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utility of certain containment strategies including gateway testing, surveillance testing,
and contact tracing as well as individual level control measures such as mask wearing and
social distancing. We modify a standard SEIR-type model to reflect what is currently
known about COVID-19. We also modify the model to reflect the population present on a

Iég{zv:xisr'us college campus, separating it into students and faculty. This is done in order to capture the
COVID-19 expected different contact rates between groups as well as the expected difference in
University/college campus outcomes based on age known for COVID-19. We aim to provide insight into which stra-
Epidemiological models tegies are most effective, rather than predict exact numbers of infections. We analyze
SEIR effectiveness by looking at relative changes in the total number of cases as well as the
Contact tracing effect a measure has on the estimated basic reproductive number. We find that the total
Surveillance testing 2010 MSC: 92-10 number of infections is most sensitive to parameters relating to student behaviors. We also

find that contact tracing can be an effective control strategy when surveillance testing is
unavailable. Lastly, we validate the model using data from Villanova University's online
COVID-19 Dashboard from Fall 2020 and find good agreement between model and data
when superspreader events are incorporated in the model as shocks to the number of
infected individuals approximately two weeks after each superspreader event.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications
Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The majority of us have felt the impact of COVID-19 on our daily lives and many understand how important it is for public
health and our own individual safety to take part in social distancing, mask wearing, and other strategies for mitigating the
spread of the virus. College campuses, in particular, provide an ideal breeding ground for coronavirus as we have group living
situations and lots of population mixing within class settings and other social events. In addition, the younger population
present on campuses tend to have more social contacts as well as an increased likelihood of asymptomatic infection (Cashore
et al., 2020b; Poletti et al., 2020). This all leads to an increased chance of community spread. Campuses across the country
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were forced to develop public health strategies in order to attempt to host students on campus in the past year. There has
been a lot of work on modelling the spread of COVID-19 in a campus setting (Paltiel et al., 2020; Losina et al., 2020; Cashore
et al., 2020b; Lopman et al., 2020; Gressman & Peck, 2020; Bahl et al., 2020) aimed at providing insights to university ad-
ministrators on how best to prepare for on-campus semesters. These results, in particular, highlight the need for expansive
(and expensive) surveillance testing programs and other strategies.

In this work we develop and investigate a model of the spread of coronavirus on a college campus. It is our goal to highlight
the relative importance of individual- and institution-level mitigation measures. We focus on a medium-sized university that
hosts primarily undergraduate students on campus. In addition, we assume that students have returned to campus and take a
mix of in-person, online, and hybrid courses as has been the norm across many campuses since Fall 2020 (The Chronicle of
Higher Education and Davidson College's College Crisis Initiative, 2020). We assume students, faculty, and staff are expected
to wear masks, use hand sanitizer, and take part in other well-known public health measures while on campus. In-person
classes will be assumed to be socially distant.

We use an epidemiological SEIR-type model to describe the spread of the disease with the addition of different population
types for students and faculty. In addition we separate asymptomatic/pre-symptomatic and symptomatic individuals and
include classes for quarantined and isolated individuals. This model is not intended for predictive purposes. Instead, we aim to
give a quantitative measure of the potential effectiveness of individual measures such as mask wearing and social distancing
(measured by individual model parameters) as well as institution-level measures: gateway testing, surveillance testing, and
contact tracing. We find that the scale of on-campus outbreaks is largely determined by student behaviors. Our results
indicate that a gateway test in conjunction with effective contact tracing or robust surveillance testing, are necessary in order
to keep the number of infections at a more reasonable level and make it more feasible to continue to house and teach students
on campus. We find that contact tracing, on its own, is a rather robust and powerful mitigation technique when done effi-
ciently. In addition, we find that surveillance testing on its own must be done often (at least weekly) and to the entire
population in order to be effective as a sole mitigation measure as was found in similar studies (Paltiel et al., 2020).

We also investigate the effects of surveillance testing done on a smaller scale. Surveillance testing can be a difficult task for
universities without access to medical schools or other lab facilities and is extremely expensive. We aim to determine if a
small scale surveillance testing program is useful in maintaining effective control of the spread of the virus. We find that small
scale surveillance strategies are not sufficient on their own but can reduce infection rates when used in conjunction with
contact tracing. However, it is imperative to have a robust contact tracing program when a robust surveillance strategy is not a
possibility. Finally, we validate this model by fitting to estimated active cases per day data from the Villanova University
COVID-19 Dashboard (Villanova University, 2020). We find good agreement between our predicted active cases and the data
once we modify our model to include the possibility of superspreader events modelled as shocks to the system approximately
two weeks post event.

Similar studies have been conducted to determine which strategies would be effective for re-opening of college campuses.
Much of this work was completed prior to the Fall 2020 semester. In (Paltiel et al., 2020) the focus was on determining an
effective surveillance testing strategy and also the cost effectiveness of each strategy. Our work differs in that we use a
continuous model as opposed to their discrete dynamical system model as well as our inclusion of separate classes for
students and faculty and the inclusion of contact tracing as a distinct strategy. Our results from considering a surveillance
testing only scenario are similar. In addition (Paltiel et al., 2020), incorporates random shocks or influxes of new positive cases
which they use to model infections due to contact with the broader community and/or superspreader events. We neglect the
effect of the broader community but we also use shocks at certain points in time to study the effect of superspreader events
like parties. For example, the data from Villanova University (Villanova University, 2020) shows a sizable increase in cases
approximately two weeks after Halloween. Another, more recent, study (Losina et al., 2020) has similar to results to (Paltiel
et al., 2020).

The work by (Cashore et al., 2020b,a), has been used to make decisions for re-opening strategies at Cornell University. This
work differs from our own as it considers a stochastic compartmental model. Other key differences include their assumptions
that surveillance testing of the entire population is achievable every 5 or 7 days. In addition, they do not make a distinction
between the contact patterns of students and faculty. Finally, they assume contact-traced individuals are only identified in the
exposed class. This assumption assumes a very robust contact tracing system that identifies positive cases and their contacts
in such a timely manner that the contacts have not yet become infectious, i.e. within 2—3 days of exposure. We allow for the
possibility that due to delays in reporting of symptoms as well as our assumed surveillance testing being possibly less often
that there may be infected individuals caught by contact tracing in the presymptomatic/asymptomatic class as well. The most
interesting result of (Cashore et al., 2020b) is the conclusion that re-opening results in fewer infections than the campus being
entirely virtual. We do not make any comparisons to an entirely virtual semester in this paper.

The most similar study to our own is (Lopman et al., 2020), which also uses a continuous-time dynamical system for a
model with similar groups delineated within the campus population. They go further to distinguish between on-campus and
off-campus students which is likely necessary since they are focused on campuses of much larger size. The most significant
distinction between our work and theirs is that we allow for surveillance testing (screening in (Lopman et al., 2020)) to
potentially test less than the entire population. They investigate testing the entire population in intervals varying from weekly
to once a semester while we allow for a variable percentage of the population to be tested from daily to biweekly frequencies.
We hope to shed some light on the effectiveness of surveillance testing in this perhaps more financially feasible fashion. We
also investigate the effects of student behaviors such as adherence to mask wearing and social distancing policies by
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modelling the contact rate to depend on number of contacts daily (assumed to be related to social distancing) and probability
of transmission (assumed to be related to mask wearing). We investigate scenarios with different levels of adherence to each
behavior to determine their effect on total infections over the semester.

We also note there have been agent-based models developed in (Bahl et al., 2020; Gressman & Peck, 2020). These differ
significantly from our approach as they focus on individuals and their behaviors within the population instead of considering
collective behavior as we do. With their focus on individuals, (Gressman & Peck, 2020) is able to examine the effect of class
sizes more easily and concludes that large class sizes would be a main driver of outbreaks on campuses. We note that this brief
introduction does not cover the quickly changing landscape of COVID-19 literature, but covers the most relevant literature to
modelling the spread on college campuses currently available.

The paper will be organized as follows. In Section 2 we will discuss our methods which will include a description of our
model and the assumptions made. We will also describe our method of solution and the various simulations performed. In
Section 3 we will discuss the results of our simulations. In particular, we will first discuss a series of hypothetical situations,
§3.1, highlighting the difference between three levels of adherence to social distancing and mask wearing policies. In addition
we will investigate hypothetical scenarios as we vary levels of surveillance testing and contact tracing. We will also perform
sensitivity analysis, §3.2, to determine which parameters the model is most sensitive to concerning the total number of in-
fections over the course of a semester as well as the estimated basic reproduction number. Finally, in §3.3, we will provide a
model fit to data obtained from Villanova University's COVID dashboard data from Fall 2020 (Villanova University, 2020).

2. Methods
2.1. Assumptions

As noted before, we develop a SEIR-type epidemiological model modified to incorporate our knowledge of the charac-
teristics of COVID-19 as well as those of a college campus community. We note that by using an SEIR-type model we are
implicitly assuming a homogeneously mixed population. For example, it is thought that a population like that of a cruise ship
or a heavily populated area like New York City may be well modelled in this way (Bansal et al., 2007). While this is not entirely
realistic as people always act as individuals, we believe campus populations are significantly more mixed than a standard
population of say an average town or small city. We do allow for some heterogeneity, however, by separating each class into
faculty and students as we expect students to have much higher contact rates with each other than faculty. We note that there

Table 1
Definitions of variables and parameters. i = 1 represents quantities related to the student population and i = 2 the faculty.
Variable/parameter Description
t time
Si(t) susceptible population at time t
Ei(t) exposed population at time t
Ai(t) infectious asymptomatic/presymptomatic population at time t
Ii(t) infectious symptomatic population at time t
Qi(t) quarantined population at time ¢t
Li(t) isolated population at time t
Ri(t) recovered population at time t
Di(t) deceased population at time t

G contacts per case per day

Pe probability of transmission per contact
fii proportion of contacts of infectious type j with type i
T relative infectiousness of asymptomatic individuals (in comparison to symptomatic)
Ni total population on campus
p average time from surveillance test to quarantine/isolation
Pr proportion of population being surveillance tested
Sp specificity of test
Se sensitivity of test
¥ average time to quarantine/isolate contacts from contact tracing
T proportion of contacts caught by tracing
Des Pa probability that case caught is in the exposed, asymptomatic classes
uw average time in quarantine
a average time to become asymptomatic/presymptomatic (i.e. infectious) after exposure
1% average time to transition from presymptomatic to symptomatic
No average time for asymptomatic to recover
N average time for symptomatic population to recover
13 average time to self-isolate after becoming symptomatic
proportion of symptomatic cases that self-isolate
€} average time to death after becoming symptomatic
d; probability of death for symptomatic population
P; proportion of population infections that are symptomatic
d number of days that are contact traced
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Fig. 1. Flow diagram of a college campus COVID-19 outbreak model. Bold compartments indicate those with possible transmission interactions between students
and faculty.

has been some work on more heterogeneously mixed models (Bahl et al., 2020; Gressman & Peck, 2020) that have different
takeaways than our work. No results from this study should be used to make predictions about number of infections, deaths,
etc.

To build our model, we make the following assumptions.

Table 2
List of chosen model parameter values and ranges for parameters found in literature.
Parameter Range of DefaultValue Units References
Values
c [7,17] 12 days~! Cashore et al. (2020a)
Cy [1, 4] 2 days~! Cashore et al. (2020a) & Assumption
De [0.6,3.7]% 2.15% dimensionless Luo et al. (2020); Bi et al. (2020); Jing et al. (2020); Liang et al. (2020); Davies et al. (2021)
fij [0, 1] fi1=07 dimensionless Assumption
fr2 =03
T [0.5, 1] 0.75 dimensionless Centers for Disease Control and Prevention (2020); He et al. (2020); Luo et al. (2020)
Nq 6000 6000 number of Assumption
people
Ny 1000 1000 number of Assumption
people
p 7-14 7 days Assumption
Pr [0, 1] 0.25 dimensionless Assumption
Sp [0.918,1] 0.959 dimensionless Bisoffi et al. (2020)
Se [0.624, 0.7826 dimensionless Bisoffi et al. (2020)
0.9412]
¥ 1 1 days Assumption
T [0.32,0.79] 0.555 dimensionless Spencer et al. (2021)
Des Pa [0, 1] 0.15 dimensionless Assumption
uw 14 14 days Assumption
4 [2, 4] 3 days Lauer et al. (2020); Centers for Disease Control and Prevention (2020); Tindale et al. (2020)
@ [2, 3] 25 days Tindale et al. (2020)
No 14 14 days Voinsky et al. (2020)
m 14 14 days Voinsky et al. (2020)
N2 14 14 days Voinsky et al. (2020)
£ [1,6] 3.5 days Centers for Disease Control and Prevention (2020)
r [0.15,0.65] 0.4 dimensionless Reese et al. (2020)
& 16 16 days Centers for Disease Control and Prevention (2020)
[ 16 16 days Centers for Disease Control and Prevention (2020)
dq 0.000359 0.000359 dimensionless Centers for Disease Control and Prevention (2021a) & Assumption
dy 0.0105 0.0105 dimensionless Centers for Disease Control and Prevention (2021a); McChesney & Bichsel (2020); Penn State
University Budget Office (2017) & Assumption
Pq [0.2,0.6] 04 dimensionless Byambasuren et al. (2020); Poletti et al. (2020); Centers for Disease Control and Prevention (2020)
P, [0.3,0.8] 0.55 dimensionless Byambasuren et al. (2020); Mizumoto et al. (2020); Poletti et al. (2020)
d 2 2 days Assumption
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Fig. 2. Estimated Active Cases Per Day, Villanova Fall 2020, using new cases per day from (Villanova University, 2020) and assuming they remain isolated for 14
days.

Table 3
List of initial condition parameters and ranges.
Parameter Range of Values Units References
Initial percent infected [0.25, 4] dimensionless (Cashore et al., 2020b) & e-mail from Villanova's President
Initial Proportion of Self-isolation of Symptomatic Students [0.15, 0.65] dimensionless (Reese et al., 2020Reese et al., 2020)
Initial Proportion of Self-isolation of Symptomatic Faculty [0.5, 0.75] dimensionless Assumption
Gateway Test Sensitivity [0.624, 0.9412] dimensionless (Bisoffi et al., 2020 et al., 2020)
Gateway Test Specificity [0.9502, 100] dimensionless (Bisoffi et al., 2020 et al., 2020)
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Fig. 3. Student Percent Infected over time for various levels of social distancing and mask wearing adherence. Left: Pessimistic adherence. Middle: Nominal
adherence. Right: Optimistic adherence. Bold, black curves represent the mean of all curves in each subfigure. Each family of curves represents the variability due
to unknown/random parameters in the model.
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Table 4
Mean Percent of Students and Faculty Infected over the course of the semester assuming pessimistic social distancing and pessimistic (left), nominal
(middle), and optimistic (right) mask wearing adherence.

Pessimistic MW Nominal MW Optimistic MW
Scenario Students Faculty Students Faculty Students Faculty
1 96.27% 79.45% 80.90% 56.55% 26.62% 15.02%
2 21.03% 12.01% 10.50% 6.12% 417% 3.00%
3 13.51% 8.24% 8.89% 3.89% 2.62% 2.32%
4 87.65% 64.88% 49.85% 30.51% 6.33% 4.03%
5 9.14% 5.36% 4.05% 2.93% 2.44% 2.24%
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Fig. 4. Mean student percent actively infected for various levels of social distancing and mask wearing adherence.

As1. We assume the campus population may be divided into two groups with different collective behavior: students and
faculty. This assumption is based on the fact that we expect students to have significantly more contacts with each other
and perhaps others on campus, which increases their chance of catching and transmitting disease. In addition, the average
age of undergraduates is much lower than of the faculty and thus students will be more likely to be asymptomatic and
have a much smaller case fatality rate. We neglect the effect of other groups on campus such as staff and graduate students.
There is a greater variability in the amount of contact these groups have with other people on campus which makes
modelling more challenging in their case. In addition faculty will likely be the largest group of employees who are
interacting with students often and hence are the secondary group we take into account along with the students.

As2. We assume the total population is constant (including deaths) and that there are no student transfers nor faculty
hiring during the semester as well as no deaths due to circumstances other than COVID-19. It is therefore assumed that the
campus is a closed community during the semester, i.e. no one interacts with any person not a part of the campus
community. This is obviously not the case but greatly simplifies the model. We therefore neglect the effect of student and
faculty interactions off campus or visitors to the campus. We assume that there are no breaks during the semester and that
students are discouraged from traveling during the semester.

Table 5
Mean Percent of Students and Faculty Infected over the course of the semester assuming nominal social distancing and pessimistic (left), nominal (middle),
and optimistic (right) mask wearing adherence.

Pessimistic MW Nominal MW Optimistic MW
Scenario Students Faculty Students Faculty Students Faculty
1 90.32% 68.25% 63.05% 39.75% 14.48% 8.04%
2 14.21% 8.15% 7.04% 4.35% 3.49% 2.70%
3 8.15% 5.19% 3.72% 2.84% 2.42% 2.24%
4 70.04% 46.31% 25.07% 14.11% 3.56% 2.73%
5 5.41% 3.59% 2.96% 2.46% 2.34% 2.20%
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5. Student Percent Infected over time for various levels of contact tracing and surveillance testing. Top row: Nominal contact tracing. Bottom row: Robust

contact tracing. Left: Limited surveillance testing. Middle: Nominal surveillance testing. Right: Robust surveillance testing. Bold black curves are the mean of all
curves in each subfigure. Each family of curves represents the variability due to unknown/random parameters in the model.

As3. We break down the overall student and faculty populations into the following classes: susceptible (S;), exposed (not
infectious, E;), asymptomatic/presymptomatic (infectious, A;), symptomatic (infectious, I;), quarantined (Q;), isolated (L;),
recovered (R;), and deceased (D;). The quarantined class includes anyone identified by a false positive test or those
identified via contact tracing that do not in fact have the disease. This group will return to the susceptible class after
completing an assumed required 14 day quarantine.

As4. The driver of new infections is assumed to be contact between susceptible and infectious individuals. In addition, we
assume different contact rates for students and faculty. Contact rate is broken down into three parameters in our model.
The first factor is the average number of contacts per person per day (¢;) multiplied by the probability of transmission given
contact (p¢c). We then include a factor fj; which indicates which proportion of those contacts per day are made between an
infected individual of type j with an individual of type i. For example fi; is the proportion of the contacts an infected
student makes per day with faculty and fi; is the proportion of contacts infected students make with other students,
therefore f15 + fi1 = 1. Similarly, fo1 + fo2 = 1. This enables us to distinguish between the different expected contact patterns
of students versus faculty.

As5. We assume that contact rates with asymptomatic/presymptomatic and symptomatic individuals may be different.
There is still emerging research in this area but we allow the relative infectiousness for the asymptomatic class to be less
than or equal to that of the symptomatic class.

As6. We assume recovered individuals obtain at least a temporary immunity that will last the length of the semester and
hence recovered individuals do not become susceptible again. Studies are still ongoing regarding the duration, if any, of
temporary immunity (Wu et al., 2021).

Table 6
Mean Percent of Students and Faculty Infected over the course of the semester assuming optimistic social distancing and pessimistic (left), nominal

(middle), and optimistic (right) mask wearing adherence.
Pessimistic MW Nominal MW Optimistic MW
Scenario Students Faculty Students Faculty Students Faculty
1 72.91% 48.32% 35.27% 19.85% 6.80% 4.19%
2 8.57% 5.15% 4.72% 3.25% 3.00% 2.49%
3 4.50% 3.24% 2.76% 2.39% 2.30 2.19%
4 35.41% 20.44% 8.05% 4.83% 2.65% 2.34%
5 3.35% 2.64% 2.53% 2.28% 2.26% 217%
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Fig. 6. Student Percent Infected over time for various levels of contact tracing and surveillance testings, each used on its own. Here again we only show mean
curves.

As7. We assume the effect of social distancing, mask usage, hand washing, etc. is modelled by a change in the contact rate
between susceptible and infected people. We anticipate these measures will reduce both the number of contacts per day
and the probability of transmission. We vary the effectiveness randomly as it is not known precisely how much each of
these measures affects contact and transmission.

As8. We assume average recovery times for symptomatic and asymptomatic students and faculty to be the same, but given
the age disparity between the two groups, we use different death rates for each.

As9. In the case where no contact tracing or surveillance testing is used, we eliminate the possibility of an asymptomatic
person being isolated. In the case with contact tracing and/or surveillance testing we assume that both exposed and
asymptomatic/presymptomatic individuals may be isolated as a result. We then assign a certain proportion of those cases
that are caught by tracing (T) and an average number of days (y) it takes for the tracing process to isolate an individual.
As10. In the model with a gateway test and/or surveillance testing, we assume that this test will not catch every case. We
prescribe a set sensitivity and specificity of the test used from within a range found in (Bisoffi et al., 2020).

As11. It is assumed that some proportion of symptomatic people are placed into isolation in a set number of days after
presenting symptoms. We assume there may be some instances of people whose symptoms are so mild that they do not
self report and/or those who hide symptoms or do not abide by isolation rules. Therefore it is possible for symptomatic
people to interact with susceptible populations.

As12. The model does not account for long-term illness or hospitalization. These are important considerations and
possible, but do not impact the analysis of the effectiveness of individual and institutional mitigation measures, which aim
to reduce the number of infections rather than the severity of the disease, and therefore are not considered here.

Table 7
Mean Percent of Students and Faculty Infected over the course of the semester comparing nominal and robust contact tracing.
Scenario % Students % Students % Faculty % Faculty
Nominal CT Robust CT Nominal CT Robust CT
1 66.09% 66.09% 40.93% 40.93%
2 8.80% 5.94% 5.18% 3.82%
3 4.27% 3.24% 3.08% 2.61%
4 with Limited ST 37.49% 37.49% 20.93% 20.93%
5 with Limited ST 3.74% 2.99% 2.82% 2.48%
4 with Nominal ST 17.27% 17.27% 9.40% 9.40%
5 with Nominal ST 2.99% 2.66% 2.47% 2.33%
4 with Robust ST 2.80% 2.80% 2.40% 2.40%
5 with Robust ST 2.39% 2.34% 2.22% 2.20%
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Fig. 7. Effect of a + 1% perturbation in parameter value on the total number of students (left) and faculty (right) infected in a semester.

As13. This model does not address the effects of underlying medical conditions or the disparity between different racial/
ethnic groups. We recognize that some groups are more likely to be impacted by a COVID-19 outbreak, even if the model
does not explicitly show this.

2.2. Model explanation

Our model, given by Equation (1), is a SEIR-type system modified to include the two population types of students and
faculty. There are eight compartments into which each population type could pass through: susceptible (S;), exposed (E;),
asymptomatic/presymptomatic (4;), symptomatic (I;), quarantined (Q;), isolated (L;), recovered (R;), and deceased (D;). In
Equation (1), an index of 1 represents variables and parameters related to the student population and an index of 2 represents
faculty. All variable and parameter definitions are listed in Table 1.

Table 8

Estimated Parameter Values and Error for different fits.

7, Se, Sp fixed to default value 7, Se, Sp fit
Parameter Jumpspost 14 days Halloween jumppost 10 days Jumpspost 14 days Halloween jumppost 10 days
Pe 0.0095 0.0061 0.0219 0.0276
C1 10.9953 9.3031 8.2020 10.9833
() 2 1.7071 1.9997 1.9992
3 5.5393 3.0453 3.9962 1.7224
Py 043 0.2779 0.5221 0.5626
Py 0.7 0.5468 0.7024 0.7444
T 0.5994 0.6044 0.6495 0.2714
T 0.7429 0.5470 0.3320 0.4663
De 0.9418 0.3076 0.8670 0.7204
Da 0.2569 0.0763 0.5057 0.2393
jump size 1 34.8053 54.5155 22.9506 38.0779
jump size 2 133.1988 207.7258 124.1705 133.8524
jump size 3 232.0961 316.7951 225.0505 215.6279
fi1 0.9223 0.3759 0.7879 0.4142
fo2 0.1928 0.3744 0.3362 0.2674
T 0.75 0.75 0.8614 0.8552
Se 0.7826 0.7826 0.8223 0.8552
Sp 0.959 0.959 0.9597 0.9540
Error 220.8991 123.7509 220.14 125.9956
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Fig. 9. Model Fit to Estimated Data, assuming default fixed parameters, all jumps 14 days post event (left), Halloween jump moved to 10 days post event (right).
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In our model the susceptible class loses members when individuals become infected due to contact with infectious in-
dividuals, receive a false positive test result, or are contact traced. This class will also regain quarantined individuals after they
complete an assumed required 14 day quarantine. Once a susceptible person has been exposed to the virus in such a way that
they will eventually become infectious they are moved to the exposed class. They then leave the exposed class either due to
contact tracing/surveillance testing, which moves them to isolation, or they have become infectious and move to the
asymptomatic/presymptomatic class. Asymptomatic/presymptomatic people then can also be isolated due to contact tracing/
surveillance testing or, if they are not detected, they will eventually either move to the symptomatic class or the recovered
class. Any individual who is caught by contact tracing or surveillance testing who is not actually infected will be moved to the
quarantine class until they complete the required 14 day quarantine and then return to the susceptible class. Symptomatic
people may be isolated, recover, or die. Isolated individuals may recover or die. Recovered people will remain recovered as we
assume (6) at least short-term immunity during the semester. The flow of this process is depicted in Fig. 1.

We note that beyond the additional classes the main changes from the standard SEIR model are the inclusion of contact
tracing and surveillance testing. Our method of modelling contact tracing is somewhat different than those considered in
other COVID-19 university models (Paltiel et al., 2020; Cashore et al., 2020b; Gressman & Peck, 2020; Lopman et al., 2020). We
assume that some proportion of the exposed and asymptomatic/presymptomatic classes are removed in some average
amount of time. We note this proportion depends on the proportion of contacts reached, T, as well as the probability a contact
is traced while they are in the exposed or asymptomatic classes, pe or p, respectively. This reflects our assumption that all
interactions occur on campus. This type of contact tracing term has been used before in other generic SEIR-type models, for
example in (Feng, 2007). We also assume some proportion of exposed and asymptomatic classes is removed due to sur-
veillance testing. These terms depend on the sensitivity of the test given as well as how often the testing is completed and the
proportion of the total population that is tested in that time frame. This term is very similar to that used in (Paltiel et al., 2020)
however we include the possibility that the proportion of the total population tested is less than 100%. In addition, the terms
modelling those caught by contact tracing who are not actually infected are slightly different than other models. We aim to
estimate the number of people who have tested positive daily and the number of contacts those individuals had with the
susceptible class in order to determine how many susceptible individuals are removed by contact tracing. We note this term
has a similar structure to the standard SEIR term modelling contact between those infected with susceptible individuals. It is
modified to include only those infected that the university is aware of, i.e. {‘[’2, (1 =Tpa)Ag +(1 =)l +(1 —Tpe)Ea) +
(lw:rs;f)PTSZt) This term includes false positives from the surveillance testing program as these individuals will also have their
contacts tfaced. For simplicity, we assume that contact-traced individuals do not then have their contacts traced. Our model
accounts for individuals sharing d days worth of contacts. Finally, we account for the fact that not all contacts are caught by
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the contact tracing program by considering only a proportion, T, of an individual's contacts are traced. We also add in an
additional factor of 1/5 in the term of those in the susceptible class who are contact traced. Using data from their local health
department (Cashore et al., 2020b) found that about 1/5 of contacts actually met the standard for quarantine as set by the
CDC. We assume everyone who is traced who is not actually ill will move to the quarantined class and is required to fulfill a
full 14 day quarantine regardless of a subsequent negative test result. We acknowledge there are varying accepted lengths for
quarantine and isolation and we choose to have both be a full 14 days.

We also carefully model the initial conditions for all population classes since gateway testing inevitably impacts these. To
investigate hypothetical scenarios in §3.1 and §3.2, we assume that there are no individuals initially in the exposed, recovered,
or deceased classes. For the infected classes we assume a proportion, P; of the infectious population is symptomaticand 1 — P;
of the infectious population is asymptomatic with i = 1, 2 for students and faculty, respectively. For scenarios with no gateway
testing (1, 2), the quarantine and isolation classes also begin empty. For scenarios with a gateway test (3, 4, 5), some of the
infectious population is instead placed in isolation with the amount based on the sensitivity of the test used. Additionally, we
allow the possibility that some people will self-isolate based on symptoms. We also account for the fact that some susceptible
individuals will receive false positive tests based on the test specificity and add this number of false positives into the initial
quarantine class. For data fitting in §3.3, we use the data to obtain the initial condition for the isolated and quarantined classes
and estimate the remaining initial conditions.

2.3. Parameter choices

Equation (1) depends on a significant number of parameters, most of which are not known exactly. There are some that
have been estimated from data but many of these estimates include uncertainty and some are not known at this time due to
limited publicly available data from college campuses. We attempt to make reasonable estimates based on the literature
whenever possible which usually gives a range of values. We model any parameters given with a range of values as uniform
random variables over those ranges to reflect our uncertainty. Future work may involve better estimation of parameter-
specific probability distributions. We will now describe the ranges or estimates used in our simulations of hypothetical
outbreaks in §3.1. The possible ranges of parameter values and their corresponding default values used in this paper are listed
in Table 2.

The contact rate, which has units days~! depends on the number of contacts per infected case per day (¢;) as well as the
probability of transmission per contact (p.). We assume that students and faculty have a different average number of contacts.
For students we assume 7—17 contacts per day based on the discussion in (Cashore et al., 2020a). We assume faculty have
fewer daily contacts than students, 1—4 in this paper, based on the fact that it was found in (Cashore et al., 2020b,a) that the
majority of faculty close contacts will be off campus which we do not model. In §3.1, we will break the c; range into three
subranges to account for various levels of adherence to social distancing among students.

The probability for transmission due to a close contact, p., was found to be 2.4% in (Jing et al., 2020) and 3.7% in (Luo et al.,
2020). These values were estimated from contact tracing data in China at the beginning of the pandemic and do not take into
account mask wearing and social distancing. It has been estimated that masks may reduce transmission by as much as 80%
(Liang et al., 2020). We therefore assume that the low end of our range is 20% of the average of the two estimates from
literature and consider the range 0.6—3.7%. In §3.1, we will break this range up into three subranges to account for various
levels of adherence to mask wearing from both faculty and students.

To further model the differences in contact between students and faculty we also introduce estimates for the proportion of
total contacts an infected student/faculty has with susceptible students/faculty. At this time, these values are educated
guesses due to a lack of data. We assume the proportion of contacts an infected student makes with other students (f11) is 70%
and therefore the proportion of contacts an infected student makes with faculty (f12) is 30%. We assume faculty primarily
interact with students on campus therefore f,; is set at 70% and f,, is 30%.

One final factor for the contact rate is the possible reduction in transmission due to contact with an asymptomatic in-
dividual compared to that with a symptomatic one, represented by 7. The estimates of this difference in transmissibility vary
but most agree that asymptomatic individuals are less likely to spread the virus (Centers for Disease Control and Prevention,
2020; Luo et al., 2020). In (He et al., 2020) it was found that there was no statistically significant difference in the estimates for
asymptomatic versus symptomatic transmission. We therefore consider 7 € [0.5, 1].

The number of days between surveillance test results (p) is a measure of how long it takes on average for the tests to be
performed and results returned so that positive cases are then isolated or quarantined. This value is university-protocol-
dependent, so we consider frequencies of testing from daily to biweekly to account for various protocols. In addition, the
proportion of the population that is tested (Pr) is also policy-dependent. Since most surveillance testing protocols randomly
sample from the total campus population, we assume that if Prof the total population is tested, then the same proportion Prof
each of the susceptible, exposed, asymptomatic, and symptomatic classes is also tested. We allow Py to vary from 5 to 100% to
account for various protocols. Finally, we take the ranges for the specificity (Sp) and sensitivity (Se) of tests to be 95.02—100%
and 62.4—94.12%, respectively, based on a study of available tests used in an ER setting (Bisoffi et al., 2020).

Parameters related to contact tracing are also campus-protocol-dependent. However (Spencer et al., 2021) looked at
contact tracing programs in more than 100 health departments and found that between 32% and 79% of close contacts
(identified by the individual) were reached within the first 24 hours. We use these percentages for the proportion of contacts
reached (T) in §3.1. We also assume in most cases that the average amount of time between identifying a positive case and
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reaching their contacts is y = 1 day. The probability that a case caught by contact tracing is in the exposed (p,) or asymp-
tomatic (pg) class is not estimated in the literature to our knowledge and therefore we let them range from O to 1. The
parameter d represents the number of days of contact the tracers will consider. The CDC recommends tracing beginning two
days prior to symptoms (Centers for Disease Control and Prevention, 2021b). We assume that most people limit contact post
symptoms and therefore use d = 2 in all simulations. We also assume, as it is the policy at most institutions, that traced
contacts stay in quarantine for u = 14 days.

The time from exposure to symptom onset has been estimated to be around 5—6 days with one estimate as high as 7 (Lauer
et al., 2020; Centers for Disease Control and Prevention, 2020; Tindale et al., 2020). Our model treats this value as the sum of g,
the number of days between exposure and joining the presymptomatic/asymptomatic class where individuals are deemed
infectious, and ¢, the number of days between becoming infectious and developing symptoms. In (Tindale et al., 2020) it was
estimated that an infectious person infected another approximately 2—3 days before symptom onset. Therefore we set ¢ to be
between 2 and 3 days and ¢ to be between 2 and 4 days.

There are three separate recovery times listed in our parameter set: 79 for those who never develop symptoms, 1 for
symptomatic students and 7, for symptomatic faculty. We set all three to be 14 days (Voinsky et al., 2020) as there is not much
said in the literature on the difference between recovery times for different age groups and levels of symptoms. For the sake of
our model, we are mainly concerned with the period of infectiousness when these individuals may cause new infections due
to contact with susceptible individuals. For future generalizability, we keep these as three separate parameters in case more
data becomes available on the differences between asymptomatic and symptomatic periods of infectiousness.

The next parameter to consider is £ which represents the amount of time on average before a symptomatic person self-
reports (or self-isolates). This value is challenging to estimate, however, in (Centers for Disease Control and Prevention,
2020) they estimate the median number of days from symptom onset to getting a test among positive patients as 1—6
days with a base value of 3 days. We assume that obtaining a test is equivalent to self-reporting and therefore being isolated
and use this range for £. It was estimated in (Reese et al., 2020) that those aged 18—49 with symptoms self report 15—65% of
the time (with an average of 34%) which we use as our range for r.

Our model has a few parameters related to death. First, {; and ¢, represent the average number of days between symptom
onset and death for students and faculty, respectively. The current best estimates by (Centers for Disease Control and Prevention,
2020) are relatively the same for all age groups so we set both to 16 days. Again, we keep these parameters separate in case more
information is made available in the future. Second, we require a parameter for the probability of death for each group (d;). We
use (Centers for Disease Control and Prevention, 2021a) to estimate d;. To do this, we require an estimate of the age distribution
of students and faculty. For students, since we model a primarily undergraduate institution, we assume the majority fall into the
age range 18—29 years and estimate the probability of death to be the number of deaths due to COVID-19 divided by the total
number of infections which gives us d; = 0.000359. We note that since we are unable to estimate precisely how many of these
reported infections are asymptomatic this estimate is most likely not accurate but given the smaller size of this probability we
do not expect it to have a substantial effect on results. We also note that this neglects the possibility of nontraditional students
since we assume these students to make up a small percentage of the overall student body and are also less likely to live on
campus. Therefore they will not impact the disease spread as much as other students. For faculty the age range varies much
more. From (McChesney & Bichsel, 2020) we estimate that 13% of faculty are 65 and older. We will use the CDC data for ages
65—74 for this group, since there is no further breakdown of this group in (McChesney & Bichsel, 2020). To estimate the
proportion of faculty in other age groups, we refer to the age distribution of faculty at Penn State University in 2017 (Penn State
University Budget Office, 2017). Based on this, 2.4% of faculty are in the 18—29 group, 24.7% are in 30—39, 28.1% are in 40—49.
The remaining age group, of 50—64 did not align with the breakdown in (Penn State University Budget Office, 2017), but based
on the rest of the age groups, we estimate that 31.8% of faculty are in 50—64. Based on (Centers for Disease Control and
Prevention, 2021a), we estimate the probability of death in each of these groups as we did for the student population. We
then compute a weighted average of the probabilities of death for these age groups to estimate d, = 0.0105.

Next we consider the parameters that represent the proportion of infections that are asymptomatic versus symptomatic. It
is believed that younger populations will more likely be asymptomatic. We therefore define two parameters for the pro-
portion of symptomatic infections in students (P;) and faculty (P2). These estimates vary widely, for example the CDC (Centers
for Disease Control and Prevention, 2020) has a range from 10 to 70% over all age groups. In (Byambasuren et al., 2020) they
found studies with estimates for the proportion of asymptomatic infections ranging from 4 to 40%. In (Mizumoto et al., 2020)
it was found that 17.9% of infected passengers on the Diamond Princess cruise ship were asymptomatic. In addition (Poletti
et al,, 2020) finds much lower estimates of symptomatic infections for example finding 18.09% of 0—19 years display
symptoms. We therefore define our P; range for students as 20—60% where the low end comes from an average of the 0—19
and 20—39 age group estimates in (Poletti et al., 2020) and the high end comes from (Centers for Disease Control and
Prevention, 2020; Byambasuren et al., 2020). For faculty, P, ranges from 30 to 80% symptomatic infections where the low
end comes from the 30—49 age group estimate in (Poletti et al., 2020) and the high end from (Byambasuren et al., 2020;
Mizumoto et al., 2020).

Lastly we discuss parameters related to the initial conditions listed in Table 3. In (Cashore et al., 2020b) they estimate that
the proportion of the student population that is infected at the beginning of the semester ranges from 0.5 to 4%. This estimate
was formed before any gateway testing had been completed. Since (Cashore et al., 2020b) an e-mail from the Office of the
President at Villanova University reported that 0.41% of gateway tests from Villanova students and faculty returning to
campus were positive (Personal Communication, 2020). We therefore include the possibility of a smaller percent infected and
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modify the range to be 0.25—4% to include the possibility of lower prevalence. We assume all who test positive begin the
semester in isolation. Within this group there will be some false positives who begin in the quarantine class who can then
return to the susceptible class after 14 days. We also assume there are some who may not test positive or who self-isolate due
to symptoms. We assume the proportion of students who self-isolate is equal to r discussed above. We also assume faculty
may be more likely to self-isolate and increase this range to 50—75% for the initial conditions only since classes haven't started
yet. For those who are not isolated but are infected we divide these into the asymptomatic/symptomatic classes using the
proportions P; and P, defined above for students and faculty, respectively. For simplicity we assume at the start of the se-
mester there is no one in the recovered class though there are likely some in the population who had the disease and still
possess some form of immunity.

2.4. Shocks and data fitting

We will validate our model using data from Villanova University's COVID Dashboard for the fall 2020 semester (Villanova
University, 2020). We note that the dashboard data only provides new positive tests per day and only includes positive cases
of which the university was made aware. We will assume that each positive case will remain active (i.e. still appear as a case in
the data) and isolated for 14 days in order to estimate the number of isolated individuals at any given time. This estimated
active cases (or isolated cases) per day is shown in Fig. 2. We will fit our model to this data using the MATLAB function
fminsearchbnd from (D'Errico, 2012) using the sum of L1(t) and Ly(t) to fit to our estimated data. We will use the default value
of parameter values we are more confident in from literature and estimate the remaining using the data. The parameters
estimated are pg, ¢y, €2, &, P, Py, 1, T, Pe, Da-

It is clear from the Villanova data and other state, national, etc. trends that there are spikes in cases that will not appear by
simply modelling SEIR-type dynamics. We assume that there are certain days/events on campus that act as superspreader
events causing these spikes. For the Villanova data we hypothesize there are spikes 2 weeks after the following events: the first
weekend on campus (prior to class starting), Labor Day weekend, and Halloween. We model these spikes by having a sudden
increase or shock in the number of infections approximately 14 days after these expected events. In simulations we simply start
and stop the simulation at these dates and add in an expected number of new members to the asymptomatic and symptomatic
classes (proportioned using P;) to the new initial conditions and remove these people from the susceptible classes. We assume
that shocks affect only students. Thus, the shock for superspreader event k occurring at time t; is modelled as

AS; = —jump size k,
AA1 = (1 - P;)(jump size k), (2)
Al; = Py(jump size k)

for t = t; + 14. In the numerical work, these shocks re-initialize Equation (1) at t = t; + 14. We note that we also estimate the
size of these shocks (jump size k) in the data fitting procedure in §3.3 while the dates on which they happen, t, are fixed.

3. Results and discussion

We use MATLAB's built-in ode45 solver to solve our system of differential equations and provide results for the number of
people in each population on each day of a 98 day semester. We present three different sets of results in order to portray the
possible scenarios predicted by our model as well as to provide analysis and validation of our model. We first discuss a series
of hypothetical epidemics. Here we will consider various ranges of the model's parameters to see the breadth of possible
outcomes. We include these results to reflect the uncertainty in parameter estimates as well as to demonstrate the different
results depending on institutional policies and individual choices. To further understand the effects of certain policies and
behaviors we perform sensitivity analysis on several parameters related to mitigation measures. Finally, we will fit our model
to estimated data from Villanova University's fall 2020 semester COVID dashboard, (Villanova University, 2020), to validate
our model and provide better estimates of university-specific parameters.

3.1. Hypothetical epidemics

We begin by considering the vast range of possible outcomes due to our uncertainty in some parameter values as well as
the variability in containment strategies used across the country on different campuses. We will measure success of different
strategies by determining the change in the percent of the total population infected over the course of the semester. We will
mainly discuss scenarios that highlight the effects of institution-level practices, i.e. contact tracing and surveillance testing, as
well as individual practices, i.e. social distancing and mask wearing. We consider five scenarios of campus-level mitigations
measures:

1. No mitigation measures are implemented.

2. Contact tracing is implemented, but there is no gateway nor surveillance testing.

3. Gateway testing and contact tracing are implemented, but there is no surveillance testing.
4. Gateway and surveillance testing are implemented, but there is no contact tracing.
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5. Gateway and surveillance testing and contact tracing are all implemented.

First we consider the effects of individual practices such as social distancing and mask wearing. We therefore set pa-
rameters related to university measures, as well as those related to the initial conditions, to the default values in Tables 2 and 3
to ensure we are seeing the effects of the individual level practices. With regards to contact tracing and surveillance testing
we set T = 0.555, ¥ = 1, Pr = 0.25, and p = 7. For the gateway test and initial condition we assume the initial percent of the
population that is infected is 2.1%, the proportion of students/faculty that self-isolate at the start are 0.4/0.624 respectively,
the sensitivity of the gateway test is 78.26%, and the proportion of students/faculty that are symptomatic are 0.4/0.55
respectively. We randomly sample c¢; and p. from the ranges given in Table 2 for 250,000 simulations. We then consider three
cases for social distancing and mask wearing parameters. We assume social distancing is modelled by the number of contacts
per individual. We assume that in the case of social distancing the student contact numbers are as follows: pessimistic
c1 € [13.667, 17], nominal ¢; € [10.333, 13.667), and optimistic c; € [7, 10.333). For mask wearing we assume that p., the
probability of transmission, is proportional to the level of mask wearing adherence. We assume the following three cases:
pessimistic p. € [2.667, 3.7], nominal p, € [1.6333, 2.667), and optimistic p. € [0.6, 1.6333).

Figs. 3 and 4 focus on Scenario 5 when all institution-level strategies are in place. Fig. 3 shows the daily percent of students
that are actively infected (i.e. the sum of the asymptomatic and symptomatic student classes) for different levels of adherence
to social distancing (SD) and mask wearing (MW) policies from pessimistic SD/MW to optimistic SD/MW from left to right.
The mean curve of each level of adherence is displayed as a thick black line. In all plots we assume gateway testing, sur-
veillance testing, and contact tracing have been performed with the parameters specified above. We note that as we increase
adherence the peak levels of infections reduce from approximately 30%—10% to 0.35%. In particular we note that the peak
level of infections actually occurs at the beginning of the semester in the optimistic scenario, hence there is no outbreak. Fig. 4
shows the mean curves for different combinations of mask wearing and social distancing adherence. We see again that the
only case when there is a peak value larger than the initial percent infected is in the case when we assume both pessimistic
adherence in social distancing and mask wearing. In addition, we see monotonically decreasing infection levels whenever
mask wearing is optimistic or nominal, except in the case when social distancing is pessimistic. In Tables 4—6 we display the
mean total percent of students and faculty infected over the course of the semester for all five institution-level scenarios. To
highlight when individual measures are the only means of mitigation, we consider Scenario 1 across Tables 4—6. We find that
if we hold mask wearing at the pessimistic level (left column) and increase adherence to social distancing (increase table
number) this leads to a drop from approximately 96%—90% and finally 72% total percent infected students as we reach
optimistic social distancing. On the other hand, if we hold pessimistic social distancing levels, Table 4 only, and look at varying
mask wearing levels, we see the total percent of students infected decreases from 96% to 80% and finally 26% as we reach
optimistic mask wearing. Clearly, mask wearing adherence is a critical part of any mitigation strategy. We note that while we
do not explicitly show the faculty curves they are similar to those of the students with the exception of having much lower
peak values as demonstrated in Tables 4—6.

Next we consider comparing contact tracing (CT) and surveillance testing (ST) as strategies. We again fix certain parameters
to focus on comparing only the university-level mitigation measures. We assume ¢ =12, c; = 2, and p. = 2.15%. We use the same
parameters affecting the initial conditions as specified above. We randomly sample T, P;, and p from the ranges given in Table 2
for 300,000 simulations. We then define nominal contact tracing to be T  [0.32, 0.555) and robust contact tracing to be
T = [0.555, 0.79] with ¢ = 1 in both cases. For surveillance testing, we define limited testing to be Pr € [5, 25)% and p  [7, 14]
days, nominal testing to be Pr € [25, 75]% and p < [7, 14] days, and robust testing to be Pr € [75,100]% and p < [1, 7] days.

Fig. 5 shows the daily percent of students that are actively infected assuming constant levels of social distancing and mask
wearing defined above. Mean curves for each case are displayed as thick black lines. The results of the six cases of various
levels of university-level practices show the full breadth of possibilities. From left to right, we see that increasing levels of
surveillance testing while holding constant levels of contact tracing causes peak infection levels to decrease dramatically.
Also, in the case of limited surveillance testing (left) increasing contact tracing from nominal (top) to robust (bottom) levels
does not reduce the maximum peak values but does decrease the number of curves we see that hit those peak levels. In the
case of nominal surveillance testing (middle) we see that increasing contact tracing levels decreases peak values by almost
half. Lastly, when we have robust surveillance testing (right) the increased level of contact tracing decreases the number of
infectious cases earlier in the semester for more simulations.

Table 7 shows the mean total percent of the student and faculty populations that are infected over the course of the
semester for the various scenarios. We first note the utility of gateway testing, which when added to contact tracing (moving
from Scenario 2 to 3), reduces the percent infected by approximately half. In addition, the total percent of students infected in
Scenario 3 is 4.27% and 3.24% for nominal and robust contact tracing programs, respectively. For Scenario 4 to reach a similar
level of infection we require surveillance testing to be performed at robust levels (75—100% of the population at least weekly).
Lastly, Fig. 6 shows the mean curves for a single mitigation measure (along with a gateway test) on the left and dual mitigation
measures on the right. On the right we note that in all cases we do not see peak values reaching initial infection levels again
during the semester, indicating successful strategies. However, on the left we see that nominal surveillance testing only does
not control the outbreak as the other single measure cases do. We therefore conclude that surveillance testing must be robust
if used on its own as a mitigation measure. We also note that if a contact tracing strategy is already in place, further adding in
surveillance testing lowers the percent infected by about 1—2% for different level strategies as seen in Table 7. We therefore
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find that if a robust surveillance testing strategy is not available then it serves an institution most to develop a robust and
efficient contact tracing program.

3.2. Sensitivity analysis

In this section, we investigate the effect of perturbing parameters related to disease mitigation measures at both the
university- and individual-level. These parameters are cy, €2, pe, &, 1, T, ¥, p, and Pr. In addition to quantifying the effect per-
turbations of these parameters have on the total number of student and faculty that are infected over the course of a semester,
we also quantify the effect these perturbations have on Ry.

We calculate the basic reproduction number using the next generation matrix method. While in cases with contact tracing
and surveillance testing this model yields an infinite number of disease free equilibria (DFE) we choose to linearize about the
DFE where all individuals remain in an uninfected classes, in our case in Sy, Sy, Qq, or Qy, to compare with the standard DFE
where all individuals remain susceptible. There are more details on the calculation of Ry in A. In the case of no contact tracing
or surveillance testing, our Ry estimates range from as low as 0.2456 (in cases with excellent social distancing and mask
wearing) to as high as 5.1909 (in cases with poor distancing/mask wearing and assuming very few symptomatic individuals
isolating). The mean Ry is 1.7478, which is lower than many estimates for Ry but most previous estimates do not take into
account mask wearing and social distancing.

To perform the sensitivity analysis, each parameter was initialized as the default value found in Table 2. Then, each
mitigation measure parameter was perturbed positively and negatively by a certain percentage while keeping all other pa-
rameters fixed. The resulting percent change in total infected population and Ry value were computed. Fig. 7 shows the
percent change in total number of students and faculty infected over a semester caused by a + 1% perturbation in each
mitigation measure parameter. Similarly, Fig. 8 shows the percent change in Ry by these perturbations. As can be seen in these
Figures, the total number of students and faculty infected and Ry are most sensitive to the c; and p. parameters, which relate
to the number of daily contacts students have and the probability of transmission per contact, respectively. Interestingly, a +
1% change in any of the parameters mostly caused no more than a + 1% change in the outcomes except for the effect of ¢; and
pc on the total student population infected. This highlights that maintaining a safe in-person semester can be the most
affected by student behaviors. We note that the model is much less sensitive to the rate and speed at which individuals self-
isolate upon becoming symptomatic. This is likely due to the assumption that contact tracing and surveillance testing are both
taking place which lessens the burden of responsibility on individuals. Looking at Figs. 7 and 8, we see that outcomes and Ry
values were next most sensitive to changes in Tand y after student behaviors, which are related to the level of contact tracing
performed on campus. This further confirms that contact tracing is a powerful measure that can provide excellent control
when implemented robustly and efficiently. We, however, stress these results be viewed through the lens of our assumption
that all contacts occur on campus. It is likely that campus contact tracing programs will be affected by contacts made outside
of campus which would be harder to trace.

3.3. Data fitting

As mentioned in Section 2 we fit our model to the estimated data from the Villanova University COVID Dashboard for the
Fall 2020 semester (Villanova University, 2020). We note as before that we see from the data three distinct peaks. It is clear
from our hypothetical results that our model, on its own, will not capture this type of behavior. We hypothesize that the
independent peaks are due to days/periods of increased social activity on campus. Specifically, we assume there is an influx of
new cases due to the return to campus (that would not be reflected by Equation (1)), Labor Day weekend (which is the only
time students had a day off from classes during that semester), and Halloween. Halloween is always a time of increased social
activity and was towards the end of the semester so we hypothesize students were growing weary of social distancing
protocols. In order to model these expected spikes or superspreader events we use Equation (2) to add in a number of new
infections coming from the susceptible class, spread across the asymptomatic and symptomatic classes, approximately 14
days after the event. We show results for assuming all 3 spikes occur 14 days post event as well as the case when the last spike
is 10 days post Halloween weekend (for which we apply Equation (2) at t = tyajioween + 10). It is expected that there will be
some variation in how quickly spikes occur after known superspreader events. We estimate the following parameters: pe, c1,
C3, &, Py, Py, 1, T, pe, Pa» f11, and foo as these parameters are dependent on the specific population on campus. In addition we
estimate the sizes of the three jumps (jump size k) as well as the initial conditions for the exposed, asymptomatic, symp-
tomatic, and recovered classes. We assume from dashboard data that the initial quarantined, isolated, and deceased classes
are all zero. We set the remaining parameters to be their default values as listed in Table 2. These fits are shown in Fig. 9. We
also show cases when, in addition, we estimate 7, Se, and S;, in Fig. 10. 7 in particular is not precisely known, in addition our
knowledge of Se and S, is limited due to multiple tests being used on campus as well as natural variations due to collection and
processing error. Note that all parameters to be fitted have their initial value chosen from a uniform random distribution in
the ranges set in Table 2.

Overall in both cases there is generally a good agreement between the model and the data. In particular we are able to
capture the third peak well when we assume the jump associated with Halloween occurs 10 days after instead of 14. This
leads to a substantial decrease in error as seen in Table 8. The second peak is the hardest to capture and therefore the size of
the error in all fits is still substantial. We see that p. is found to be significantly higher when we don't use the default values for

1040



K. Muller, PA. Muller Infectious Disease Modelling 6 (2021) 1025—1045

7, Se, and Sp,. Our estimated contact rates fall into the ranges in Table 2 and in (Cashore et al., 2020a). In particular they fall in
our nominal contact rate range. There is even more variability in our estimates for P; and P, though in all cases P; is lower than
P, as expected since students are on average much younger than faculty and hence more likely to have an asymptomatic
infection. We also note that p, is always larger than p, which indicates it was more likely for contact tracing to find contacts in
the exposed state rather than the presymptomatic/asymptomatic state which is expected and desired. This variation in es-
timates is not surprising given the novelty of the virus and the level of uncertainty in parameter values at this time. We expect
that as more information is gathered these parameters may not need to be estimated and the fit to data will likely change.

3.4. Model limitations

We conclude our discussion by mentioning briefly the limitations of our model. As with any model not every aspect of a
phenomenon is captured and the results should be viewed through the lens of this knowledge. We first note that this model is
one that assumes homogeneous mixing, likely overestimating transmission rates, as individuals all have different behavior
and contact patterns. We see in (Gressman & Peck, 2020) much lower infection rates than in compartmental models.
However we note that in (Bansal et al., 2007) it is noted that error due to the assumption of homogeneous mixing is less when
considering heavily mixed populations like cities. We assume college campuses fall into this category. We also note that we
have not incorporated the effects of staff and graduate students on campus. We ignored these groups due to an assumption
that they have less contact with students who are the primary drivers of infection on campus. On certain campuses, however,
graduate students, in particular, have a lot of contact with undergraduate students and therefore should be considered in that
case. Staff likely primarily have contacts off campus. Depending on the level of transmission in the community-at-large these
contacts may or may not have an impact on the spread on campus. We have neglected to include the effect of contacts off
campus. In most other models, for example (Lopman et al., 2020), the effect of off-campus interactions is modelled as a
constant rate of new infections per day occurring on campus. Whether or not this has a large impact on overall infections on
campus is dependent on the level of community spread as well as the amount of time students spend off campus. In this
model, we assume students are asked to limit their time off campus however it is likely many students do spend time off
campus, in particular on weekends or other days off. This is likely the assumption that limits our model results the most and
we intend to introduce these effects into the model during future study.

It is well known that SEIR-type models do not predict the multiple surges or seasonality seen in many infectious disease epi-
demics. In this model we have addressed this by including shocks to the number of infected individuals after expected superspreader
events. There are likely some dates which are known at the beginning of the semester to likely have superspreader activities, like
spring break. However it is impossible to predict all possible superspreader events prior to the start of the school year. Therefore,
predictions using these types of models will likely miss the effects of these types of events entirely. It is also possible that there is
additional time variation occurring in parameters like contact rates dependent, perhaps, on season that have not been captured by
this model. More needs to be known about this specific virus before we can accurately model time dependence in parameter values.
Lastly, most parameter values in this work are assumed to be drawn from a uniform distribution defined by a range of possible values
found in literature. It is possible to better estimate probability density functions for these parameters which would likely lead to less
variation in our set of hypothetical epidemics. We leave this as future work as well.

4. Conclusion

In this work we have developed an SEIR-type model for the spread of COVID-19 on a medium-sized university campus
with a primarily residential undergraduate student population. We have found that student behaviors, in particular mask
wearing and social distancing, largely determine the ultimate size of an on-campus outbreak. In contrast faculty largely do not
contribute to the spread of the virus. We find that for those universities who are unable to develop a robust surveillance
testing program contact tracing can provide excellent control of the spread. Smaller scale surveillance testing can provide
further reduction in total infections but that reduction is not substantial. We find that our model compares well with collected
data from Villanova University's fall 2020 COVID-19 dashboard (Villanova University, 2020) when we further include
superspreader events into the model. This does point to the difficulty of truly predicting total infections when it is unknown
what events will lead to such large sudden influxes of new infections but there are common events such as fall/spring breaks
which may be included when using this type of model for predictive purposes.
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Appendix A. Ry calculation
In order to estimate Ry we utilize the standard next generation matrix method (Diekmann et al., 2010). This method
requires one to calculate the Jacobian of the sub-system of differential equations containing only equations that pertain to

infected compartments, i.e. including E;, A;, I;, Li and then evaluate the Jacobian at a disease-free equilibrium (DFE). For this
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system there are an infinite number of DFEs and we choose the one that most resembles the standard unique DFE from SIR/
SEIR models, i.e. the equilibrium where there are no infections. In our model, this corresponds to everyone remaining in the
susceptible class or the quarantine class.

Since at the DFE there is no one in a disease state, we set Ej, A;, I;, L; = 0 for i = 1, 2. After plugging these values into Equation
(1) we are left with the following equations

ds;  (1-Sp)PrSy d (=5)PrS S,
= _7f7q§(1 - po)Tfi p+v¥ S +R;
d (1-Sp)PrS2 S Q1 _
—625(1 —pc)Tf21 P+¢ Sl +R] +770 (Al)
s,  (1-Sp)PrS, d (1-Sp)PrS1 S .
o2 7_T_C]§(l - pd)Tfi2 p+¥ S +Ry

d 1-S)PrS; S, @
o1 - poT 2 _
oz (1-pc) T2 PR 52+R2+ "

along with the Q; equations, which are the negatives of (A.1), and the constraints that S; + Q; + R; + D; = Ny and
S + Qy + Ry + Dy = Ny, We assume that the DFE of interest is when R; = 0 and D; = 0 for i = 1, 2. Therefore to find the DFE we
seek to solve this system of equations for S; and Q; for i = 1, 2. However, when we look at the non-zero entries of the Jacobian
we find that the only dependence on the population values is in the form of the ratio of S; to S,. Therefore we need only to
solve for this quantity.

In the case when there are no measures taken by the university, i.e. when T = 0 and Pr = 0 the equations above simplify to

s e,
d

(A2)
5 _Q_,
da u

and therefore Q; = 0 and S; = N;. In the case when there is no contact tracing (T = 0) but surveillance testing is conducted
we reduce to the following equations

as _ (=SS o
dt p i
(A3)
as, (1-Sp)PrS2 Q@ B
- =4 ==0
dt p I
and therefore Q; = msi. Plugging this into the constraints S; + Q1 = N1 and Sz + Q2 = N, it may be shown that §1/S; =

. . 4 . . . L .
N1/N3 as in the previous case. In the case when Pr = 0, i.e. no surveillance testing but contact tracing is conducted we obtain

the same equations as in the no measures cases. Finally in the case of both contact tracing and surveillance testing we have the
following system of linear equations to solve (S;' =0, Sy’ = 0):

(1-Sp)Pr__d (1-Sp)Pr d (1=S)PrS;
- = 1_(1 _pC)Tfl]— Sl - CZ_(l _pC)Tf21—+_ =0
( 1-S,)P 2 1p+swp> Z 1 p:is 4 (A4)
<—7( ~5) T—ng(l—Pc)szzi( P_+l:/2 T)Sz—C1§(1—Pc)Tf12—( _p-f)lj/T ]-‘r% =0

along with the constraint equations. If we define the coefficient of S; to be A and of S to be B in the first equation of (A.4)
and the coefficient of S to be Cand of S, to be D in the second equation of (A.4) we obtain the following formula for S1/S, at the
equilibrium point using Maple:

S1\" _ (=BNapt + CNypt — Ny) (A5)
S2) ~ (ANap—DNT i~ Ny) '

We may then plug the values for this ratio into the Jacobian for each case of measures taken. To calculate Ryp we then
separate the Jacobian into the matrix F, which contains terms related to new infections, and the matrix V, which contains
terms related to moving between compartments after initial exposure. We write out the non-zero entries of F and V below
assuming both measures are taken. The first two rows of F are given in equation (A.6) since the third through eighth rows are
all zeros. Likewise, the non-zero entries of V are given by (A.7). If at least one measure is removed then the ratio in (A.5)
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simplifies to N1/N-. In the case of one or no mitigation measures, we simply set T = 0 and/or Pr = 0 to remove the effect of
contact tracing and surveillance testing, respectively.

5

d S S\
0 0 capfuit  Copcfar(er) 7 c1bf1 opchi(e) 00
5 Sy Sy

Fiaas= .- . (A6)
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Vii — 1-Tpe Tpe SePr
T
v 1-The Tp Sy
4 vooop
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® Mo 17 p’
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Vg = p Pe7
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® Mo v
oy O=ToR,
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> 3 M & p
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3 M G p’
T SeP
Vi = %4‘ epT,
T SeP:
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1-dy dy
Vgg = —— 222
88 M2 &

Vij= 0, for all other i,j.

We then have that Ry is the largest eigenvalue of the next generation matrix —FV~. Given the complexity of these ex-
pressions they are evaluated during simulations in MATLAB.
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