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Abstract

The development of high-throughput sequencing technology has generated huge amounts
DNA data. Many general compression algorithms are not ideal for compressing DNA data,
such as the LZ77 algorithm. On the basis of Nour and Sharawi’'s method,we propose a new,
lossless and reference-free method to increase the compression performance. The original
sequences are converted into eight intermediate files and six final files. Then, the LZ77 algo-
rithm is used to compress the six final files. The results show that the compression time is
decreased by 83% and the decompression time is decreased by 54% on average.The com-
pression rate is almost the same as Nour and Sharawi’s method which is the fastest method
so far. What's more, our method has a wider range of application than Nour and Sharawi’s
method. Compared to some very advanced compression tools at present, such as XM and
FCM-Mx, the time for compression in our method is much smaller, on average decreasing
the time by more than 90%.

Introduction

The advent of high-throughput sequencing technology has led to a dramatic increase in the
size of DNA data. How to efficiently store them has become a new challenge. Many algorithms
are proposed to compress DNA data in decades.

The CTW+LZ algorithm [1] is proposed by Matsumoto et al. The main feature of the algo-
rithm is to combine the LZ algorithm and the context tree weighting algorithm to achieve the
compression of DNA data. The algorithm first compresses each character in the DNA data
using the LZ algorithm and the CTW algorithm, and simultaneously calculates the compres-
sion ratio under the two algorithms. Next, the compression ratio is sorted, the better algorithm
is used to compress the current character. However, the CTW+LZ algorithm is very time con-
suming, it takes 8 minutes to compress the 38Kb sequence, which seriously affects the practi-
cality of the algorithm. The DNACompress algorithm proposed by Chen [2] compares the
biological sequences, and uses the Pattern Hunter software [3] to compress the obtained exact
repeats and approximate repeats, and then uses the LZ algorithm to recompress the com-
pressed fragments. But for other inexact repeats and approximate repeats, the arithmetic cod-
ing method is used for compression. In general, although the compression rate of the
algorithm has not been significantly improved, the compression time has been saved a lot.
Later, the DNAPack algorithm [4] proposed by Behzadi uses different methods for different
segments in the sequence. For the approximate repeats in the sequence, the Hamming distance
is used for the residual part; for the non-repetitive fragments in the sequence, the combination
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of the CTW algorithm and the second-order arithmetic coding is used. Later, Srinivasa further
improved the algorithm and proposed the DNADP algorithm [5]. Unlike the DNAPack algo-
rithm, the algorithm uses dynamic programming techniques to encode non-repetitive frag-
ments in the sequence. The experimental results show that the algorithm can achieve a higher
compression ratio, but the compression time is expanded by about 20 times.

The GeNML algorithm proposed by Tabus and Korodi [6] uses a special normalized maxi-
mum likelihood discrete regression model [7] (NMLComp, characterized by low spatial com-
plexity) as a key part of the algorithm. It uses coding blocks and combines with the alternative
principle to achieve compression of DNA data. Specifically, for a precisely repeated and
approximately repeated DNA segment, a coding block is used for encoding processing; for
other irregular segments, a context-based coding method is used for encoding processing; and
for some specific sequences, no encoding is performed. Experiments using the algorithm show
that compared with other DNA data compression algorithms, the algorithm obtains a larger
compression ratio at the expense of more compression time.

In recent years, researchers have proposed some DNA data compression algorithms based
on MA(Memetic Algorithm) and PSO(Particle Swarm Optimization) [8, 9]. POMA algorithm
is one of the earliest algorithms using optimization calculation method [10], it is characterized
by the maximum possible optimization operation of approximate repetitive vector (ARV), and
it once again improves the compression ratio of DNA data, and it also proves that the optimiza-
tion algorithm is practicality on the compression of DNA data, however, the disadvantage of the
algorithm is that it is still relatively time consuming. In general, the algorithm is only suitable
for small-scale optimization. Therefore, the researchers have proposed the COMRAD [11] algo-
rithm. This algorithm can be applied to large-scale optimization, which can further improve the
compression ratio, but the compression time required by the algorithm is not reduced.

In 2017, Nour S. Bakr and Amr A. Sharawi proposed a compression method for bacterial
DNA sequence [12], which is the fastest method so far, but the scope of application is narrow,
it is only applied to the compression of bacterial DNA sequence.

Nour and Sharawi’s method

The first compression phase of this method takes advantage of the characteristics of bacterial
biological DNA, resulting in limited applications. The second compression phase compresses
the obtained file using bzip2 algorithm.

The first compression phase divides the sequence and stores it in different files in the form
of characters.

In the first step of the first compression phase, the first 1000 base characters are taken from
original sequence as a sample, the frequencies of four base characters A, T, G, and C are calcu-
lated and then sorted them in descending order. The four characters are named as the first
(x1), second (x2), third (x3), and fourth (x4) frequency characters, respectively. Then three
binary files (f1,£2,f3) are created when the original DNA sequence is traversed: write 1 to f1 for
x1, write 0 for the rest; ignore x1, write 1 to f2 for x2, and write 0 to {2 for x3 and x4; ignore x1
and x2, write 1 to f3 for x3, and write 0 to {3 for x4.

This first compression is based on the base distribution law of the bacterial biological DNA
data, that is, in most of the bacterial DNA sequence, the frequency of x1 is greater than the
sum of the frequencies of x3 and x4. For example, if the original DNA sequence is TTGAAC-
GATAATCCGTATTTGAAAAAAATT, the frequencies of A, T, G, C are 13, 10, 4, 3. In this case,
13 is greater than 4 plus 3. The binary code lengths obtained in three files are 30 (thirteen 1
and seventeen 0), 17 (ten 1 and seven 0), and 7 (four 1 and three 0), respectively. Only 54 bits
are required to store 30 base characters.
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However, the above compression strategy is only applicable to bacterial DNA sequence
with the above characteristics. For example, if part of the DNA sequence in a bacterial organ-
ism is TGGACCGATATCGTATTTGAAGGACCTT, then the frequencies of A, T, G, and C are 8,
9,7, and 6, respectively. If the first step is applied, the binary lengths obtained in the three files
are 30 (nine 1 and twenty one 0), 21 (eight 1 and thirteen 0) and 13 (seven 1 and six 0), so 64
bits are needed to store 30 base characters. Actually we only need 60 bits to store 30 characters
without compression. Therefore, the scope of application is narrow.

Our method based on LZ77 algorithm

Directly using the general compression algorithm LZ77 to compress DNA data is not very
effective. So we do some processing on the DNA data before we use LZ77 algorithm to com-
press them.

We proposed a compression method. The first compression is to convert the DNA data
into ordinary characters and store them in different files. The second compression is to com-
press the ordinary character files using the LZ77 algorithm. The original sequences are con-
verted into eight intermediate files and six final files. Fig 1 is the compression process and
decompression process and the files tree.

(1) Compression. In the first phase of compression, we take six steps to generate six final
character files and eight intermediate files. The step one, two, three and six refer to the method
in literature [12].

Step one: Take the first 1000 characters in DNA secquence, the frequencies of the four base
characters A, T, C, G are counted and sorted in descending order, temporarily named the
first, second, third and fourth frequency character. Assume that a certain DNA data to be
compressed is sorted into CATG after this step.

DNA secquence
|

f1

frib |

flaa

Fig 1. Files tree.

fibb 10 f2aa 2bb 3

https://doi.org/10.1371/journal.pone.0238220.9001
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Step two: Traverse the DNA sequence, writing 1 to file fr1 when the first frequency character is
encountered, writing 0 when other characters are encountered and adding the character to
file f1. In this example, when C is encountered, 1 is written to file fr1, and when A, T, and G
are encountered, 0 is written and the three characters A, T, and G are added to the file f1.

Step three: The largest file fr1 will be reduced in size. The operation is to traverse the content
in the file fr1. If 0 is encountered and the number of consecutive occurrences is even, then
even/2 zeros are written to file frla and 0 is written to file fr1b to represent an even number
0; If 0 is encountered and the number of consecutive occurrences is odd, then (odd +1)/2
zeros are written to file frla and 1 is written to file fr1b to represent an odd number 0; If 1 is
encountered, writing to frla.

Step four (key step): The two pairs of characters in the file f1 are merged. Taking this as an
example, the AA is converted to A and 0 is written to file fr2a (representing that this is the
conversion of two identical characters) and A is added to the file £2; the AT is converted to
G and 1 is written to file fr2a (representing that this is a conversion of two different charac-
ters), write 0 to file fr2b (the two characters are descended in frequency) and G is added to
the file f2; the TA is converted to G and 1 is written to file fr2a (representing that this is a
conversion of two different characters), write 1 to file fr2b (the two characters are in ascend-
ing order of frequency) and G is added to the file f2; The same treatments are encountered
to TT, GG, TG, GT, AG, and GA.

Step five: Traverse the file f2, write 0, 10, and 11 to file fr3 for the second, third and fourth fre-
quency characters in step one, respectively.

Step six: For file frla, frlb, fr2a, fr2b, and fr3, each six binary group is converted into decimal
and then added with 60, converting binary codes into corresponding ASCII codes, and
write to flaa, f1bb, f2aa, f2bb, 3, respectively. Then write the remaining 0 to 5 binary char-
acters in the file f0 after the processing of the above five files and separated by #. At the
same time write the base sort order obtained in the first step, separated by #, and then write
the remaining 0 to 1 base character after the two characters of file f1 are merged. Finally the
files fr1, frla, fr1b, fr2a, fr2b, fr3, f1, 2 are deleted.

In the second phase of compression, the LZ77 algorithm is used to compress the files flaa,
f1bb, f2aa, £2bb, {3 and f0.

Here is an example to illustrate our method.

The original sequence is:

TGGACCGTTAATCCTTTTTTGAAGGACCTT

The first phase of compression:

rank: TCAG

fr1: 100000011001001111110000000011

frla: 100011010111111000011

fr1b: 0000

fl: GGACCGAACCGAAGGACC

f2: GGAACCCCC

fr2a: 011001110

fr2b: 01101

fr3: 1111101000000

flaa: St

f1bb:

f2aa: U
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f2bb:
3: z\
f0: 011#0000#110#01101#0#TCAG#
The second phase of compression: six files (flaa, f1bb, f2aa, f2bb, 3 and {0) are compressed
by the LZ77 algorithm.
(2) Decompression. 1. Use the LZ77 algorithm to decompress files (flaa, f1bb, f2aa, f2bb,
3 and 10).

2. Process each file:

Step one: Read the data in {0, break into tokens with delimiter #, save tokens to an array, al.

Step two: Read the data in flaa, f1bb, f2aa, f2bb and 3, convert each character into number,
subtract by 60, and then convert it into binary and write it to file frla, fr1b, fr2a, fr2b, fr3,
respectively. Then get the first, second, third, fourth, fifth element from al and append
them to frla, fr1b, fr2a, fr2b, fr3, respectively.

Step three: Take the sixth element from al, restore {2 from fr3. 11, 10, 0 are converted to three
different base characters, respectively.

Step four: Traverse the files 2, fr2a and fr2b, based on the sixth element in al, restore the file
f1, and add the seventh element in al to f1. The index of i1 is 0, and the index of i2 is 0.
First, take one character and one number from {2 and fr2a where the index of the character
and the number are equal to il. If the number is 0, the character is restored to two identical
characters, and then the value of the il is added 1, then continue to traverse; If the number
is 1, then take one number from fr2b whose index value is equal to i2, if the number is 1,
restore the original character to two other characters (in ascending order by frequency), if it
is 0, then restore the original character to the other two characters (in descending order of
frequency), and increase the values of i1 and i2 by 1 respectively to continue the traversal.

Step five: Traverse the files frla and fr1b, restore fr1. In this step the largest binary file fr1 will
be restored using both frla and fr1b files. Read a number from frla every time, if the num-
ber is 1, 1 is writted to binary file fr1. Else if the number is 0, continue to read and count the
number of zeros until we get the number 1, then one number from the fr1b is read to show
whether the number of zeros is odd or even. In the case of even number of zeros, the num-
ber of zeros is doubled and written to binary file fr1. In the case of odd number of zeros, the
number of zeros is doubled and decreased by one and written to file fr1.

Step six: Restore the original DNA sequence based on f1 and frl.

For the same example in compression, the decompression process is as follows:

In the first phase of decompression, all files are extracted.

In the second phase of decompression, we restore frl, frla, frlb, fr2a, fr2b, fr3, f1, f2 and
original DNA sequence.

al: [011, 0000, 110, 01101, 0, TCAG,]

frla: 100011010111111000011

fr1b: 0000

fr2a: 011001110

fr2b: 01101

fr3: 1111101000000

f2: GGAACCCCC

fl: GGACCGAACCGAAGGACC

fr1: 100000011001001111110000000011

PLOS ONE | https://doi.org/10.1371/journal.pone.0238220 November 25, 2020 5/8


https://doi.org/10.1371/journal.pone.0238220

PLOS ONE

A compression method for DNA

Restored original DNA sequence:

TGGACCGTTAATCCTTTTTTGAAGGACCTT.

Results and discussion

We selected ten genomes with different lengths (1~15 M) from the NCBI(National Center of
Biotechnology Information) database as a test data set, all data comes from “http://www.ncbi.
nlm.nih.gov”, the data are collected by myself. They are tested on compression ratio, compres-

sion time and decompression time. The methods are applied on same machine(AMD A8-

5550M APU with Radeon(tm) HD Graphics 2.10GHz CPU and 4.00GB of RAM) and the fol-

lowing is the experimental results. Table 1 are the datasets. The compression ratio is calculated

as (uncompressed size-compressed size)/uncompressed size.
Table 2 is the compression ratio, compression time and decompression time of our method

and the fastest method.

Table 1. The datasets.

Accession Number Number of Bases

NC_017526 2682626

NC_002942 3397754

NZ_CP015934 3453407

NZ_CP015935 3409361

NZ_CP015938 3359444

NC_013929 10148695

NC_014318 1036715

NC_013595 10341314

NC_013131 10467782

NC_010162 13033779

https://doi.org/10.1371/journal.pone.0238220.t001
Table 2. The results between our method and NSM.

SM NSM oM
CR CT DCT CR CT DCT

NC_017526 75.35 21.227 10.109 75.00 6.004 5311
NC_002942 75.41 29.772 12.612 75.02 5.351 4.947
NZ_CP015934 75.41 28.130 12.543 75.05 5.985 5.073
NZ_CP015935 75.40 28.507 13.264 75.02 5.529 5.733
NZ_CP015938 75.42 23.882 11.726 75.07 5.133 5.060
NC_013929 76.43 67.131 44.774 75.17 9.018 17.929
NC_014318 76.42 63.687 33.048 75.15 9.870 15.742
NC_013595 76.35 63.695 34.395 75.17 11.217 14.430
NC_013131 76.22 64.265 34.553 75.06 8.987 18.589
NC_010162 76.28 79.472 50.957 75.06 12.564 25.590
Average 75.87 46.977 25.798 75.08 7.966 11.840

SM: Sequence name.

NSM: Nour and Sharawi’ s method.
OM: Our method.

CR: compression ratio(%).

CT: compression time(s).

DCT: decompression time(s).

https://doi.org/10.1371/journal.pone.0238220.t002
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Table 3. Compression benchmarks for state-of-the-art pure genomic compression tools.

SM

NC_017526
NC_002942
NZ_CP015934
NZ_CP015935
NZ_CP015938
NC_013929
NC_014318
NC_013595
NC_013131
NC_010162

Average

SM: Sequence name.
OM: Our method.
CR: compression ratio(%).

CT: compression time(s).

https://doi.org/10.1371/journal.pone.0238220.t003

CR
77.45
77.41
77.41
77.40
77.42
77.43
77.42
77.35
77.22
77.28
77.34

XM FCM-Mx OM
CT CR CT CR CT
41.227 76.12 35.102 75.00 6.004
49.772 76.15 41.722 75.02 5.351
48.130 76.39 39.603 75.05 5.985
48.507 76.44 39.541 75.02 5.529
43.882 76.21 35.796 75.07 5.133
107.131 76.33 99.305 75.17 9.018
103.687 76.67 95.850 75.15 9.870
103.695 76.15 95.208 75.17 11.217
114.265 76.13 103.209 75.06 8.987
139.472 76.17 124.167 75.06 12.564
79.977 76.28 70.950 75.08 7.966

Table 3 is the compression ratio, compression time of our method and the two advanced
compression tools.

According to the experiment results, we can see that although our method has a slight
reduction in the compression ratio, it reduces 83% of the compression time and 54% decom-
pression time on average than Nour and Sharawi’ s method, which is the fastest method so far.
What’s more, our method has a wider range of application than Nour and Sharawi’s method.
Our compression method needs less compression time, the compression time is decreased by
more than 90% on average than XM and FCM-Mx. The proposed method offers the best com-
pression time and decompression when compared to all existing techniques.

Conclusion

As the amount of DNA data continues to grow, we believe that he LZ77 algorithm, will play a
key role in DNA data compression due to their simplicity and applicability.

Directly using general compression algorithms are not ideal for compressing DNA data.
So it is necessary to perform some processing on the DNA data before using the general
compression algorithm. The compression ratio was also improved compared with directly
using LZ77 algorithm. The compression time is decreased by 83% and the decompression
time is decreased by 54% on average and the compression ratio is almost the same compared
with the fastest available method such as Nour and Sharawi’ s method and our method has a
wider range of application. Therefore, our method has practical value for compression of DNA
data.
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