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Abstract: The Clinical Laboratory Standards Institute lowered the fluoroquinolone minimum
inhibitory concentration (MIC) susceptibility breakpoints for Enterobacteriaceae and glucose
non-fermenting Gram-negative bacilli in January 2019. This retrospective cohort study describes the
impact of this reappraisal on ciprofloxacin susceptibility overall and in patients with risk factors for
antimicrobial resistance. Gram-negative bloodstream isolates collected from hospitalized adults at
Prisma Health-Midlands hospitals in South Carolina, USA, from January 2010 to December 2014 were
included. Matched pairs mean difference (MD) with 95% confidence intervals (CI) were calculated to
examine the change in ciprofloxacin susceptibility after MIC breakpoint reappraisal. Susceptibility of
Enterobacteriaceae to ciprofloxacin declined by 5.2% (95% CI: −6.6, −3.8; p < 0.001) after reappraisal.
The largest impact was demonstrated among Pseudomonas aeruginosa bloodstream isolates (MD −7.8,
95% CI: −14.6, −1.1; p = 0.02) despite more conservative revision in ciprofloxacin MIC breakpoints.
Among antimicrobial resistance risk factors, fluoroquinolone exposure within the previous 90 days
was associated with the largest change in ciprofloxacin susceptibility (MD −9.3, 95% CI: −16.1, −2.6;
p = 0.007). Reappraisal of fluoroquinolone MIC breakpoints has a variable impact on the susceptibility
of bloodstream isolates by microbiology and patient population. Healthcare systems should be
vigilant to systematically adopt this updated recommendation in order to optimize antimicrobial
therapy in patients with bloodstream and other serious infections.

Keywords: sepsis; bacteremia; ciprofloxacin; chemotherapeutics; Escherichia coli;
non-fermenters/Pseudomonas aeruginosa

1. Introduction

Despite several Food and Drug Administration (FDA) safety alerts since 2008, fluoroquinolones
remain the third most commonly prescribed class of antibiotics in the United States [1]. Fluoroquinolones
are attractive antimicrobial options for certain indications due to their broad spectrum of activity and
high bioavailability of oral formulations [2–4]. Resistance to fluoroquinolones among Enterobacteriaceae
and non-fermenters (bacteria that cannot catabolize glucose, such as Pseudomonas aeruginosa and
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Acinetobacter baumannii) is well described, and may pose increased risk of mortality and significant
burden to the healthcare system [5,6]. Furthermore, elevated fluoroquinolone minimum inhibitory
concentration (MIC) values among Gram-negative isolates have been associated with poor clinical
outcomes, such as longer duration of hospital stay and treatment failures, despite meeting the definition
for susceptibility [7,8].

In 2015, the United States Committee on Antimicrobial Susceptibility Testing (USCAST) proposed
lowering the ciprofloxacin MIC breakpoint value for Enterobacteriaceae to ≤0.25 mcg/mL and for
non-fermenters to ≤ 0.5mcg/mL. At the time, the Clinical Laboratory Standards Institute (CLSI) and
the FDA endorsed a ciprofloxacin MIC breakpoint value for Enterobacteriaceae and non-fermenters
of ≤1 mcg/mL. This proposed reappraisal in the MIC breakpoint followed an acknowledgment of
a trend of declining susceptibility among Enterobacteriaceae to fluoroquinolones. Specifically, the
susceptibility of Enterobacteriaceae to ciprofloxacin declined from 95.2% to 81.1% between 1998 and
2013. The committee noted that the same declining trend in ciprofloxacin susceptibility was not
demonstrated among P. aeruginosa isolates, with relatively consistent susceptibility rates since drug
approval of approximately 70%. Further evidence to support the reappraisal in MIC breakpoint values
was provided by pharmacokinetic-pharmacodynamic (PK-PD) target attainment analyses conducted
by USCAST. Among Enterobacteriaceae, the probability of PK-PD target attainment (defined as 1 log10
CFU reduction from baseline) with the ciprofloxacin 400 mg intravenously every 8 h regimen was 99.4%
and 82.3% for organisms with MIC values of 0.25 and 0.5 mcg/mL, respectively. Among P. aeruginosa
isolates, the probability of PK-PD target attainment with this ciprofloxacin regimen was 97.2% and
61.9% for organisms with the MIC values of 0.5 and 1 mcg/mL, respectively [9].

In response to this evidence, the CLSI and FDA updated the MIC breakpoint values and associated
interpretive criteria for Enterobacteriaceae and non-fermenters in January 2019 to align with the USCAST
recommendation. This study aims to characterize the impact of reappraisal of MIC breakpoint values
on ciprofloxacin susceptibility among Gram-negative bloodstream isolates [10,11].

2. Results

2.1. Microbiology

A total of 1055 Gram-negative bloodstream isolates were identified over the five year study
period, including 967 (92%) Enterobacteriaceae and 88 (8%) non-fermenters. Escherichia coli was the most
common organism identified (51%), followed by Klebsiella spp (19%). The most common non-fermenter
identified was Pseudomonas aeruginosa, which comprised 73% of the group and 6% overall (Figure 1).
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Figure 1. Microbiology of Gram-negative bloodstream isolates.

2.2. MIC Distribution by Organism

Among Enterobacteriaceae, 83% and 78% of isolates demonstrated a ciprofloxacin MIC value ≤1
and ≤0.25 mcg/mL, respectively, indicating an overall mean difference in ciprofloxacin susceptibility by
previous and current breakpoints of 5%. For non-fermenters, 89% and 81% of isolates demonstrated
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a ciprofloxacin MIC value of ≤1 mcg/mL and ≤0.5 mcg/mL, respectively, reflecting an overall mean
difference in ciprofloxacin susceptibility by previous and current breakpoints of 8%. An additional 10%
of non-fermenters had an MIC of 0.5 mcg/mL, which is still considered susceptible based on the new
breakpoints criteria (Figure 2). By the updated MIC breakpoint of ≤0.25 mcg/mL, E. coli demonstrated
the lowest susceptibility to ciprofloxacin (71%), while Enterobacter spp. demonstrated the highest (94%),
as demonstrated in Table 1.

With consideration of reduced breakpoint for Enterobacteriaceae from ≤1 to ≤0.25 mcg/mL, E. coli
and Klebsiella spp. demonstrated statistically significant changes in ciprofloxacin susceptibility by −5.5%
(95% CI: −7.5, −3.6; p < 0.001) and −5.4% (95% CI: −8.5, −2.3; p < 0.001), respectively. In comparison, the
mean difference in ciprofloxacin susceptibility was −7.8% (95% CI: −14.6, −1.1; p = 0.02) for P. aeruginosa
isolates by the reduced breakpoint from ≤1 to ≤0.5 mcg/mL (Table 1).
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Table 1. Mean difference in ciprofloxacin susceptibilities by previous and updated breakpoints.

Organism N Previous
Susceptibility

Updated
Susceptibility

Mean Difference
(95% CI) p-Value

Enterobacteriaceae 967 803 (83.0) 753 (77.9) −5.2 (−6.6, −3.8) < 0.001
E. coli 543 416 (76.6) 386 (71.1) −5.5 (−7.5, −3.6) < 0.001

Klebsiella spp. 205 187 (91.2) 176 (85.9) −5.4 (−8.5, −2.3) < 0.001
P. mirabilis 72 63 (87.5) 60 (83.3) −4.2 (−8.9, 0.6) 0.08

Enterobacter spp. 67 65 (97.0) 63 (94.0) −3.0 (−7.2, 1.2) 0.16
Non-fermenters 88 78 (88.6) 71 (80.7) −8.0 (−13.7, −2.2) 0.007

P. aeruginosa 64 57 (89.1) 52 (81.3) −7.8 (−14.6, −1.1) 0.02

CI: confidence interval.

2.3. Impact of Reappraisal of MIC Values among Patients with Resistance Risk Factors

Among patients with bloodstream infections due to Enterobacteriaceae, those with certain risk
factors for fluoroquinolone resistance had a significant decline in ciprofloxacin susceptibility with a
reappraisal of the MIC breakpoints (Table 2 and Figure 3) The largest impact was demonstrated among
patients with fluoroquinolone use within the previous 90 days, followed by residence in a skilled
nursing facility. Risk factors that did not have a statistically significant impact on the mean difference
in ciprofloxacin susceptibility were recent outpatient procedures and fluoroquinolone use within the
prior 90–180 days. Patients without fluoroquinolone resistance risk factors experienced a statistically
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significant decline in ciprofloxacin susceptibility, although to a lesser extent when compared to the
entire population with bloodstream infections caused by Enterobactriaceae (3.8% vs. 5.2%).

Table 2. Mean difference in ciprofloxacin susceptibilities for Enterobacteriaceae by previous and updated
breakpoints based on risk factors for fluoroquinolone resistance.

Risk Factor N * Previous
Susceptibility

Updated
Susceptibility

Mean Difference
(95% CI) p-Value

Fluoroquinolone use within prior 90 d 75 37 (49.3) 30 (40.0) −9.3 (−16.1, −2.6) 0.007
Fluoroquinolone use within prior 90–180 d 32 23 (71.9) 21 (65.6) −6.3 (−15.1, 2.6) 0.16

Residence at skilled nursing facility 152 112 (73.7) 100 (65.8) −7.9 (−12.2, −3.6) < 0.001
Outpatient GI/GU procedure within prior 30 d 55 36 (65.5) 33 (60.0) −5.5 (−11.7, 0.7) 0.08

None 682 607 (89.0) 581 (85.2) −3.8 (−5.3, −2.4) < 0.001

CI: confidence interval; GI: gastrointestinal; GU: genitourinary. * Patients may have multiple risk factors for
fluoroquinolone resistance.
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Figure 3. Ciprofloxacin MIC values for Enterobacteriaceae by risk factors for resistance. The dashed
line represents the previous breakpoint and the solid line represents the updated breakpoint.
FQ: fluoroquinolone.

3. Discussion

3.1. Impact of Reappraisal of MIC Breakpoints

Reappraisal of the MIC breakpoint values for Enterobacteriaceae and non-fermenters by CLSI and
FDA in 2019 has a variable impact on ciprofloxacin susceptibility among Gram-negative bloodstream
isolates. Among the five most common gram-negative bloodstream isolates, P. aeruginosa had the
greatest impact, despite a more conservative reappraisal of MIC breakpoints from ≤1 to ≤0.5 mcg/mL.
Of all non-fermenting isolates, 8% met susceptibility based on previous breakpoints and were considered
non-susceptible by updated breakpoints. This represents a significant decline in ciprofloxacin
susceptibility. With dynamic and variable resistance mechanisms, P. aeruginosa is a highly virulent
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pathogen that requires special consideration to optimize antimicrobial therapy. The consequences
of inadequate antimicrobial therapy include the progression of infection and potentiation of further
resistance. Reappraisal of the MIC breakpoint value for fluoroquinolones may aid in the optimization
of antimicrobial therapy for a significant proportion of patients with bloodstream infections caused
by P. aeruginosa. The magnitude of the change in ciprofloxacin susceptibility after the reappraisal of
breakpoints was lower among Enterobacteriaceae bloodstream isolates, a 5% decline overall despite
reducing breakpoints from ≤1 to ≤0.25 mcg/mL. Among Enterobacteriaceae, Enterobacter spp. has the
least impact of lowering susceptibility breakpoints.

The study also characterized the variability in the impact of breakpoint reappraisal based on
risk factors for fluoroquinolone resistance in patients with Enterobacteriaceae bloodstream infections.
The greatest impact observed was among bloodstream isolates from patients who had fluoroquinolone
exposure within the past 90 days. Of these isolates, 9.3% met susceptibility based on previous
MIC breakpoints were considered non-susceptible by updated breakpoints. Residence at skilled
nursing facilities demonstrated a similar, significant impact on ciprofloxacin susceptibility with a
mean difference of 7.9%. These two risk factors are considered major contributors to fluoroquinolone
resistance and have been incorporated into clinical risk scoring tools for optimization of empirical
antimicrobial selection in this patient population [12]. While other risk factors, such as fluoroquinolone
exposure within 90–180 days and recent outpatient procedures, demonstrated a decline in ciprofloxacin
susceptibility by updated breakpoints, this finding was not statistically significant, likely due to
relatively small number of patients with these two risk factors. Notably, ciprofloxacin susceptibility
declined by only 3.8% in patients without risk factors for fluoroquinolone resistance.

3.2. Systematic Adoption of Updated MIC Breakpoint Values

It is imperative to deploy systematic adoption of these updated MIC breakpoint values in order
to positively impact patient care. This effort, as any effort in response to updated interpretive values
or other laboratory standards, should involve key microbiology laboratory personnel, members
of the antimicrobial stewardship program, specialized clinicians, information technologists, and
administration. Without an organized effort to educate and update technology to reflect updated
breakpoints, the impact of the reappraisal of MIC breakpoint values for Enterobacteriaceae and
non-fermenters may not reach the level of patient care due to the reliance of prescribers on the
interpretive values assigned in the microbiology reports. Barriers to systematic adoption may include
lack of easily modifiable electronic infrastructure, lack of intangible resources (i.e., time), and perceived
unimportance. Findings such as those described in this study should help support the importance of
an urgent effort to adopt the reappraisal of MIC breakpoints. In the absence of an organized effort to
adopt the updated MIC breakpoints, specialized clinicians must be vigilant to educate prescribers on
the updates and provide context to the associated interpretive values. Members of the antimicrobial
stewardship team are well-positioned to educate prescribers at general and patient-specific levels.

3.3. Impact on Fluoroquinlone Prescribing

Reappraisal of fluoroquinolone susceptibility breakpoints is unlikely to influence the empirical
use of fluoroquinolones for Gram-negative bloodstream infections. The non-stratified use of empirical
fluoroquinolones is discouraged due to already high overall fluoroquinolone resistance rates among
community-acquired and healthcare-associated Gram-negative bloodstream isolates [13,14]. For the
most part, intravenous broad-spectrum beta-lactams remain the first-line agents for empirical therapy
of Gram-negative bloodstream infections in hospitalized patients without major allergic reactions [15].

However, the downward shift in fluoroquinolone susceptibilities after breakpoint reappraisal will
have an impact on targeted therapy of Gram-negative bloodstream infections, particularly intravenous
to oral switch options. Currently, 70–74% of patients with Gram-negative bloodstream infections receive
oral fluoroquinolones upon transition from intravenous to oral antimicrobial therapy [16,17]. This likely
constitutes the majority of patients with bloodstream infections due to fluoroquinolone-susceptible
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Gram-negative bacilli given overall 25% fluoroquinolone resistance rates [5,18]. Based on the results of
the current study, lowering fluoroquinolone susceptibility breakpoints implies that an additional 5–8%
of patients may not have effective and highly bioavailable oral antimicrobial options for treatment
of Gram-negative bloodstream infections [2,19,20]. Future clinical studies should determine whether
optimization of oral beta-lactam dosing may improve target attainment and, hence, the clinical
outcomes of Gram-negative bloodstream infections in these patients. This also creates a niche for drug
development of novel oral antimicrobials that may fill the gap created by declining fluoroquinolone
susceptibilities and recent safety concerns.

3.4. Strengths and Limitations

The large sample size of Enterobacteriaceae bloodstream isolates represents the major strength in
this study. Examining the change in fluoroquinolone susceptibilities by the presence of major risk
factors for resistance adds novelty to this work. The study also has limitations. First, data were derived
from two community hospitals within the same healthcare system and geographical area. This may
limit generalizability to other settings with different hospital epidemiology and antimicrobial resistance
rates. Second, recent studies have demonstrated a decline in fluoroquinolone use after the FDA safety
warnings [21]. This decline in prescription rates may influence fluoroquinolone resistance rates in
the future.

4. Materials and Methods

4.1. Setting

This study took place at Prisma Health Richland and Prisma Health Baptist hospitals (formerly
Palmetto Health). Combined, these hospitals are comprised of 1100 beds and provide a variety of
medical, surgical, and subspecialty services to patients mostly residing in the Midlands region of
South Carolina.

4.2. Study Design and Definitions

This was a retrospective cohort study that included Gram-negative bloodstream isolates identified
over a five-year period (1 January 2010 through 31 December 2014). Gram-negative bloodstream
isolate was defined as the growth of any aerobic Gram-negative bacillus in blood culture. Isolates
were identified through the Prisma Health microbiology database. Within this central laboratory,
genus and species were identified using matrix-assisted laser desorption ionization time of flight
mass spectrometry (MALDI–TOF). MICs were determined using Vitek® automated antimicrobial
sensitivity testing instruments. Specific antimicrobial susceptibility testing previously identified
as unreliable using this instrument through quality assurance was verified with disk diffusion
and/or Kirby–Bauer methods. Bloodstream isolates from hospitalized adults with first episodes of
Gram-negative bloodstream infection were included. Populations that were excluded were children
<18 years, patients with recurrent bloodstream infection, patients with polymicrobial blood cultures,
and patients treated in the outpatient setting.

Previous MIC breakpoint values and associated interpretive designations were defined as those
values assigned by CLSI and FDA immediately prior to reappraisal in January 2019 (most recently
described in the 28th edition of CLSI Document M100). Updated MIC breakpoint values and associated
interpretive designations were defined as those values assigned by CLSI and FDA in January 2019 (first
described in the 29th edition of CLSI Document M100). Risk factors for fluoroquinolone resistance
among Enterobacteriaceae were identified through a previously described case-control study conducted
in this patient population [12].
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4.3. Statistical Analysis

Descriptive statistics were used to characterize microbiology and the MIC distributions. Matched
pairs mean difference (MD) with 95% confidence intervals was calculated to examine the change in
ciprofloxacin susceptibility after the reappraisal.

5. Conclusions

Reappraisal of MIC susceptibility breakpoint values for Enterobacteriaceae and non-fermenters has a
variable impact on the interpretive designation for ciprofloxacin susceptibility. P. aeruginosa is the most
impacted organism, and patients with fluoroquinolone use within the previous 90 days are the most
impacted risk factor group. Our data also indicate a possible benefit from an antimicrobial stewardship
perspective in nursing home residents or those who have had recent fluoroquinolone exposure. Timely
implementation of new fluoroquinolone susceptibility breakpoints by local microbiology laboratories
and healthcare systems is crucial for the optimization of antimicrobial therapy in patients with
bloodstream and other serious infections.
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