).

We perform systematic comparisons between these different

approaches using metrics capturing the performance/robustness

trade-off. Finally, we discuss the implications of our results and

provide guidelines for the successful application of optimization

methods in computational systems biology.

2 Methods and benchmark problems

2.1 Problem definition: parameter optimization for ODE

models describing biological processes
We consider deterministic dynamic systems described by nonlinear

ODEs of the following form:

_x ¼ f ðx; p; tÞ; xðt0Þ ¼ x0ðpÞ;
y ¼ gðx; p; tÞ; (1)

in which x(t) is the vector of state variables at time t, x0 is the vector

of initial conditions, f is the vector field of the ODE, g is the observa-

tion function and p is the vector of unknown constant parameters

with lower and upper bounds pL � p � pU.

Parameter optimization for dynamical systems is a nonlinear dy-

namic optimization problem that aims to find the vector of parameter

values p that minimizes the distance between model simulation and

measured data subject to the dynamics of the system and (potentially)

other possible constraints. The distance is measured by a scalar object-

ive function (or cost function), which can be of several forms. One com-

mon choice is the weighted least squares objective function given by:

Jlsq ¼
Xn�
�¼1

Xn�o
o¼1

Xn�;os

s¼1

w�;o
s

�
ym�;o

s � y�;os ðpÞ
�2

(2)

in which n� is the number of experiments, n�o is the number of

observables per experiment, n�;os is the number of samples per ob-

servable per experiment, ym�;o
s is the measured data, y�;os ðpÞ is the

corresponding simulated output, and w�;o
s are constants that weight

the observables in the objective function according to their magni-

tudes and/or the confidence in the measurements.

Another common choice for the objective function is the log-

likelihood. Assuming independent, normally distributed additive
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measurement noise with standard deviation r�;os , the likelihood of

observing the data D given the parameters p is:

PðDjpÞ ¼
Yn�
�¼1

Yn�o
o¼1

Yn�;os

s¼1

1ffiffiffiffiffiffi
2p
p

r�;os

exp �1

2

ym�;o
s � y�;os ðpÞ

r�;os

� �2
 !

(3)

Maximizing (3) is equivalent to minimizing the negative log-

likelihood function:

Jnll ¼
1

2

Xn�
�¼1

Xn�o
o¼1

Xn�;os

s¼1

log
�

2pðr�;os Þ
2
�
þ ym�;o

s � y�;os ðpÞ
r�;os

� �2
" #

(4)

If the standard deviations r�;os are known, Jlsq and Jnll possess the

same optimal parameters. Furthermore, for w�;o
s ¼ 1=ðr�;os Þ

2, the log-

likelihood and least squares functions are related by

Jnll ¼
1

2
Jlsq þ

1

2

Xn�
�¼1

Xn�o
o¼1

Xn�;os

s¼1

log
�

2pðr�;os Þ
2
�

(5)

We remark that a good agreement of model output and data does

not imply that the parameter estimates are correct or reliable.

Practical and structural non-identifiabilities can prevent a parameter

from being precisely determined (DiStefano Iii, 2015). Still, an ac-

curate fit—and hence optimization—is the starting point for many

uncertainty analysis methods. State-of-the-art identifiability analysis

methods have been recently evaluated elsewhere (Chiş et al., 2011;

Ligon et al., 2017; Raue et al., 2014; Miao et al., 2011; Villaverde

and Barreiro, 2016).

2.2 Overview of optimization methods
The ideal optimization method for the above class of problems

would be able to find the global optimum with guarantees and in a

short computation time. Furthermore, it should scale well with

problem size and be able to handle arbitrary non-linearities.

Currently, no such method exists.

Local gradient-based methods (Schittkowski, 2013) can be

efficient but will converge to the local optimum in the basin of at-

traction where they are initialized. Local gradient-free (also called

zero-order) methods, such as pattern search (Wright, 1996), are less

efficient than gradient-based methods but more robust with respect

to situations where the gradient is unavailable or unreliable (Conn

et al., 2009).

Global methods aim to locate the global solution by means of ei-

ther deterministic (Esposito and Floudas, 2000) or stochastic

(Zhigljavsky and Zilinskas, 2007) strategies. Deterministic methods

include so-called complete and rigorous approaches, both of which

can ensure convergence to the global solution under certain circum-

stances. In contrast, stochastic (also known as probabilistic) meth-

ods can only guarantee global optimality asymptotically in the best

case (Neumaier, 2004), but can solve many problems that cannot be

Table 1. Classification of the hybrid optimization methods considered in the benchmarking

Global

strategy

Local method & gradient calculation Parameter

scaling

FMINCON-ADJ NL2SOL-FWD DHC None

MS MS-FMINCON-ADJ-LOG MS-NL2SOL-FWD-LOG MS-DHC-LOG – LOG

MS-FMINCON-ADJ-LIN MS-NL2SOL-FWD-LIN MS-DHC-LIN – LIN

eSS eSS-FMINCON-ADJ-LOG eSS-NL2SOL-FWD-LOG eSS-DHC-LOG eSS-NOLOC-LOG LOG

eSS-FMINCON-ADJ-LIN eSS-NL2SOL-FWD-LIN eSS-DHC-LIN eSS-NOLOC-LIN LIN

Notes: These methods result from the combination of two global strategies with three local methods and two types of scaling for the search space.

Additionally, we tested a global metaheuristics optimization method, Particle Swarm Optimization (PSO) both in logarithmic and linear scale (PSO-LOG, PSO-

LIN). The abbreviations are defined in Sections 2.3 and 2.4.

A B C

Fig. 1. Illustration of performance criteria. (A) Convergence curves for three different methods. Shaded areas show the range of all runs, while solid lines repre-

sent their median. The dashed horizontal line is the value to reach (VTR), that is the maximum objective function value that can be considered a successful result.

The dashed vertical line is the maximum time allowed (MAXT). (B) Dispersion plot of objective value after the maximum time allowed and the derived success

rates (SR). The SR is the area under the curve where objective � VTR. (C) Success rate and computation time. Points indicate individual methods. The Pareto

front is the set of non-dominated methods. Methods to the right or above the Pareto front are dominated by other methods with either shorter computation time

or higher success rate. Filled areas show the average computation time htisucc required to obtain a successful run for the respective method. For algorithms with

a success rate of zero, meaning that no optimization run reached the VTR, 1/success rate is set to infinity

832 A.F.Villaverde et al.



handled using available deterministic methods. Both deterministic

and stochastic global optimization methods have been used to solve

parameter estimation problems in systems biology. The results show

that deterministic methods suffer from lack of scalability (Miró

et al., 2012). The computational cost of purely stochastic methods

(such as simulated annealing, particle swarm optimization, or genet-

ic algorithms) usually scales up better, but the computation times

can still be excessive for problems of realistic size (Mendes and Kell,

1998; Moles et al., 2003).

Hybrid global-local methods attempt to exploit the benefits of

global and local methods. By combining diversification phases (glo-

bal search) and intensification phases (local search), hybrid methods

facilitate reliable global exploration and fast local convergence. As a

result, hybrid methods can potentially outperform the efficiency

(convergence rate) of purely stochastic methods while keeping their

success rate. One such hybrid method is the so called multi-start

(MS) strategy (Zhigljavsky and Zilinskas, 2007), which solves the

problem repeatedly with local methods initialized from different

(e.g. random) initial points. Thus, MS can be regarded as one of the

earliest hybrid strategies, and there are different extensions available

(Hendrix and Tóth, 2010; Zhigljavsky and Zilinskas, 2007). An al-

ternative family of hybrid methods are metaheuristics (i.e. guided

heuristics). An example is the enhanced scatter search (eSS) method

(Egea et al., 2009b), an improvement of the method designed by

Glover et al. (2000). The eSS method combines a global stochastic

search phase with local searches launched at selected times during

the optimization, in order to accelerate convergence to local optima.

Further accelerations can be achieved by parallelization (Penas

et al., 2017; Villaverde et al., 2012).

In all hybrid methods the efficiency of local methods plays a

major role. The most efficient local methods are gradient-based, so

their performance depends crucially on the accuracy of the gradient

calculations (Nocedal and Wright, 1999). The simplest way of

approximating the gradient is by finite differences. However, more

accurate gradients are provided by forward sensitivity analysis

(Raue et al., 2015) and adjoint sensitivity analysis (Fröhlich et al.,

2017b). While the former provides information on individual resid-

uals which can be used in least squares algorithms, the latter is more

scalable.

2.3 Choice of optimization methods for benchmarking
In this study, we consider several competitive hybrid methods based

on the recent results reported by Fröhlich et al. (2017b) and

Villaverde et al. (2015). These methods are summarized in Table 1

and combine two global strategies:

• MS: multi-start local optimization.
• eSS: enhanced scatter search metaheuristic

with three different local methods:

• NL2SOL-FWD: the nonlinear least-squares algorithm NL2SOL,

using forward sensitivity analysis for evaluating the gradients of

the residuals. The use of NL2SOL (Dennis Jr et al., 1981) has re-

cently been advocated for parameter estimation by Gábor and

Banga (2015). Additionally, Raue et al. (2013) showed that

least-squares algorithms with residual sensitivities computed

using forward sensitivity analysis outperform many alternative

approaches.
• FMINCON-ADJ: the interior point algorithm included in

FMINCON (MATLAB and Optimization Toolbox Release

2015a, The MathWorks, Inc., Natick, Massachusetts, United

States), using adjoint sensitivities for evaluating the gradient of

the objective function. This method has been shown to outper-

form the least-squares method using forward sensitivities for

large-scale models (Fröhlich et al., 2017a,b), due to the acceler-

ated gradient evaluation.
• DHC: a gradient-free dynamic hill climbing algorithm. This algo-

rithm has been proposed by De La Maza and Yuret (1994) and

outperformed several alternative approaches in a recent study

(Villaverde et al., 2015). In our experience, this method is com-

petitive when the gradient is numerically difficult to evaluate,

e.g. if objective function values are corrupted by numerical inte-

gration errors.

Furthermore, we consider eSS without any local method (eSS-

NOLOC), and particle swarm optimization (PSO) (Kennedy and

Eberhart, 1995). The considered global strategies and local methods

are a representative subset that covers distinct approaches, which

have been shown in the past to exhibit competitive performances on

a number of problems (Egea et al., 2007; Fröhlich et al., 2017b;

Table 2. Main features of the benchmarks.The model IDs follow the nomenclature in Villaverde et al. (2015) and Fröhlich et al. (2017a)

ID B2 B3 B4 B5 BM1 BM3 TSP

Original ref. Chassagnole

et al. (2002)

Kotte

et al. (2010)

Villaverde

et al. (2014)

MacNamara

et al. (2012)

Smith and

Shanley (2013)

Chen

et al. (2009)

Moles

et al. (2003)

Organism Escherichia coli Escherichia coli Chinese hamster Generic Mouse Human Generic

Description Metabolic Metabolic Metabolic Signaling Signaling Signaling Metabolic

level & transcription

Parameters 116 178 117 86 383 219 36

Upper bounds 10 � pref 10 � pref 10 � pref varying 10 � pref 103 � pref 105 � pref

Lower bounds 0:1 � pref 0:1 � pref 0:1 � pref varying 0:1 � pref 10�3 � pref 10�5 � pref

Dynamic states 18 47 34 26 104 500 8

Observed states 9 47 13 6 12 5 8

Experiments 1 1 1 10 1 4 16

Data points 110 7567 169 960 120 105 2688

Data type Measured Simulated Simulated Simulated Measured Measured Simulated

Noise level Reala No noise Variableb Uniformc Reala Reala r ¼ 10%d

aNoise levels are unknown as real measurement data are used.
bNoise levels differ for readouts.
cNoise level is constant (¼ 0:05); the data values generated by this model are between 0 and 1 by construction.
dNoise levels are proportional to the signal intensity.
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Gábor and Banga, 2015; Penas et al., 2017; Raue et al., 2013;

Rodriguez-Fernandez et al., 2006; Villaverde et al., 2012, 2015).

The local methods are applicable to time-resolved and steady-state

data [see Raue et al. (2013), Rosenblatt et al. (2016), Fröhlich et al.

(2017a) and references therein].

2.4 Choice of scaling for the optimization variables
In addition to the optimization methods, we consider two different

choices for the scaling of the optimization variables:

• LIN: linear scale
• LOG: logarithmic scale

While it is possible to consider the model parameters, p, directly as

optimization variables, several studies suggest that using the loga-

rithms of the model parameters, q ¼ logðpÞ, improves the perform-

ance of local optimization methods (Kreutz, 2016; Raue et al.,

2013). This is implemented as the LOG option, which performs all

parameter searches (both in the global and local phases) in logarith-

mic space, q ¼ log 10ðpÞ. Before every evaluation of the objective

function the variables are back-transformed to p ¼ 10q, thus simu-

lating the original equations.

2.5 Comparison of optimization methods
The performance of optimization methods can be compared using

several evaluation criteria. Ideally, a criterion should be:

1. single, interpretable quantity

2. comparable across models and methods (to enable an integrated

analysis)

3. account for computation time and objective function value

A number of evaluation criteria have been used in the literature

to compare the performance of optimization methods, e.g. disper-

sion plots of objective function value versus computation time and

waterfall plots showing the ordered objective function values found

by the different searches. These and other plots are reported in the

Supplementary Figures S1–S14. Alternative criteria are performance

profiles (Dolan and Moré, 2002) which report for a given set of op-

timization problems how often one algorithm was faster than all

others. The required assumption that all algorithms converge is

relaxed in data profiles (Moré and Wild, 2009) by considering the

decrease in objective function value and reporting the fraction of

solved problems as a function of the budget per variable. While all

these plots are useful tools, they do not provide a single, interpret-

able quantity and fail in other ways.

Upon consideration of a variety of different evaluation criteria,

we decided to adopt a workflow consisting of several steps, which

lead to a newly proposed metric that is a distillation of the informa-

tion obtained in previous steps. The workflow considers the follow-

ing criteria:

1. Convergence curves

2. Fixed-budget scenario and fixed-target scenario

3. Dispersion plots of the success rate versus average computation

time

4. Overall efficiency (OE)

The first step is to evaluate convergence curves, which show the ob-

jective function value as a function of computation time (Fig. 1A).

For eSS and PSO, the convergence curves are constructed from single

searches as they reach the predefined maximum CPU time. For MS

optimization, each convergence curve corresponds to a sequence of

local searches and continues until the predefined maximum CPU

time was reached.

The information encoded in the convergence curves is in the se-

cond step summarized by considering a fixed-budget scenario and a

fixed-target scenario, as proposed by Hansen et al. (2016). In the

fixed-budget scenario, the distribution of the objective function for a

given computation time is considered, meaning that a vertical line is

drawn. In the fixed-target scenario the distribution of time points is

considered at which a desired objective function value or value to

reach (VTR) is reached, meaning that a horizontal line is drawn.

Once an optimization has reached the desired VTR (horizontal

view), it is considered successful. The success rate (SR) of an algo-

rithm is the fraction of searches that reached the VTR within this

maximum computation time, MAXT (Fig. 1B). Complementary, we

evaluate the average computation time required by an algorithm,

hti, which is the minimum of the time required to reach VTR and

MAXT. In the third step, we consider dispersion plots of the success

rate versus average computation time to study the relation of the

two quantities (Fig. 1C). Note that this dispersion plot may reveal in

some cases a Pareto set structure, consisting of algorithms which

provide an optimal trade-off between conflicting goals (in this case,

high success rate and low computation time): it is not possible to im-

prove one of its objectives without worsening the other. We are

interested in methods that are located towards the bottom (i.e. high

success rate) and left (i.e. low computation time) of this plot.

Therefore, in the fourth step, we quantify the trade-off between suc-

cess rate and average computation time using a novel metric called

overall efficiency (OE). The OE for method i on a given problem is

defined as:

OEi ¼
minjfhtisuccj

g
htisucci

(6)

where htisucci
is the average computation time we need to run

method i to obtain one successful run. It is calculated as

htisucci
¼ htii=SRi, where htii and SRi are the average computation

time and the success rate of method i for that problem. The compu-

tation time htisucci
is directly related to the area in the dispersion plot

(Fig. 1C); accordingly, the OE is the ratio of the minimal area and

the area for a given algorithm. The inverse of the overall efficiency,

1=OEi, quantifies how much longer one has to run method i—com-

pared to the best method—in order to find a good solution. The OE

ranges between 0 and 1; for each particular problem the best per-

forming method achieves the maximum score, OE ¼ 1. To evaluate

methods on a set of optimization problems, we compute a method’s

cumulative overall efficiency as the sum of its OEs for the individual

problems. The method with highest cumulative OE will be the one

exhibiting the best trade-off between success rate and computation

time for the set of problems.

In summary, our workflow considers multiple metrics and sum-

marizes the trade-off between computational complexity and success

with the novel performance metric OE. As the OE is interpretable,

comparable between models and methods and accounts for compu-

tation time and final objective function values, it fulfils all the afore-

defined criteria.

2.6 Benchmark problems
In this study, we consider seven benchmark problems based on pre-

viously published kinetic models (Chassagnole et al., 2002; Chen

et al., 2009; Kotte et al., 2010; MacNamara et al., 2012; Moles

et al., 2003; Smith and Shanley, 2013; Villaverde et al., 2014) which

describe metabolic and signalling pathways of different organisms

834 A.F.Villaverde et al.
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(from bacteria to human). These problems possess 36 to 383 param-

eters and 8 to 104 state variables. The data points are collected

under up to 16 experimental conditions, corresponding to the num-

ber of required numerical simulations. The features of all problems

are summarized in Table 2. The benchmarks B2–B5 had been previ-

ously included in the BioPreDyn-bench collection (Villaverde et al.,

2015), and BM1 & BM3 were used in (Fröhlich et al., 2017a).

2.7 Implementation
The benchmark problems have been implemented in MATLAB

(MathWorks, Natick, MA, USA) using the AMICI toolbox

(Fröhlich et al., 2017b), a free MATLAB interface for SUNDIALS

solvers (Hindmarsh et al., 2005). The optimization methods have

been implemented as MATLAB scripts calling solvers from the

MATLAB Optimization Toolbox, the MATLAB Global

Optimization Toolbox and the MEIGO toolbox (Egea et al., 2014),

and making use of the efficient gradient computation provided by

the AMICI toolbox. The code necessary for reproducing the results

reported here is provided as Supplementary Material and is also

available at Zenodo https://doi.org/10.5281/zenodo.1304034.

3 Results and discussion

3.1 Comprehensive evaluation of the considered

optimization methods on the benchmark problems
To assess the performance of the different optimization methods, we

solved the 7 benchmark problems using the 16 optimization meth-

ods listed in Table 1. For each problem, multi-start local optimiza-

tion (MS) used 100 starting points, while enhanced scatter search

(eSS) and particle swarm optimization (PSO) were run 10 times,

each time until the predefined, maximum problem-specific CPU

time (Supplementary Table S1) was reached. The overall computa-

tional effort was �450 CPU days (Intel Xeon E5-2600 2.50GHz

processor).

The convergence curves for all optimization methods on all

problems were evaluated (see Fig. 2A for a representative example

and Supplementary Figs S15–S28 for the complete set). Convergence

curves for MS were plotted by mimicking the scenario in which eSS

and PSO were used: we emulate 10 virtual processors, each of which

performs local searches sequentially for the same time allowed to

the eSS/PSO runs. The local searches in these emulated sequential

optimizations are sampled without replacement from the pool of

100 searches launched in each MS. Thus, the success ratio (SR)

reported for MS methods is the fraction of the 10 virtual processors

that find a solution whose objective function value falls below the

VTR. Note that this SR is not the same as the fraction of successful

searches of the 100 launched in the MS. Numerical values of the

horizontal and vertical views of said curves are provided in the

Supplementary Tables S3–S20, and graphically in Supplementary

Figures S65–S82.

As expected, the optimization results indicate that the perform-

ance of the optimization methods varies substantially among the

benchmark problems. This is in agreement with previous studies

(Kreutz, 2016; Villaverde et al., 2015).

For the quantitative evaluation we performed the analyses for

two MAXTs and nine VTRs per benchmark (see Supplementary

Table S1). We found that the ranking of the methods with respect to

the OE depends only weakly on the MAXTs and the VTRs

(Supplementary Figs S47–S64). For visualization in Figure 2A, B and

D, we use a high MAXT (MAXT A) and a moderate VTR (VTR C)

which ensures a good agreement of model simulation and data.

Results for other choices of VTR including larger and smaller

values are shown in the Supplementary Figures S29–S82 and Tables

S3–S21.

In the following, we present the key findings of our analysis and

address, amongst others, the question of which is the most efficient

method for performing parameter optimization. The detailed evalu-

ation results are presented in the Supplementary Material. In par-

ticular, quantitative values for the performance improvements

mentioned in Sections 3.2–3.4 can be found in Supplementary

Table S21.

3.2 Gradient-based local searches outperform gradient-

free local searches
Our comprehensive evaluation clearly shows that high-quality sensi-

tivity calculation methods provide a competitive advantage to local

methods that exploit them. Optimization using adjoint and forward

sensitivity analysis (FMINCON-ADJ and NL2SOL-FWD) usually

outperform the gradient-free alternative (DHC). This is reflected in

the dispersion plots (see, e.g. Fig. 2B) and in a higher cumulative OE

(Fig. 2C) and holds for MS and eSS settings. The combinations of

eSS with gradient-based methods, eSS-FMINCON-ADJ and eSS-

NL2SOL-FWD, clearly outperform the gradient-free alternatives,

eSS-DHC and eSS-NOLOC, as well as the also gradient-free PSO.

Notably, successful optimization of BM3 for the given computation-

al budget required adjoint sensitivity analysis in combination with

optimization in the log-scale (Fig. 2D).

3.3 Enhanced scatter search outperforms multi-start

local optimization
Our results show that MS is usually sufficient to find a good solu-

tion, given the same computation time as eSS (Fig. 2D). For strict

VTRs (i.e. VTR E and VTR F), MS and eSS perform equally well.

However, eSS were generally more efficient than MS (Fig. 2C). On

average a 2-fold improvement of the OE is observed, almost inde-

pendent of the local method. The reasons for the efficiency improve-

ment is probably that eSS starts the local searches from promising

points found through advanced exploration and recombination

strategies. In this regard, it can be considered as an ‘advanced multi-

start’ (Ugray et al., 2007).

3.4 Optimization in logarithmic scale outperforms

optimization in linear scale
Previous studies reported that the transformation of the optimiza-

tion variable to log-scale improves the reliability and computational

efficiency of local methods (Kreutz, 2016; Raue et al., 2013). Our

findings corroborate these results and show for the first time that

also global optimization methods are more efficient when using log-

scale (LOG) than linear-scale (LIN). Overall, we observe an average

improvement of the cumulative OE at least by a factor of 2

(Fig. 2C). Indeed, for some problems (BM3, TSP), reasonable fits

could only be obtained using the log-transformed parameters

(Fig. 2D).

3.5 Best performing method
The comparison of all methods reveals that eSS-FMINCON-ADJ-

LOG possesses the best overall efficiency on the considered bench-

mark problems and settings, followed by eSS-NL2SOL-FWD-LOG

(Fig. 2C). The difference in performance between both methods is

small; indeed, for certain VTRs, eSS-NL2SOL-FWD-LOG is the

best performer (VTR C, see Supplementary Figs S51 and S52).

However, eSS-FMINCON-ADJ-LOG is the only method that
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successfully solves all problems (Fig. 2D), while eSS-NL2SOL-FWD-

LOG fails for BM3, possibly due to the very large number of states

and parameters of this problem. In summary, our performance

evaluation hence suggests the use of eSS-FMINCON-ADJ-LOG.

Interestingly, our study of the dispersion plots revealed that eSS-

FMINCON-ADJ-LOG often maximizes success rate and minimizes

mean computation time. Accordingly, in these cases there is—in

contrast to what we expected—no trade-off, but we have a clear

winner.

4 Conclusion

In this paper we have presented a comparative evaluation of state-

of-the-art optimization methods for parameter estimation in systems

biology. We have applied these methods to benchmark problems of

different sizes (medium to large) and complexities. To compare the

different methodologies in detail, we have used a multi-criteria

workflow, exploring several possible ways of assessing the perform-

ance of optimization methods for this task. We have reported results

using a number of selected indicators and evaluation tools.

Furthermore, we have introduced the concept of overall efficiency

(OE), which quantifies the trade-off between success rate and com-

putation time, providing a numerical indication of the most efficient

method. We have found that this metric is a convenient summary of

the comparative performance of a method on a set of problems.

A central goal of our work was to re-examine past results regard-

ing the performance of multi-start and metaheuristics (i.e. enhanced

scatter search). Firstly, we have confirmed that multi-start local opti-

mization is a powerful approach (Hross and Hasenauer, 2016; Raue

et al., 2013) as it solved most considered benchmark problems in a

reasonable time. The only exception is B3, a problem for which nu-

merical simulation fails for many parameter points. Secondly, we

verified that the enhanced scatter search metaheuristic often pos-

sesses higher success rates and efficiency compared to plain multi-

start optimization methods (Gábor and Banga, 2015). However, the

difference of a factor of two was smaller than suggested by several

previous studies and will likely depend on the set of benchmark

problems. Furthermore, the average improvement by a factor of two

is smaller than the variability across benchmarks, implying that for

many problems the use of multi-start methods is still beneficial (e.g.

Fig. 2. Results of performance evaluation. (A) Convergence curves of the different methods for benchmark TSP. Results for the remaining benchmarks are

reported in the Supplementary Material. (B) Average computation time of each method versus the inverse of its success rate for benchmark TSP. Methods with

zero success rate are not shown. Results for the remaining benchmarks are reported in the Supplementary Material. (C) Cumulative overall efficiency:

Each method is represented by a stack of the OEs observed for the individual benchmark problems. The maximum possible score is the same as the number of

benchmarks, i.e. seven. (D) Successful methods for each benchmark are shown in color; methods which never succeeded for a given problem are shown in

white. A, B and D use the thresholds VTR C and MAXT A as defined in the Supplementary Table S1. Panel C shows the average OE across all considered VTRs

and MAXTs
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BM3). Thirdly, our results confirm that purely global optimization

strategies (i.e. not combined with a local method), such as PSO and

eSS-NOLOC, are less efficient than hybrid ones. Finally, we have

assessed the influence of parameter transformations, concluding that

optimizations in logarithmic scale clearly outperform those in linear

scale. This parameterization can always be easily adopted, irrespect-

ive of the optimization method used.

We considered two sophisticated gradient-based methods,

FMINCON with adjoint sensitivities and NL2SOL with forward

sensitivities, whose use was mostly beneficial. A gradient-free local

method, DHC, was found to be less precise than the gradient-based

counterparts, although its use may still be advantageous in problems

with numerical issues that limit the efficacy of gradient-based

techniques.

In this study, we assessed the average performance of optimiza-

tion methods for the benchmark problems. Complementary, it

would be interesting to see how the performance of each method

depends on problem characteristics, e.g. problem size. The assess-

ment of this would however require a large number of problems

with different characteristics. Since this is currently not available,

we refrain from attempting a systematic evaluation of this feature.

Overall, the best performing method in our tests was eSS-

FMINCON-ADJ-LOG, that is, a hybrid approach combining the

global metaheuristic eSS with the local method FMINCON, pro-

vided with gradients estimated with adjoint-based sensitivities. This

was the only method that succeeded in calibrating all the bench-

marks and it also achieved the highest overall efficiency for the set

of thresholds adopted in this study. To facilitate the application of

this and other methods, we provide their implementations in the

Supplementary Material. In the case of the best performing method,

our solver is—to the best of our knowledge—the first publicly avail-

able implementation. Accordingly, our study provides access to a

novel optimizer applicable to a broad range of application problems

in systems biology.
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Fröhlich,F. et al. (2017a) Efficient parameterization of large-scale mechanistic

models enables drug response prediction for cancer cell lines. bioRxiv,

174094.
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