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A B S T R A C T

Wastewater contains a variety of compounds qualified as pollutants. These undergo incomplete treatment in
wastewater treatment plants. The objective of this study is to determine the potential impacts on humans and
aquatic environment of 46 organic and inorganic micropollutants using the USE-tox®model. The concentrations
used in this study are obtained by analyzing raw and treated wastewater from the wastewater treatment plant of
the city of Al-Hoceima, Morocco. The total human health impact score is 10− 2, generally varying between 10− 3

and 10− 9. Ba, Hg, Zn and Cd had the highest score with a percentage of 92% of the total score. For the aquatic
environment, impact was estimated for 25 compounds. Pyrene, Anthracene, Benzo(a)Anthracene, Fluoranthene
and PCB-77 were the major contributors with an impact ranging from 3.43E+02–1.21E+01 PDF.m3.d. With a
value of 3.43E+02, Pyrene had the highest impact, contributing 73% by itself.

1. Introduction

The release of micropollutants (MPs) from wastewater treatment
plant (WWTP) into the environment is a primary issue related to
micropollutants in sanitation. These discharges have been for a long
considered a pivotal contributor to the introduction into the environ-
ment [1–4]. It has been proven by previous works that micropollutants
are present in treated wastewaters, and also contamination of fresh and
sea waters [1,5,6].

The removal efficiency of micropollutants in WWTP is satisfactory,
even if they are not well adapted to remove these compounds [7–10].
This elimination is essentially done by adsorption on sludge (hydro-
phobic substances), by biological degradation, or by an abiotic degra-
dation for some substances [11,12]. However, some substances are only
partially or not at all absorbed or degraded. They can be described as
"refractory" to biological treatment. As a result, some micropollutants

are still present in discharges from conventional wastewater treatment
plants at significant concentrations [13,14].

The diffusion of micropollutants (MPs) into the environment is
facilitated by wastewater treatment plants. It is therefore important to
evaluate the effects of these compounds. Inorganic micropollutants such
as heavy metals (Lead, Mercury, Cadmium, etc.) and arsenic can seri-
ously damage human health by contaminating drinking water and
aquatic ecosystems, leading to neurological, cardiovascular and kidney
problems, as well as posing risks to aquatic life [15–18]. Organic
micropollutants, including pharmaceuticals, pesticides, industrial com-
pounds (PCBs, PAHs, PFCs) and microplastics, can disrupt aquatic eco-
systems and harm human health when consumed in contaminated water
or food, contributing to antibiotic resistance, endocrine disruption,
cancer risks and environmental damage [19]. Monitoring and treatment
of these micropollutants is mandatory to protect humans and aquatic
environments from their harmful effects. The ratios Predicted

* Corresponding author.
E-mail address: elhammoudani5@gmail.com (Y. El Hammoudani).

Contents lists available at ScienceDirect

Toxicology Reports

journal homepage: www.elsevier.com/locate/toxrep

https://doi.org/10.1016/j.toxrep.2024.101699
Received 23 June 2024; Received in revised form 14 July 2024; Accepted 19 July 2024

mailto:elhammoudani5@gmail.com
www.sciencedirect.com/science/journal/22147500
https://www.elsevier.com/locate/toxrep
https://doi.org/10.1016/j.toxrep.2024.101699
https://doi.org/10.1016/j.toxrep.2024.101699
https://doi.org/10.1016/j.toxrep.2024.101699
http://crossmark.crossref.org/dialog/?doi=10.1016/j.toxrep.2024.101699&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Toxicology Reports 13 (2024) 101699

2

Environmental Concentration with The Predicted No Effect Concentra-
tion PEC/PNEC and Measured Environmental Concentration with the
Predicted No Effect Concentration MEC/PNEC are generally used to
assess the risk of these substances [20]. PNEC takes in consideration the
sensitive organisms. MEC shows the concentration in environment. And
PEC present the concentration emitted taking in consideration the
dilution. The micropollutant is considered harmful when the quotient
PEC/PNEC is above one (PEC/PNEC > 1) [21–23]. In this approaches,
molecules are studied one by one. The fact that we cannot estimate the
overall risk limits this approach [1,24–26].

Another way to assess the effect of micropollutants on humans and
the aquatic environment is the life cycle analysis (LCA) of a molecule or
group of molecules as it was highlighted in several works [27–29]. The
LCA model focuses primarily on assessing the environmental impacts of
substances throughout their life cycle, which includes their production,
use and disposal. While LCA can provide valuable insights into the wider
environmental consequences of substances, it is not specifically
designed to analyze their effects on the human body or the aquatic
environment in terms of health or toxicity. To assess the effects on
human health or the aquatic environment, more specialized models or
methods are generally used, such as risk assessment or toxicological
studies. However, LCA is better suited to assessing the overall sustain-
ability and environmental footprint of products, processes or services.

Muñoz et al. discovered that 15 out of 98 micropollutants had a high risk
on Humans and aquatic environment. While, based on USEtox® char-
acterization factors [30] assessed the ecotoxicological impact of
micropollutants in Spain.

Our study focused on assessing the impact of 46 organic and inor-
ganic micropollutants belonging to 3 major families (Polycyclic Aro-
matic Hydrocarbons (PAHs), Polychlorinated biphenyls (PCBs), and
Heavy Metals) quantified from the outlet and inlet of the Al-Hoceima
city WWTP on Humans and Aquatic environment using LCA model.

2. Materials and methods

2.1. Targeted micropollutants

Samples were analyzed in 2022. 33 targeted molecules were found in
wastewater. While 13 were quantified occasionally. These compounds,
includes 03 heavy metals, 08 PCBs, and 02 PAHs (Table 1).

2.2. Sampling and analysis

The wastewater treatment plant of Al-Hoceima city operates on an
activated sludge at low load [31]. It treats a daily flow of 9600m3 of
wastewater from anthropogenic activities [31,32]. The system is
composed of different treatment steps. Classically, the treatment is
divided into: pre-treatment, secondary or biological treatment, tertiary
treatment and sludge treatment [33,34]. Overall, three sets of samples
were successfully collected. Composite samples were taken continuously
at each site, using refrigerated automatic samplers maintained at 4◦C. To
prevent any risk of contamination of the samples and adsorption of
pollutants during the collection process, these samplers were equipped
with glass bottles and Teflon® pipes. In addition and in order to preserve
the original distribution of pollutants between dissolved phases and
suspended particles, samples were filtered as soon as possible through a
0.45 μm filter to remove fine particles. After filtration, the dissolved
fraction was analysed within 24 hours of collection, while the particu-
late fraction was analysed within 48 hours [31,34–37]. The levels of
PAHs and PCBs in the samples that were gathered were assessed using
Gas Chromatography-Mass Spectrometry (GC-MS), while the concen-
trations of heavy metals (HMs) were determined through Inductively
Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) [32].

2.3. Potential impact assessment of wastewater

This work aims, to evaluate the impact of wastewater discharged into
sea, as the case in our study, on the aquatic environment and human
health using a methodology. USEtox 2.12® was used to calculate the
characterization factors (CF) for micropollutants with this equation: CF
¼ XF x EF x FF.

with XF: ecotoxicity exposure factor / EF: the effect factor / FF: the
fate factor.

USEtox is a scientifically sound consensus model that has been offi-
cially endorsed by the United Nations Environment Program (UNEP)
Life Cycle Initiative. Its main objective is to provide a systematic and
comprehensive approach to characterizing the potential human and
ecotoxicological impacts of various chemicals used in different indus-
trial processes and products. The cornerstone of the USEtox framework
is its vast database, rich in characterization factors. These factors
encompass a wide range of essential parameters, including those
relating to the fate, exposure and effects of chemicals. By integrating and
analyzing this wealth of data, USEtox enables a more accurate and
comprehensive assessment of the potential environmental and health
risks associated with chemical substances, making it a valuable tool for
informed decision-making, sustainable product development and risk
management in a variety of sectors.

Characterization factors for humans added the ingestion fraction
(IF), which is the value token of MPs from water, air, and food (IF= XF x

Table 1
Micropollutants considered and its distribution.

Micropollutants Raw wastewater Treated wastewater

PAHs Acenaphthene + +

Acenaphthylene + +

Anthracene + +

Benzo (a) anthracene + +

Benzo (a) pyrene + +

Benzo (b) Fluoranthene + +

Benzo (g,h,i) pyrelene + +

Benzo (k) Fluoranthene + +

Chrysene - -
Dibenzo (a,h) Anthracene - -
Fluoranthene + +

Fluorene + +

Indeno (1,2,3,cd) Pyrene + +

Naphthalene + +

Phenanthrene + +

Pyrene + +

PCBs PCB− 28 - -
PCB− 52 - -
PCB− 77 + +

PCB− 81 + +

PCB− 101 - -
PCB− 105 + +

PCB− 114 + +

PCB− 118 + +

PCB− 123 - -
PCB− 126 + +

PCB− 138 - -
PCB− 153 - -
PCB− 156 + +

PCB− 157 - -
PCB− 167 + +

PCB− 169 + +

PCB− 180 - -
PCB− 189 + +

HMs Cu + +

Zn + +

Fe + +

Mn + +

Cd + +

Pb + +

As - -
Ni + +

Ba + +

Cr - -
Co - -
Hg + +
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Fig. 1. Concentrations of PAHs in the inlet and outlet of the WWTP.

Fig. 2. Concentrations of PCBs in the inlet and outlet of the WWTP.
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FF). In this study, we project to assess the impact of each substance as
well as the impact of the entire mixture of MPs. Then the potential im-
pacts were calculated using this equation: Impact potential ¼ ∑
Characterization factor x Emitted Mass. The emitted mass was ob-
tained by multiplying the concentrations with the annual volume.

Disability Adjusted Life Years (DALYs) was used to determine the
impact on human health. Potentially Disappeared Fraction integrated
(PDF.m3.d) was used to express the impact on the aquatic environment.
In order to obtain the total score, we summed all the impacts.

2.4. Quantity of wastewater released in a year

To estimate the quantity of wastewater released into the aquatic
environment, we considered that the volume entering and leaving the
WWTP is stable. The WWTP receives a flow of 9600m3 daily. After
multiplying it by 365 days, we got an estimated annual volume of
3504,000m3.

3. Results and discussion

3.1. Micropollutants concentrations

46 micropollutants (organic and inorganic) were studied, including
12 HMs, 18 PCBs and 16 PAHs. 71.74% of organic and inorganic
micropollutants searched were detected in raw and treated wastewaters
(33/46). 13/46 of the rest were quantified occasionally in the three
campaigns.

Concentrations in raw wastewater were 0.02–850 μg/L. The highest
concentrations, logically, belong to heavy metals with 1.2–845 μg/L.
Then, it comes PAHs with high molecular weight (0.09–1 μg/L). At the
end, there are the PCBs and rest of PAHs with concentrations ranging
between 0.01 and 0.09 μg/L.

The same compounds belonging to same families were detected in
the outlet of the WWTP. Concentrations quantified were presented in
Figs. 1–3. They ranged between 0.012 and 143 μg/L. Removals effi-
ciencies were the highest for some inorganic micropollutants (more than
80%), while they ranged between 50% and 80% for the rest of the
compounds.

3.2. Assessing impact of MPs on Human health

The characterization factors along the Emitted masses from the
WWTP obtained are presented in Table 2. A high concentration reflects
high emitted masses into environment. The potential impact on Human
health was assessed for 60 % of micropollutants (28/46), because of the
lack of the concentrations or/and characterization factors. Character-
ization factor was equal to 0 for Chrysene, PCB-28, PCB-55, PCB-101,
PCB-105, PCB-118, PCB-123, PCB-138, PCB-153, PCB-156, PCB-157,
PCB-167, PCB-169, PCB-180, PCB-189, Fe, Mg and Co.

Observable effects (e.g., in vivo and in vitro bioassays) have
demonstrated that chemicals pose a risk to human health. PCBs, PAHs,
and HMs represent one such case.

In this investigation, results obtained for impact assessment ranged
between 10 and 3 and 10–9. The total impact score was 10–2 (Fig. 4).
The highest impact score belonged to inorganic micropollutants (Ba, Hg,
Zn and Cd). These elements represented 92 % of the total impact on
Human health score. When deciding on priorities, it is important to
consider the toxicity of the elements, not just the mass released. The
results of this study prove that the emission of MPs into seawater may
affect the Human health directly or indirectly [38]. 3/10 main con-
tributors were PAHs produced by human activities. The compounds with
the highest score are considered to be carcinogenic [38].

Micropollutants, whether organic or inorganic in origin, have sig-
nificant effects on human health. Heavy metals, such as lead and mer-
cury, and volatile organic compounds (VOCs) can cause respiratory
problems, such as lung irritation and infections. Some organic micro-
pollutants, such as pesticides and pharmaceuticals, can cause liver and
kidney toxicity, affecting metabolic health. In addition, endocrine dis-
ruptors among organic micropollutants can disrupt the hormonal sys-
tem, leading to reproductive problems, developmental abnormalities
and diseases such as cancer. Some micropollutants, notably polycyclic
aromatic hydrocarbons (PAHs) and organochlorine compounds, are
classified as carcinogenic to humans, increasing the risk of cancer
[39–42]. Heavy metals, such as lead andmercury, can also have harmful
effects on the nervous system, leading to neurological and cognitive
disorders. Finally, ingesting micropollutants through contaminated
water or marine products can cause gastrointestinal problems. It is

Fig. 3. Concentrations of HMs in the inlet and outlet of the WWTP.
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Table 2
Human health characterization factor [DALY/kg emitted].

Substance Name Estimated annual volume (m3) Emitted Mass in kg Human health characterization factor [DALY/kg emitted]

cancer non-canc total

Naphthalene 3504000 0.133152 3.8815E− 08 2.4292E− 09 4.1244E− 08
Acenaphthylene 3504000 0.049056 2.6216E− 06 n/a 2.6216E− 06
Acenaphthene 3504000 0.042048 2.7205E− 06 2.2595E− 08 2.7431E− 06
Fluorene 3504000 0.042048 2.4544E− 06 2.8539E− 08 2.483E− 06
Phenanthrene 3504000 0.045552 1.3969E− 05 n/a 1.3969E− 05
Anthracene 3504000 0.147168 0.00018 2.6163E− 08 0.00018003
Fluoranthene 3504000 0.098112 5.1867E− 05 6.0309E− 07 5.247E− 05
Pyrene 3504000 0.164688 3.071E− 05 5.9514E− 07 3.1305E− 05
Benzo (a) Anthracene 3504000 0.042048 0.00039097 n/a 0.00039097
Chrysene 3504000 n/a n/a n/a n/a
Benzo (b) Fluoranthene 3504000 0.073584 0.00265367 n/a 0.00265367
Benzo (k) Fluoranthene 3504000 0.098112 0.00110217 n/a 0.00110217
Benzo (a) Pyrene 3504000 0.14016 0.00291188 n/a 0.00291188
Indeno (1.2.3.cd) Pyrene 3504000 0.112128 0.00109856 n/a 0.00109856
Dibenzo (a.h) Anthracene 3504000 n/a 0.02549973 n/a 0.02549973
Benzo (g.h.i) Pyrelene 3504000 0.077088 2.0546E− 05 n/a 2.0546E− 05
PCB− 28 3504000 n/a n/a n/a n/a
PCB− 52 3504000 n/a n/a n/a n/a
PCB− 77 3504000 0.101616 n/a 0.00109856 0.00109856
PCB− 81 3504000 0.0681 n/a 3.1305E− 05 3.1305E− 05
PCB− 101 3504000 n/a n/a n/a n/a
PCB− 105 3504000 0.066576 n/a n/a n/a
PCB− 114 3504000 0.0876 5.247E− 05 n/a 5.247E− 05
PCB− 118 3504000 0.059568 n/a n/a n/a
PCB− 123 3504000 n/a n/a n/a n/a
PCB− 126 3504000 0.049056 n/a 0.00291188 0.00291188
PCB− 138 3504000 n/a n/a n/a n/a
PCB− 153 3504000 n/a n/a n/a n/a
PCB− 156 3504000 0.07008 n/a n/a n/a
PCB− 157 3504000 n/a n/a n/a n/a
PCB− 167 3504000 0.063072 n/a n/a n/a
PCB− 169 3504000 0.063072 n/a n/a n/a
PCB− 180 3504000 n/a n/a n/a n/a
PCB− 189 3504000 0.056064 n/a n/a n/a
Cu 3504000 259.296 n/a 1.531E− 08 1.531E− 08
Zn 3504000 220.752 n/a 2.5792E− 05 2.5792E− 05
Fe 3504000 501.072 n/a n/a n/a
Mg 3504000 119.136 n/a n/a n/a
Cd 3504000 4.5552 6.1146E− 06 0.00038516 0.00039128
Pb 3504000 28.032 9.6434E− 08 7.9424E− 06 8.0389E− 06
As 3504000 n/a 0.00013398 0.00233006 0.00246404
Ni 3504000 7.008 3.6625E− 05 4.8389E− 07 3.7109E− 05
Ba 3504000 119.136 n/a 6.5156E− 05 6.5156E− 05
Cr 3504000 n/a n/a 4.0766E− 12 4.0766E− 12
Co 3504000 n/a n/a n/a n/a
Hg 3504000 0.7008 0.00033553 0.00932517 0.00966071

n/a: Not applicable

Y. El Hammoudani et al.
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crucial to reduce exposure to micropollutants and implement preventive
measures to minimise the risks to human health associated with these
substances.

Aemig et al. assessed the impact on Human health of 286 organic and
inorganic micropollutants emitted byWWTPs in France. The impact was
estimated for 109/286 mentioning the lack of data on toxicity or con-
centrations. As, Zn, some PAHs and pesticides had the highest score.
While, Muñoz et al. [23] studied the impact of 98 micropollutants. They
considered a situation in which treated wastewater was used for agri-
cultural irrigation (discharged into the soil). The characterization factor
was calculated using two methods (EDIP97 and USES-LCA). Four sub-
stances (two for each method), respectively, had the highest impact:
gemfibrozil, nicotine, 2,3,7,8-TCDD and hexachlorobenzene. In our
study, these micropollutants were not considered [43].

3.3. Assessing impact of MPs on aquatic environment

Ecotoxicity characterization factors (Ecotox. Charact. Factors) were
found for over 76 % of micropollutants in this study (Table 3). For the
total organic and inorganic micropollutants, the impact was estimated
for 35 compounds. Five key contributors among PAHs and PCBs include
Pyrene, Anthracene, Benzo(a)Anthracene, Fluoranthene and PCB-77
with and impact going from 3.43E+02–1.21E+01 PDF.m3.d (Fig. 5).
With a value of 3.43E+02, Pyrene had the highest impact contributing
by 73 % alone. While Anthracene, Benzo(a)Anthracene, Fluoranthene,
and PCB-77 had a respective percentage of 13,5,3 and 2 %. Inorganic
micropollutants had the lowest impact ranging from 1.45E-11–6.34E-19
PDF.m3.d. Even if the inorganic micropollutants are present in Aquatic
environment, but it is difficult to identify their impact since the Char-
acterization factors afforded by USEtox 2.12® should be interpreted
carefully.

Impact on Aquatic environment of 45 and 88 PPCPs was assessed
respectively by [30,43]. Total impact of the same order of importance
was observed. At low concentrations, micropollutants can have a
considerable impact on the aquatic environment, in contrast to the risk
to human health. Mainly, the difference of impact is due to emitted
masses. To identify impacts of micropollutants, [23] used Life Cycle
Assessment. Two models were used USES-LCA and EDIP97. The sub-
stances with highest impact, respectively, are fluoxetine and ibuprofen.

In other study, they paired in vitro impacts of MPs and biotests. The
results showed high impact for some substances agreeing with our study
[44].

Researchers worked on the impact of changing wastewater treatment
process on biodiversity [45]. After adding a tertiary treatment (activated
carbon filtration), they noticed no impact on the aquatic environment.
This is due to the improvement of oxygen concentrations. However, the
substances present in the effluent were negligible.

Other works, such as [25] and [26], confirmed occurrence of organic
MPs in aquatic organisms, demonstrating bioaccumulative effect of
these substances in aquatic food chains. In each fish, a number of eleven
micropollutants were detected, which increases the risk to other fish and
especially to humans [46,47].

Micropollutants, whether organic or inorganic, have substantial ef-
fects on the aquatic environment. They can have a series of worrying
consequences, including accumulation in ecosystems, disruption of food
chains and reduced biodiversity. Organic micropollutants, such as pes-
ticides and pharmaceuticals, can contaminate rivers and oceans, directly
affecting the aquatic organism’s life. This contamination can disrupt
reproductive cycles, cause genetic mutations and have harmful impacts
on aquatic flora and fauna. In addition, inorganic micropollutants, such
as heavy metals, can accumulate in river sediments, affecting the quality
of aquatic habitats. The effects spread through food chains, affecting fish
and other marine species, and ultimately humans consuming seafood.
Reduced biodiversity, altered aquatic ecosystems and reduced water
quality are major concerns linked to the presence of micropollutants in
aquatic environments.

4. Conclusions

This research has been conducted on the impact of theMPs on human
health and the aquatic environment. The total score for the impact on
human health is 10–2, generally varying between 10 and 3 and 10–9.
The inorganic micropollutants (Ba, Hg, Zn and Cd) had the highest score
with a percentage of 92 % of the total score. The total impact of
micropollutants on the aquatic environment was estimated for 25
compounds. Five key contributors: Pyrene, Anthracene, Benzo(a)
Anthracene, Fluoranthene and PCB-77 with an impact ranging from
3.43E+02–1.21E+01 PDF.m3.d. with a value of 3.43E+02, Pyrene had

Fig. 4. Human toxicity impact score.
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the highest impact, contributing 73 % by itself.
The lack of data on the impact of micropollutants on human health

and the aquatic environment is notable. The calculation of the impact
score was calculated by a limited number of molecules due to the lack of
concentrations or characterization factors.

The discharge of organic matter into aquatic ecosystems can result in
eutrophication, oxygen depletion, and habitat disruption, negatively
impacting aquatic biodiversity. Additionally, heavy metals, although
initially present in water in small quantities, can bioaccumulate and
biomagnify in the food chain, leading to human exposure and potential
health risks when consuming contaminated fish and seafood. Effective
management strategies are crucial to mitigate these impacts and safe-
guard both aquatic biodiversity and human health.

This study raised the issue of the presence of micropollutants in the
environment, and the need to prohibit or reduce at source. Finishing
treatments have proven to be effective against micropollutants, but they
do not manage to eliminate them completely.
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Table 3
Aquatic Environment Characterization factor [PDF.m3.day.kg− 1].

Substance Name Mean concentration in the outlet (µg/
L)

Estimated annual volume
(m3)

Emitted Mass in kg Ecotox. Charact. factor [PDF.m3.day.kg-
1]

Naphthalene 0.038 3504000 0.133152 0.00813289
Acenaphthylene 0.014 3504000 0.049056 n/a
Acenaphthene 0.012 3504000 0.042048 0.83122894
Fluorene 0.012 3504000 0.042048 3.87967028
Phenanthrene 0.013 3504000 0.045552 20.5255943
Anthracene 0.042 3504000 0.147168 430.785283
Fluoranthene 0.028 3504000 0.098112 158.923509
Pyrene 0.047 3504000 0.164688 2084.48231
Benzo (a) Anthracene 0.012 3504000 0.042048 573.991056
Chrysene n/a 3504000 n/a n/a
Benzo (b) Fluoranthene 0.021 3504000 0.073584 n/a
Benzo (k) Fluoranthene 0.028 3504000 0.098112 n/a
Benzo (a) Pyrene 0.04 3504000 0.14016 0.74132405
Indeno (1.2.3.cd) Pyrene 0.032 3504000 0.112128 n/a
Dibenzo (a.h) Anthracene n/a 3504000 n/a 0.14803029
Benzo (g.h.i) Pyrelene 0.022 3504000 0.077088 n/a
PCB− 28 n/a 3504000 n/a 1.31444044
PCB− 52 n/a 3504000 n/a 4.01323712
PCB− 77 0.029 3504000 0.101616 119.2009
PCB− 81 0.020 3504000 0.0681 1.31444044
PCB− 101 n/a 3504000 n/a 893.593531
PCB− 105 0.019 3504000 0.066576 2.16128625
PCB− 114 0.025 3504000 0.0876 43.5183401
PCB− 118 0.017 3504000 0.059568 6.39610779
PCB− 123 n/a 3504000 n/a 25.6873149
PCB− 126 0.014 3504000 0.049056 76.1204561
PCB− 138 n/a 3504000 n/a 414.231911
PCB− 153 n/a 3504000 n/a 49.7798592
PCB− 156 0.020 3504000 0.07008 n/a
PCB− 157 n/a 3504000 n/a n/a
PCB− 167 0.018 3504000 0.063072 n/a
PCB− 169 0.018 3504000 0.063072 0.0552413
PCB− 180 n/a 3504000 n/a n/a
PCB− 189 0.016 3504000 0.056064 n/a
Cu 74 3504000 259.296 1.8088E− 16
Zn 63 3504000 220.752 6.8798E− 15
Fe 143 3504000 501.072 2.8965E− 14
Mg 34 3504000 119.136 2.5771E− 15
Cd 1.3 3504000 4.5552 1.3928E− 19
Pb 8 3504000 28.032 2.7356E− 17
As n/a 3504000 n/a 6.0432E− 16
Ni 2 3504000 7.008 8.3624E− 17
Ba 34 3504000 119.136 2.3696E− 16
Cr n/a 3504000 n/a 3.5004E− 19
Co n/a 3504000 n/a 3.6444E− 15
Hg 0.2 3504000 0.7008 1.0164E− 18
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