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Abstract
Tryptic serine proteases of bronchial epithelium regulate ion flux, barrier integrity, and aller-

gic inflammation. Inhibition of some of these proteases is a strategy to improve mucociliary

function in cystic fibrosis and asthmatic inflammation. Several inhibitors have been tested in

pre-clinical animal models and humans. We hypothesized that these inhibitors inactivate a

variety of airway protease targets, potentially with bystander effects. To establish relative

potencies and modes of action, we compared inactivation of human prostasin, matriptase,

airway trypsin-like protease (HAT), and β-tryptase by nafamostat, camostat, bis(5-amidino-

2-benzimidazolyl)methane (BABIM), aprotinin, and benzamidine. Nafamostat achieved

complete, nearly stoichiometric and very slowly reversible inhibition of matriptase and tryp-

tase, but inhibited prostasin less potently and was weakest versus HAT. The IC50 of nafa-

mostat’s leaving group, 6-amidino-2-naphthol, was >104-fold higher than that of nafamostat

itself, consistent with suicide rather than product inhibition as mechanisms of prolonged

inactivation. Stoichiometric release of 6-amidino-2-naphthol allowed highly sensitive fluoro-

metric estimation of active-site concentration in preparations of matriptase and tryptase.

Camostat inactivated all enzymes but was less potent overall and weakest towards matrip-

tase, which, however was strongly inhibited by BABIM. Aprotinin exhibited nearly stoichio-

metric inhibition of prostasin and matriptase, but was much weaker towards HAT and was

completely ineffective versus tryptase. Benzamidine was universally weak. Thus, each

inhibitor profile was distinct. Nafamostat, camostat and aprotinin markedly reduced tryptic

activity on the apical surface of cystic fibrosis airway epithelial monolayers, suggesting

prostasin as the major source of such activity and supporting strategies targeting prostasin

for inactivation.
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Introduction
Prostasin, matriptase, airway trypsin-like protease, and mast cell β-tryptase are trypsin-like
proteases associated with airway mucosa. The present study profiles inhibitor susceptibility
and mechanisms of inactivation of purified forms of these proteases. Prostasin (product of
PRSS8), also called channel-activating protease, is a type I transmembrane protease that is
anchored to airway cell surfaces via glycosylphosphatidyl inositol [1,2]. By activating the epi-
thelial sodium channel (ENaC), prostasin increases Na+ reabsorption by luminal epithelium,
thereby regulating hydration. Cell surface-prostasin resists inactivation by endogenous anti-
proteases [3]. Knockdown of expression [4] and pharmacological inhibition decrease ENaC-
mediated Na+ flux and are therapeutic strategies in cystic fibrosis [5,6], which may be associ-
ated with overactive ENaC. However, prostasin expression by alveolar epithelium is required
for normal fluid clearance [7]. For proposed functions like regulating tight junctions and pre-
serving epithelial barrier integrity [8], prostasin may depend on matriptase (product of ST14)
[9,10]. In contrast to prostasin, matriptase is a type II transmembrane protease with non-cata-
lytic extracellular domains and is regulated by hepatocyte growth factor activator inhibitor-1
[11]. Matriptase and prostasin activation may be co-dependent [10,12]. Therapeutic inhibition
of matriptase has been proposed in conditions, like malignancy, in which it is overexpressed
and may promote tumor cell tissue invasion [13]. On the other hand, matriptase is critical for
skin and gut barrier function and is protective in models of colitis [14].

Less is known about airway trypsin-like protease (HAT in humans, product of
TMPRSS11D) [15–17], which is a type II transmembrane protease. HAT is shed as an active,
soluble protease into airways, where it promotes mucus production and is a target for inhibi-
tion in bronchitis [18]. β-tryptases (products of TPSAB1 and TPSB2) are produced by epithe-
lium-infiltrating mast cells in asthma [19], in which tryptase inactivation is potentially
therapeutic [20]. β-tryptase assembles into a toroidal tetramer, which affords protection from
proteinaceous inactivators of trypsin-like proteases. It is stored in secretory granules and
released from stimulated mast cells. Secreted β-tryptases can stimulate epithelial cell growth,
cytokine production, and recruitment of inflammatory cells [21,22].

The inhibitors analyzed in this work were selected for therapeutic potential as topical inhibi-
tors of tryptic proteases in the airway lumen. Most of these compounds have been tested in pre-
clinical models of human disease or in humans, although neither the therapeutically relevant
target nor the potential bystander targets of these inhibitors is known with certainty. Two of
the inhibitors, nafamostat and camostat, are guanidinobenzoates that may be cleaved by prote-
ases and can be suicide inhibitors [23–25]. Nafamostat has been used clinically as an anticoagu-
lant in humans, in whom the targets are thought to be proteases of the clotting cascade. It is an
inhibitory substrate for pancreatic trypsin, with which it forms a stable acyl-enzyme intermedi-
ate [23], and it is a particularly potent inhibitor of mast cell tryptases [26]. Nafamostat reduces
inflammation in rats with colitis and mice with experimental asthma, possibly by inactivating
tryptases [27,28], and reduces tryptase-induced itching in mice [29]. Camostat, on the other
hand, attenuates kidney fibrosis in a rat model of chronic renal failure [30]. Given to hyperten-
sive rats, camostat reduces blood pressure and improves kidney function [31], possibly by tar-
geting renal prostasin. When applied to airway mucosa, camostat durably inhibits ENaC in
guinea pig trachea, enhances mucociliary clearance in sheep bronchi [6], and increases transe-
pithelial nasal potential difference in humans with cystic fibrosis, by mechanisms speculated to
involve inhibition of prostasin [32].

Benzamidine and BABIM, by contrast, are competitive, reversible inhibitors. Benzamidine
is a general tryptic protease inhibitor that reduces tryptase-induced enhancement of muscle
contraction in isolated bronchi [33]. BABIM is a bifunctional aromatic amidine that inhibits
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tryptase and trypsin [34,35]. In sheep, topical BABIM blocks asthma-like airway responses,
including increased resistance in allergen-challenged airway, potentially by inhibiting tryptase
[20]. Aprotinin is a proteinaceous general inhibitor of tryptic serine proteases that blocks the
substrate-binding site. Because of its size, it is ineffective versus proteases with restricted active
sites [36]. It has been used as a drug in humans to treat pancreatitis and to limit blood loss in
surgery [37]. Clinical targets may include kallikreins and activated proteases associated with
complement activation and hemostasis. Aprotinin and related inhibitors are proposed as
inhaled therapeutic inhibitors in cystic fibrosis [5]. When applied intratracheally, aprotinin
attenuates epithelial ion transport in guinea pigs [38], and when applied to human airway epi-
thelial monolayers, aprotinin reduces ENaC function [6] and surface tryptic activity [3].

Materials and Methods

Sources of key reagents
Recombinant human prostasin, matriptase and HAT, expressed as soluble catalytic domains,
were obtained from R&D Systems (Minneapolis, MN). Human lung (β) tryptase was from
EMD-Millipore (Billerica, MA). The tryptic peptidase substrates t-butyloxycarbonyl-L-Gln-
L-Ala-L-Arg-4-nitroanilide (QAR) and N-(p-tosyl)-Gly-L-Pro-L-Lys-4-nitroanilide (GPK)
were from Bachem Americas (Torrance, CA) and Sigma-Aldrich (St. Louis, MO), respectively.
Protease inhibitors camostat mesylate and nafamostat mesylate were from Santa Cruz Biotech-
nology (Dallas, TX), as was nafamostat’s cleavage product 6-amidino-2-naphthol. Benzami-
dine, aprotinin, p-nitrophenyl-p’-guanidinobenzoate and bovine trypsin were from Sigma-
Aldrich. BABIM was provided by Dr. Richard Tidwell as described previously [34]. Structures
of chemical inhibitors used in this study are given in Fig 1.

Determination of IC50

To compare potency of irreversible (or slowly reversible) inhibitors (for which Ki values may
be inapplicable) with potency of competitive, reversible inhibitors, we determined the concen-
tration of inhibitor that achieves 50% inactivation (IC50) of soluble forms of the following
human airway tryptic proteases: prostasin, matriptase, HAT, and β-tryptase. IC50 was deter-
mined by assaying initial rates of hydrolysis of 1-mMQAR in 50-mM Tris-HCl (pH 7.6) con-
taining 120-mM NaCl 0.05% Tween 20, and 100 μg/ml bovine lung heparin (Sigma-Aldrich) at
37°C over a range of inhibitor concentrations (shown in Table 1). Serial absorbance measure-
ments detecting products of substrate hydrolysis were performed at 410 nm in wells of 96-well,
flat-bottom, polystyrene Costar plates (Corning, Tewksbury, MA) in a kinetic, temperature-
controlled spectrophotometer (Synergy 2, BioTek Instruments, Winooski, VT). Microplates
were covered with TempPlate Optical Film (USA Scientific, Ocala, FL) during spectrophoto-
metric measurements to minimize evaporation.

Measurement of duration of inhibition by nafamostat
The durability of nafamostat inhibition was tested for the two proteases (matriptase and β-
tryptase) for which inhibition was nearly stoichiometric. To permit assessment of reversibility,
the proteases and inhibitors were combined in equimolar concentrations in the presence of
substrate QAR under conditions in which enzyme activity was nearly but not completely inhib-
ited. Recovery of activity was monitored over 4–5 hours and compared with activity of unin-
hibited enzyme.
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Fig 1. Structures of aromatic amidines and related compounds. All compounds have amidino and/or guanidino functional groups. BABIM is bifunctional
but unhydrolyzable. Camostat and nafamostat share a cleavable guanidinobenzoyl moiety with potential to form an acyl intermediate involving the active site
serine hydroxyl of serine proteases. The dotted lines indicate the site of cleavage. 6-Amidino-2-naphthol is nafamostat’s fluorescent leaving group generated
by formation of the acyl intermediate, and itself inhibits tryptic serine proteases.

doi:10.1371/journal.pone.0141169.g001

Table 1. Protease and inhibitor concentrations.

HAT (0.72 nM)a Matriptase (2.4 nM)a Prostasin (80 nM)a Tryptase (0.70 nM)a

Aprotinin 0.70–7000 nM 1.7–96 nM 0.80–320 nM 7.0–28000 nM

BABIM 0.7–350 nM 0.38–96 nM 13–1600 nM 0.7–5600 nM

Benzamidine 1.6–20 μM 0.24–1200 μM 1.6–20 μM 0.007–175 μM

Camostat 0.7–350 nM 3.8–12000 nM 13–3200 nM 0.044–350 nM

Nafamostat 1.4–4400 nM 0.0038–9.6 nM 8.0–8000 nM 0.014–3.5 nM

6-Amidino-2-naphthol 0.036–910 μM 0.15–480 μM NDb 0.044–180 μM

a Parentheses contain estimated protease concentration
b Not done, due to insufficient inhibition

doi:10.1371/journal.pone.0141169.t001
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Assessment of product inhibition
Catalytic hydrolysis of nafamostat yields free 6-amidino-2-naphthol, which is an aromatic
amidine related to several of the compounds tested in this study (see Fig 1) with potential to
inhibit tryptic serine proteases. Thus, it could cause “product inhibition” and potentially
account for prolonged inhibition of protease activity by nafamostat. To test this possibility,
we used substrate QAR to compare the IC50 of nafamostat and 6-amidino-2-naphthol versus
matriptase and β-tryptase.

Active site titration of protease active sites using nafamostat
As a calibration control, bovine trypsin was active site-titrated by an established colorimetric
method as described [39]. Briefly, 1- to 3-microliter aliquots of trypsin (30 mg/ml) were added
to 0.5 ml of 1-mM p-nitrophenyl-p’-guanidinobenzoate in 0.1 M Tris-HCl (pH 8.2) containing
0.02 M CaCl2 in a quartz cuvette at 37°C while monitoring the “burst” increase in Absorbance at
405 nm on a Genesys 10S UV-Vis spectrophotometer equipped with a Peltier cuvette jacket
(Thermo Fisher Scientific, Waltham, MA). The concentration of trypsin active sites was deduced
using a molar extinction coefficient for 4-nitrophenol of 1.8 x 104 Absorbance Units M-1 cm-1.
The same preparation of trypsin then was active site-titrated by the more sensitive fluorometric
approach using nafamostat. To establish the relationship between fluorescence emission (in
mV) and concentration for 6-amidino-2-naphthol, which is the fluorescent leaving group gener-
ated by formation of the acyl intermediate by trypsin’s attack on nafamostat [23], serial dilutions
of 6-amidino-2-naphthol in PBS were prepared. Fluorescence was measured using excitation
and emission wavelengths of 320 nm and 490 nm, respectively, by injecting 0.1-ml aliquots into
the 16-microliter flow cell of a Jasco FP-2020 Plus Fluorescence Detector (gain = 1000, attenua-
tion = 8; Jasco Incorporated, Easton MD) at 0.1 ml/min to minimize bleaching. Flow was con-
trolled by an AKTA Purifier 10 chromatography system (GE Healthcare Biosciences, Pittsburgh,
PA). Fluorescence readings were blanked by injecting PBS. Molarity of active sites in solutions of
trypsin was estimated and compared with values obtained by the colorimetric p-nitrophenyl-p’-
guanidinobenzoate approach by adding aliquots of enzyme stock solutions to nafamostat in PBS
and measuring increase in fluorescence. Active site concentrations in preparations of matriptase
and β-tryptase were determined fluorometrically in similar fashion.

Determination of specific activities
Standard assay conditions for active site-titrated enzymes were 1-mMQAR in 50-mM Tris-
HCl (pH 8.8) containing 50-mMNaCl and 0.01% Tween 20 at 37°C for matriptase, and 1-mM
GPK in PBS with 100 μg/ml bovine lung heparin (Sigma-Aldrich) for β-tryptase.

Culturing human airway cells
Human CFBE41o- bronchial epithelial cells [40,41] were grown to confluence and differentiated
in air-liquid interface culture as previously described [3]. Briefly, cells were seeded to confluence
at 3x105 cells/well onto Costar Transwell membranes (0.33 cm2, 0.4-μm pores; Corning; Lowell,
MA) coated with bovine serum albumin (1 mg/ml; Invitrogen, Carlsbad, CA), human fibronec-
tin (30 μg/ml; BD Biosciences; San Jose, CA), and bovine collagen type II (10 μg/ml; BD Biosci-
ences) in LHC basal medium (Invitrogen) and grown in minimal essential medium with Earle’s
salt supplemented with 10% fetal bovine serum, 4 mM L-glutamine, 100 U/ml penicillin G, and
300 μg/ml hygromycin at 37°C in a 5% CO2 incubator. Apical medium was removed 48 h after
seeding to initiate air-interface culture. Basolateral medium was changed every 48 h for 12 days.
Except as specified, culture media and supplements were from Invitrogen.
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Assay of protease activity on the surface of airway epithelial cell
monolayers
Tryptic protease activity on the apical surface of confluent CFBE41o- bronchial epithelial cell
monolayers was measured by methods previously described [3]. We employed these cells
because they form differentiated, electrically resistant monolayers that contain apical prostasin
and matriptase and surface aprotinin-inhibitable tryptic activity [3]. Briefly, cells were washed
in PBS after 12 days of air-interface culture on Transwell inserts. The apical side of the mono-
layer was immersed in 0.2 ml of PBS alone, PBS containing tryptic substrate QAR (1 mM)
alone as control, or PBS containing QAR plus inhibitor (0.1 mM aprotinin, 0.01 mM nafamo-
stat, or 0.01 mM camostat). The basolateral surface was bathed in PBS alone. Tryptic activity in
aliquots of apical conditioned medium was monitored for 5 h at 37°C by spectrophotometry at
410 nm using a Synergy 2 SL Microplate Reader (BioTek Instruments).

Statistical methods
IC50 values and associated confidence intervals were determined using the Hill slope curve-fit-
ting utility implemented in Prism (GraphPad Software, La Jolla, CA). Differences in surface
tryptic activity of cells incubated in the presence of substrate alone versus substrate plus inhibi-
tor were compared using 1-tailed Student’s t-tests.

Results

Inhibitor susceptibility of tryptic airway proteases
The in vitro, steady state susceptibility of four human airway proteases (HAT, matriptase, pros-
tasin and β-tryptase) to inactivation varied depending on the inhibitor studied. Fig 2 compares
the potency of individual inhibitors versus the four proteases. Fig 3 compares the inhibitor sus-
ceptibility of individual proteases versus the five inhibitors. To facilitate comparison of poten-
cies over a range of inhibitor and protease concentrations, the data are graphed as percentage
of uninhibited enzyme activity versus log of the ratio of inhibitor concentration to starting con-
centration of active enzyme (log10 ([inhibitor]/[enzyme])). In such plots, activity is 0% when
log10 ([inhibitor]/[enzyme]) = 0 for an inhibitor that inactivates a protease with full potency
and 1:1 stoichiometry. The normalized IC50 for such an inhibitor would be log10 (0.5) = -0.3.
The observed IC50 data are shown in Table 2.

As revealed in Fig 2, nafamostat achieved complete and nearly 1:1 stoichiometric inactiva-
tion of matriptase and tryptase, but less potently inhibited prostasin and was weak versus
HAT, for which ~10,000-fold excess of inhibitor over enzyme was required to achieve complete
inhibition. For both matriptase and tryptase, nafamostat was the most potent of all anti-prote-
ases studied. Camostat inactivated all enzymes but overall was substantially less potent than
nafamostat, and exhibited the least ability of all of the inhibitors to discriminate between the
tryptic airway proteases examined in this study. Although camostat, like nafamostat, is a guani-
dinobenzoate (see Fig 1), it was weakest towards matriptase whereas nafamostat was the stron-
gest, suggesting that the leaving groups (prior to release) for these cleavable inhibitors are
major determinants of specificity and potency. BABIM, which is an aromatic amidine but is
not hydrolysable like nafamostat and camostat, was a complete and potent inhibitor of matrip-
tase, but was less so for the other enzymes. Aprotinin exhibited nearly 1:1 stoichiometric inhi-
bition of prostasin and matriptase, but was much weaker towards HAT and completely
ineffective versus tryptase. Benzamidine was universally weak and did not fully inactivate any
of the proteases at stoichiometries as high as 1,000,000:1.
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Inhibition by 6-amidino-2-naphthol does not explain high potency of
nafamostat versus matriptase and β-tryptase
As shown in Fig 4, the IC50 of nafamostat’s leaving group, 6-amidino-2-naphthol, was>104-
fold higher for matriptase and β-tryptase than the IC50 of nafamostat itself. Although one
potential mechanism of high potency of a cleavable inhibitor is generation of a leaving group
that is a more potent competitive inhibitor than is the uncleaved parent compound, the very
high IC50 of 6-amidino-2-naphthol relative to that of nafamostat itself suggests that this is not

Fig 2. Comparison of inhibitor potencies. Data are expressed as percentage of activity relative to no-inhibitor control activity versus log10 ratios of inhibitor
to protease concentration. The proteases tested are human airway trypsin-like protease (HAT), matriptase, prostasin and β-tryptase. The dashed vertical line
marks the inhibitor/enzyme ratio at which 50% inhibition is predicted for inactivation with 1:1 stoichiometry. Aprotinin achieves near-stoichiometric inhibition of
prostasin and matriptase, whereas nafamostat achieves near-stoichiometric inhibition of tryptase and matriptase. N = 3–4; error bars show ± S.D.

doi:10.1371/journal.pone.0141169.g002
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the case. Therefore, inhibition by the non-acyl component of hydrolyzed nafamostat does not
explain nafamostat’s high potency upon cleavage by these enzymes and, given the very low
rates of nafamostat turnover, 6-amidino-2-naphthol would be unlikely to achieve the concen-
trations needed to reduce matriptase and β-tryptase activity.

Fig 3. Comparison of enzyme susceptibility to inhibition. These panels display the data in Fig 2 to facilitate comparison of sensitivity of individual
proteases to the inhibitors tested. N = 3–4; error bars show ± S.D.

doi:10.1371/journal.pone.0141169.g003
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Inhibition of matriptase and β-tryptase by nafamostat spontaneously
reverses
At nearly stoichiometric ratios of nafamostat to enzyme, inhibition of tryptase and β-tryptase
slowly reverses, as seen in Fig 5. This behavior is consistent with nafamostat acting as a suicide
inhibitor, with formation of a covalent (acyl) intermediate that is eventually broken by hydroly-
sis, with full release of the inhibitor and restoration of the free serine hydroxyl and enzymatic
activity. The observed reversibility is not consistent with tight, non-covalent competitive inhi-
bition, which should be stable over time, assuming that the inhibitor and protease are chemi-
cally and enzymatically stable. The rate of recovery of proteolytic activity under conditions in
which the enzyme starts is in slight molar excess of nafamostat is 1–2% per hour, indicative of
recovery kinetics and deacylation rates that are very slow from a pharmaceutical standpoint.
Furthermore, in conditions for which there is a substantial molar excess of nafamostat, no
reversibility is observed (not shown), presumably because any regenerated enzyme is promptly
inactivated by formation of an acyl intermediate with a fresh molecule of nafamostat.

Sensitive active site-titration assay of matriptase and β-tryptase using
nafamostat
Given the observed nearly 1:1 stoichiometry and slow reversal of inhibition of matriptase and
β-tryptase by nafamostat, we sought to detect release of 6-amidino-2-naphthol and to explore
the possibility of using nafamostat as a “burst titrant” of active sites in preparations of these
enzymes. We did not assess this possibility for prostasin or HAT because inhibition for these
proteases did not approach 1:1 stoichiometry. Estimates of active site concentration in our
stock preparation of trypsin were similar whether obtained using the colorimetric approach
with p-nitrophenyl-p’-guanidinobenzoate or the fluorometric approach with nafamostat (0.83
versus 0.62 mM, respectively). However, the nafamostat method, as implemented using the in-
line flow cell of the Jasco FP-2020 Plus Fluorescence Detector, was far more sensitive, requiring
dilution of trypsin stock solution ~1,000-fold. The fluorometric nafamostat method, being
capable of detecting active sites in the 1-nM range (see Fig 6) using sample volumes of 0.1 ml
or less, offered the prospect of minimizing consumption of enzymes that are difficult or costly
to produce.

Application of the fluorometric nafamostat approach to matriptase and β-tryptase (Fig 6)
suggests its utility as a sensitive method to quantify active sites. Titration of our preparation of
matriptase identified an active-site concentration of 0.12 ± 0.02 μM (mean ± SD, N = 4), pre-
dicting that the preparation is 22% active using a denominator based on the manufacturer’s
estimate of protein concentration. Based on the active site estimate, the specific activity of

Table 2. Normalized IC50 (ratio of inhibitor to protease concentration achieving 50% inhibition).

HAT Matriptase Prostasin Tryptase

Aprotinin 147 [134, 163]a 0.76 [0.59, 0.98] 0.86 [0.36, 2.02] NDb

BABIM 71 [48, 105] 0.98 [0.87, 1.11] ND 108 [78, 149]

Benzamidine 1.4e6 [2.0e5, 9.6e6] 1.1e6 [9.4e5, 1.2e6] ND 4.7e4 [3.4e4, 6.5e4]

Camostat 20 [16, 24] 96 [80, 115] 14 [7.7, 25] 5.2 [3.7, 7.2]

Nafamostat 191 [154, 239] 0.21 [0.16, 0.26] 11 [5.6, 20] 0.44 [0.29, 0.67]

6-Amidino-2-naphthol 3.8e5 [1.6e5, 9.3e5] 6.0e4 [1.6e4, 2.2e5] ND 1.2e4 [8.5e3, 1.7e4]

aBrackets contain lower and upper limits of 95% confidence intervals
bNot determined, due to insufficient inhibition

doi:10.1371/journal.pone.0141169.t002
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matriptase for substrate QAR using our standard assay conditions is 3 x 107 Absorbance
Units410 nm min-1 M-1. Assay of β-tryptase active sites in similar fashion yielded an active site
concentration of 2.1 ± 0.1 μM (mean ± SD, N = 3), which is 110% of the value based on the
manufacturer’s estimate of protein concentration. Based on the active site estimate, the specific
activity of β-tryptase for substrate GPK using our standard assay conditions is 2.5 x 107 Absor-
bance Units410 nm min-1 M-1. Nafamostat itself has minimal fluorescence at excitation and
emission wavelengths optimized for 6-amidino-2-naphthol [23]. The observed low-level base-
line fluorescence in stock solutions of nafamostat (as seen in Fig 6) may be due to non-

Fig 4. Product inhibition by 6-amidino-2-naphthol. These graphs compare inhibitory potency of nafamostat with that of its liberated cleavage product,
6-amidino-2-naphthol, versus matriptase and β-tryptase.

doi:10.1371/journal.pone.0141169.g004
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enzymatic hydrolytic conversion of a small proportion of nafamostat to guanidinobenzoate
and fluorogenic 6-amidino-2-naphthol.

Inhibition of apical tryptic enzyme activity in epithelial cells cultured at an
air-liquid interface
Fig 7 reveals that apical, cell surface, QAR-hydrolyzing protease activity is almost completely
inhibited by aprotinin (100 μM), consistent with our prior study [3], while establishing that

Fig 5. Recovery of matriptase and tryptase from inhibition by nafamostat. The upper panels compare cumulative hydrolysis of substrate QAR by
matriptase and β-tryptase with and without addition of near-equimolar nafamostat. The bottom panels contain a subset of the data obtained in the presence
of nafamostat focusing on a narrower range of y-axis values to reveal slow recovery of activity consistent with substrate-like behavior of nafamostat and
reversal of inhibition. The dashed lines are projections of initial and terminal slopes to emphasize increasing rates of substrate hydrolysis as matriptase and
tryptase escape effects of limiting amounts of inhibitor.

doi:10.1371/journal.pone.0141169.g005
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nafamostat and camostat (10 μM) are nearly as effective as aprotinin. In conjunction with our
prior studies showing little if any active matriptase on the apical surface of CFBE41o- cells cul-
tured in the same manner [3], the present data are consistent with prostasin (and not HAT or
β-tryptase) being the principal source of apical tryptic activity.

Discussion
This study focuses on four proteases that share three major attributes: 1) they are trypsin-like,
2) they are found in human airway epithelium and 3) they are proposed as targets for inhibi-
tion to treat allergic or infectious airway disorders associated with inflammation and hyperse-
cretion. This first direct comparison of these proteases reveals that each has a distinct profile of
susceptibility to the inhibitors shown in Fig 1, despite sharing a capacity to cleave peptides
after arginine residues. Several inhibitors examined here have been used to target specific air-
way tryptic proteases in vivo. Although these inhibitors exhibit a broad range of potency, none
is selective for any one of the proteases examined (as shown in Figs 2 and 3. Among the impli-
cations of these findings is that pathology-modifying phenotypes resulting from application of
these inhibitors potentially may arise from inactivation of proteases other than those that were
targeted. The findings also raise the possibility of undesired bystander effects resulting from
inactivation of these and other tryptic proteases. On the other hand, some of the inhibitors,
such as nafamostat for tryptase and matriptase—and aprotinin for prostasin—were

Fig 6. Active site titration by detecting release of 6-amidino-2-naphthol from nafamostat. Panel A shows output (in mV) from an in-line fluorescence
detector generated by serial injections of 0.1-ml aliquots of a range of concentrations of 6-amidino-2-naphthol, nafamostat alone, and β-tryptase-incubated
nafamostat into the flow cell of a chromatographic pump system at a flow of 0.1 ml/min of PBS to minimize bleaching. Each injection was chased by injection
of an equal volume of PBS alone and each set of injections was performed in triplicate. The inset is a graph of a standard curve of fluorescence output versus
concentration of 6-amidino-2-naphthol, by reference to which the active-site concentration of β-tryptase was derived. Panel B shows examples of 6-amidino-
2-naphthol detected in a similar manner after incubation of nafamostat with matriptase.

doi:10.1371/journal.pone.0141169.g006
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exceptionally potent, raising the possibility of developing more selective inhibitors with
retained potency.

In the case of β-tryptase and matriptase, the findings show that nafamostat’s high potency
relates in part to actions as a suicide substrate. This results in formation of a covalently bound,
inactivating intermediate that is stable for hours in aqueous solution. In this regard, nafamo-
stat’s bifunctionality could influence potency. As shown in Fig 1, nafamostat has the potential
to occupy the tryptic primary specificity pocket using either its guanidino or its amidino end,
but not both simultaneously. These docking modes have different consequences. Binding via
the guanidino end positions nafamostat’s carbonyl carbon to be attacked by the protease’s
active site serine Oγ to yield the 4-guanidino-benzoylated “acyl” enzyme. This is a substrate-
like interaction that leaves a bound fragment that cannot be competitively displaced by sub-
strate. By contrast, docking with the amidino end in the specificity pocket is a competitive,
reversible interaction that neither positions nafamostat for hydrolytic attack nor results in for-
mation of an acyl intermediate. In the examples of matriptase and β-tryptase, the nearly 1:1
stoichiometry of inactivation by nafamostat, combined with the evidence of 6-amidino-

Fig 7. Inhibition of surface tryptic activity on bronchial epithelial cells.Monolayers of CFBE41o- cells
cultured on Transwell inserts at an air-liquid interface to promote differentiation, including apical-basolateral
polarization, were assayed for surface tryptic activity by adding substrate QAR to apical bathing medium, with
or without addition of camostat, nafamostat or aprotinin, followed by spectrophotometric monitoring of
cleaved substrate at 410 nm. *P <0.05 and **P <0.01 versus change in absorbance in QARmedium without
inhibitor.

doi:10.1371/journal.pone.0141169.g007
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2-naphthol release and the finding that inhibition by 6-amidino-2-naphthol itself is compara-
tively weak, suggest that the binding mode with the guanidino end in the primary specificity
pocket is highly favored. This is less likely to be the case for HAT and prostasin, towards which
nafamostat is less potent.

It can be noted from the structures in Fig 1 that camostat lacks nafamostat’s duality. Binding
via its guanidino end is likely its only productive mode of action as an inhibitor, and predicts
that its interactions necessarily involve formation of an acyl intermediate. However, the finding
that camostat is much less potent than nafamostat as an inhibitor of matriptase and β-tryptase
reveals that the mere presence of a 4-guanidino-benzoate moiety susceptible to nucleophilic
attack to form a covalent intermediate does not guarantee high potency. Nonetheless, inhibi-
tion by camostat is complete at higher ratios of inhibitor to enzyme and is likely to be as dura-
ble as inhibition by nafamostat, given that the 4-guanidino benzoate moiety ends up covalently
linked to prostasin to form the acyl enzyme complex captured and identified in prostasin crys-
tallized either with camostat [25] or with nafamostat [24].

Nafamostat’s ability to form an inhibitory complex at low concentration via a cleaved inter-
mediate is undoubtedly responsible for the report of a highly favorable (sub-nanomolar) disso-
ciation constant (Ki) when tested versus human β-tryptase [26]. However, as the present
results suggest that nafamostat is a suicide substrate and burst titrant for tryptase, Ki calcula-
tions, which assume a competitive and reversible mode of inhibition, are inapplicable to nafa-
mostat inhibition of tryptase, for which the resulting data would depend on enzyme
concentration. Similar considerations apply to camostat, which yielded apparent Ki values that
were>100-fold higher for prostasin than for matriptase [6], in contrast to our data in Table 2
showing that camostat is actually less potent versus matriptase than versus prostasin based on
determination of concentration-normalized IC50, which is a more appropriate comparator for
a suicide substrate. The discrepancy probably relates to the need to use concentrations of pros-
tasin in tryptic substrate cleavage assays that are high relative to the concentrations needed of
matriptase, which is an intrinsically more efficient enzyme [3]. Regardless, our data suggest
that release of fluorogenic 6-amidino-4-naphthol from nafamostat by the catalytic serine of
matriptase and β-tryptase is an active-site titration method that is much more sensitive than
colorimetric methods. However, the findings also suggest that nafamostat will be less useful in
this regard for HAT and prostasin, for which stoichiometries are less favorable.

The kinetic comparisons of prostasin, matriptase and HAT with the native, soluble β-tryp-
tase tetramer were conducted with recombinant forms of these enzymes expressed as soluble
catalytic domains. This is a matter of necessity since the assays developed to detect the activity
of membrane-bound tryptic proteases are ill-suited to IC50 determinations because of low con-
centrations of surface enzyme, the need for prolonged incubations, and the presence of other
peptidases in living cells. A potential caveat to the work reported here is that inhibitor suscepti-
bility of membrane-anchored type I (prostasin) and type II proteases (matriptase and HAT)
may differ from that of soluble forms of the enzymes due to active site blockade or allosteric
effects. However, matriptase and prostasin can exist natively in shed, soluble forms, and HAT’s
shed form may be the native enzyme’s dominant form [18]. Furthermore, the small inhibitors
profiled here are unlikely to be subject to steric constraints that might limit ability of a large,
proteinaceous inhibitor to inactivate a surface-bound enzyme. Indeed, even aprotinin, which is
the largest inhibitor in the present study, sharply reduces apical surface tryptic activity in cul-
tured human airway epithelial cells, which contain prostasin and matriptase in membrane-
attached forms [3].

Although one of the principal findings of this study is the relative lack of inhibitor specificity
towards four of the tryptic enzymes that have been considered as candidates for therapeutic
inactivation in airway diseases, our data provide grounds for considering that prostasin is the
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principal source of apical surface tryptic activity in the human airway epithelial cell monolayers
generating the data in Fig 7. The reasoning involves combining the present data generated
using small inhibitors with prior studies using anti-matriptase single chain antibody [3], which
is potent and selective for matriptase but inhibited only a small portion of aprotinin-sensitive
tryptic activity on the apical surface of airway epithelial cells. Clearly, β-tryptases cannot be a
source aprotinin-sensitive activity, because human β-tryptases completely resist aprotinin,
even though aprotinin inhibits most trypsin-like serine proteases. The basis of tryptase’s
unusual resistance to aprotinin is a restricted active site [36]. Compared to prostasin and
matriptase, HAT is much less sensitive to aprotinin and nafamostat, but all enzymes are simi-
larly sensitive to camostat. Thus, the data are consistent with prostasin being a major source of
airway surface tryptic activity and the major source of aprotinin-sensitive activity on the apical
surface of cultured airway cells.
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