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Abstract

Inferring the cell types in single-cell RNA-sequencing (scRNA-seq) data is of particular 

importance for understanding the potential cellular mechanisms and phenotypes occurring in 

complex tissues, such as the tumor-immune microenvironment (TME). The sparsity and noise 

of scRNA-seq data, combined with the fact that immune cell types often occur on a continuum, 

make cell typing of TME scRNA-seq data a significant challenge. Several single-label cell typing 

methods have been put forth to address the limitations of noise and sparsity, but accounting for 

the often overlapped spectrum of cell types in the immune TME remains an obstacle. To address 

this, we developed a new scRNA-seq cell-typing method, Cell-typing using variance Adjusted 

Mahalanobis distances with Multi-Labeling (CAMML). CAMML leverages cell type-specific 

weighted gene sets to score every cell in a dataset for every potential cell type. This allows cells 

to be labelled either by their highest scoring cell type as a single label classification or based on a 

score cut-off to give multi-label classification. For single-label cell typing, CAMML performance 

is comparable to existing cell typing methods, SingleR and Garnett. For scenarios where cells may 

exhibit features of multiple cell types (e.g., undifferentiated cells), the multi-label classification 

supported by CAMML offers important benefits relative to the current state-of-the-art methods. 

By integrating data across studies, omics platforms, and species, CAMML serves as a robust and 

adaptable method for overcoming the challenges of scRNA-seq analysis.
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1. Introduction

The development of single cell methods, in particular single cell transcriptomics, has 

dramatically changed the landscape of omics research in the past decade.1,2 In particular, 

single cell analysis enables researchers to characterize the full range of cell types/states 

present in a tissue.3,4 Understanding what cell types are present, and in what proportions, 

is critical in many single-cell RNA-sequencing (scRNA-seq) experiments. In cancer models, 

distinguishing immune cell types and their proportions is key to understanding mechanisms 
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of immune evasion and tumor growth, and thus how to inhibit them.5,6 Additionally, cell 

typing is vital to the characterization of healthy tissues in the development of single-cell 

atlases of organs or biological systems.7 While manual curation of cell types by an expert is 

possible in these examples, often the volume of cells and complexity of tissues undergoing 

scRNA-seq analysis makes the use of an automated cell-typing tool highly preferable, if not 

essential.2,3,8,9

Cell-typing of scRNA-seq data is often done using cell clustering results, with investigators 

selecting the most likely cell type for each cluster based on differentially expressed 

genes.8–10 However, this approach fails to account for cluster heterogeneity, i.e, a cluster 

containing several similar cell types, and is sensitive to the selection of clustering algorithm 

and algorithm parameters.11,12 To address these issues, several cluster-independent methods 

for cell-typing (e.g., SingleR and Garnett) have been recently developed that utilize 

expression profile correlation or machine learning models to predict cell types.13–15 

Although these methods are easy to use and less biased than manual cluster-based 

approaches, they have an important limitation. Specifically, the cell-typing methods 

currently available are all single-label, i.e., they provide just a single cell type classification 

for each cell.13–15 Cell types, especially immune cell types, often occur on a spectrum.16,17 

If two cell types are both highly plausible classifications for a cell, methods that restrict the 

classification to only one cell type may do so incorrectly while also eliminating potentially 

useful information regarding cell phenotypes from alternative classifications. A related 

challenge occurs when no cell types fit a given cell with high confidence. In this case, 

current single-label methods may classify the cell with its most likely cell type anyway, 

providing potentially false information that may hinder scRNA-seq analyses.

Current cell-typing methods are further limited by the perception that cell subtypes are 

mutually exclusive. Cell subtypes are often identified by the distinct proteins present 

on the cell surface and/or by cell location within an organism.18,19 However, the gene 

expression profile for one cell subtype is often not highly distinct from the profiles 

of related subtypes.20 This presents two challenges for cell-subtyping of scRNA-seq 

data. Since the actual gene expression of cells in different subtypes may not be easily 

differentiable, accurately identifying a single label for these subtypes using transcriptomic 

data is extremely challenging.16,17 Additionally, identifying these subtypes may not be 

informative for cancer response if the associated transcriptomes almost completely overlap. 

Rather, understanding the phenotypic nature of single cells and how they contribute to model 

function and dysfunction may be more informative.

To ameliorate these issues, we developed a new cell-typing method for scRNA-seq data, 

Cell-typing using variance Adjusted Mahalanobis distances with Multi-Labeling (CAMML). 

CAMML uses customizable weighted gene sets for each cell type of interest and calculates 

Variance-adjusted Mahalanobis (VAM)21 scores for these cell type gene sets for each cell 

in a scRNA-seq dataset. These scores allow for cells to not only be classified by their most 

likely cell type, but also enable the use of multi-label classification. Because the scores 

generated by CAMML can be transformed into valid p-values under the null hypothesis 

of uncorrelated technical noise, CAMML can be tailored to only give classifications with 

high specificity according to multiple hypothesis testing, allowing for greater confidence in 
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cell-typing results. The generation of scores for each potential cell type also enables the 

evaluation of cell stemness/differentiation, i.e, cells with comparable scores among several 

cell types can be considered more stem-like and cells that score high for a single cell type 

can be considered more highly differentiated. In the remainder of the paper, we present our 

CAMML method and compare its performance to other cell-typing methods on scRNA-seq 

data with known cell type labels. An R package implementing the CAMML method is in 

development and will be released on CRAN, but for now it is available at https://github.com/

schiebout/CAMML.

2. Methods

2.1. Gene Set Development

2.1.1. Public Expression Data—To test CAMML’s cell-typing method, several single-

cell RNA-seq datasets with annotated cell types were accessed. The datasets included 

scRNA-seq data for 10 fluorescence-activated cell sorted (FACS)18 immune cell populations 

from Zheng,22 available on the 10X Genomics website (https://www.10xgenomics.com/

resources/datasets), and immune cell scRNA-seq data from a manually curated melanoma 

dataset from Gene Expression Omnibus (GEO), available at accession GSE72056.23,24 

These scRNA-seq datasets were processed using Seurat v.4.01 in R v.4.0.2.25 Cells with 

over 5% of reads belonging to mitochondrial genes were removed, as were genes present 

in fewer than 100 cells and cells with fewer than 500 genes. Log normalization was then 

applied and Seurat’s nearest neighbor algorithm was used over 30 dimensions to perform 

unsupervised clustering with a resolution of 0.25.25 Data was visualized using Uniform 

Manifold Approximation and Projection (UMAP) on the top 30 principal components.25,26

2.1.2. Gene Set Optimization—To build gene sets that distinguish cell types, 

differential gene expression analysis was performed on reference expression data from the R 

package celldex,13 which includes cell typelabeled human and murine bulk gene expression 

data. Specifically, the Human Primary Cell Atlas (HPCA) was used to generate cell type 

gene sets by performing one vs. all differential gene expression analysis using the exact test 

in edgeR v.3.32.1.13,27,28 To define cell type gene set membership, a differential expression 

cutoff was used to determine which up-regulated genes would be included in a given cell 

type gene set. For our analysis, this cutoff was based on the log fold-change in expression 

of the gene between the target cell type and all other cell types. The cutoff used for each 

analyzed dataset that spanned basal cell types was set to 5 for high stringency. In the 

case of analyzing cells across subtypes, a lower threshold of 3 was used as expression 

across subtypes does not differ enough to result in genes with high log fold-changes. These 

differential expression-based gene sets were refined using cell type gene sets from the C8 

collection of the Molecular Signatures Database (MSigDB).29 Most C8 cell type profiles 

were obtained from the Hay bone marrow gene sets;30 for cell types not included in the 

Hay sets, gene sets were obtained from the C8 heart gene sets.31 The intersection of these 

MSigDB gene sets and the differential expression gene sets was used to identify genes that 

were consistently associated with each cell type across study conditions, and this was used 

as the final gene set for each cell type. The median cell type gene set size was 25 genes.
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2.2. Cell-Typing

2.2.1. Variance-Adjusted Mahalanobis Distance—CAMML generates cell type 

scores using a modified version of the Variance-Adjusted Mahalanobis (VAM) method,21 

which we developed to support cell-level gene set scoring of noisy and sparse scRNA-seq 

data. For this application, VAM is applied to two input matrices: X: n×p matrix that holds 

the normalized scRNA-seq counts for p genes in n cells, and A: m×p matrix that represents 

the annotation of the p genes to m gene sets representing distinct cell types. To capture both 

gene set membership and gene weights, element ai,j of A will be 0 if gene j is not included 

in the set for cell type i or the positive weight of gene j for cell type i. Using X and A, the 

modified VAM method computes an n × m matrix S as follows:

1. Compute modified Mahalanobis distances: Let M be an n × m matrix of 

squared values of a modified version of the Mahalanobis multivariate distance 

measure.32 Each column k of M, which holds the cell-specific squared distances 

for cell type k, is calculated as M[,k] = diag M[, k] = diag Xk
T Igσk, tech

2 −1Xk , 

where g is the gene set size for cell type k, Xk is a n × g matrix containing the 

g columns of X corresponding to the members of the set for cell type k, Ig is a 

g×g identity matrix, and σk, tech
2  holds the ratio of the technical variance of the g 

genes in set k to cell type-specific weights for the g genes.

2. Compute modified Mahalanobis distances on permuted X: To capture the 

distribution of the squared modified Mahalanobis distances under the H0 that the 

normalized expression values in X are uncorrelated with only technical variance, 

let Xp represent the row-permuted version X and let Mp be the n×m matrix that 

holds the squared modified Mahalanobis distances computed on Xp.

3. Fit gamma distribution to each column of Mp: A separate gamma distribution 

is fit via maximum likelihood to the non-zero elements in each column of Mp.

4. Use gamma cumulative distribution function (CDF) to compute cell-specific 
scores: The cell-specific gene set scores are set to the CDF value for each 

element of M.

The use of a CDF to generate the elements of S has several important benefits: 1) it 

transforms the squared modified Mahalanobis distances for gene sets of different sizes into a 

common scale, which is important if values in S are used together in statistical models, e.g., 

as regression predictors, 2) it generates a statistic that is bound between 0 and 1 and is robust 

to very large expression values, i.e., the CDF converges quickly to 1 as the squared distances 

increase, and 3) valid p-values can be generated by subtracting the elements of S from 1.

2.2.2. Basal Cell-Typing—Half of the cell types in Zheng (2017) and all of the cell 

types in GSE72056 can be considered basal immune cell types, such as macrophages, T 

cells, and B cells.22,23 To train CAMML on the most broadly applicable cell types, the 

model was first developed to identify these basal cell types. In both datasets, after the 

development of the necessary cell type gene sets, weighted VAM scores were calculated 

following the procedure detailed above for each cell across each cell type. With these 
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scores, cells were classified in several ways. First, the highest scoring cell type for each 

cell was used as a single-label designation, allowing for a comparative evaluation against 

SingleR and Garnett.13,15 Second, the two highest scoring cell types for each cell were 

used to evaluate if the ”ground truth” cell type was captured among the highest scoring cell 

types, if not the highest scoring cell type. Multi-labeled cells were then visualized using 

UMAP dimensionality reduction to determine if trends of continuous expression could be 

detected.26

2.2.3. Cell-Subtyping—Following basal cell typing, the Zheng (2017) data was further 

analyzed to determine cell subtypes.22 The Zheng dataset has sequencing information for 6 

different types of T cells (CD4+, CD8+, naive CD4+, naive CD8+, memory, and regulatory 

T cells), enabling more specific characterization.22 New gene sets for each T cell subtype 

were developed using the same differential expression approach employed for basal cell 

types on a subset of the training data containing just T cells. The subtype gene sets were 

based on a differential expression analysis restricted to T cells in order to prioritize genes 

that help distinguish one T cell subtype from other subtypes rather than genes that separate 

T cells from non-T cells. The MSigDB C8 collection does not currently have gene sets 

for all of these T cell subtypes and was thus excluded from the gene set building in this 

case. VAM scores were then computed using the weighted T cell subtype gene sets for all 

cells previously classified as basal T cells. The accuracy of the CAMML method for T cell 

subtyping was compared to existing methods, SingleR and Garnett, based on single-label 

classification using the highest scoring T cell subtype and multi-label classification using the 

same approach described in the basal cell-typing methods.13,15

2.3. Stemness

2.3.1. Public Time Series scRNA-seq Data—To gauge if multi-label cell typing 

could be leveraged to evaluate stemness, public time series scRNA-seq datasets 

were utilized. The first dataset utilized was accessed via GEO, at accession number 

GSE118068.24,33 This study performed scRNA-seq on embryonic mouse cerebellums at 10, 

12, 14, 16, and 18 days of gestation, as well as on newborn mouse cerebellums at 0, 5, 7, and 

14 days post birth.33 The second dataset (GEO accession number GSE107122) contained 

scRNA-seq data generated on embryonic mouse brains at embryonic stages 11.5, 13.5, 

15.5, and 17.5 days.24,34 The same scRNA-seq computational processing steps previously 

described for the cell-typing datasets were used for these time series datasets.

2.3.2. Entropy—As a proxy for stemness, an entropy-based measure was calculated for 

each of the cells in the aforementioned datasets. This was accomplished using a similar 

process to that employed for the multi-label cell typing evaluation. First, gene sets were 

created for each relevant mouse cell type using the differential expression method outlined 

above applied to the mouse RNA-seq reference dataset in celldex.13,35 MSigDB gene sets 

were not used in this case as they are specific to human tissues. VAM scores were then 

calculated for each of the weighted cell type gene sets on each of the cells in the public 

murine scRNA-seq datasets. After VAM scores were computed, the cell type entropy of 

each cell, in this case defined by a modified Shannon Diversity Index (mSDI) (outlined in 

Equation 1), was calculated. The Shannon Diversity Index was modified in order to account 
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for the strength of the VAM scores, so that cells with only one nonzero cell type score did 

not have identical mSDIs if one had a much lower VAM cell type score than another. These 

entropy scores were then evaluated using a linear model in R.

H = − ∑
i = 1

R
pilnpi

pi = V AMi + ϵ
∑V AM

(1)

3. Results and Discussion

3.1. Cell-typing Performance

To evaluate the accuracy of CAMML relative to existing methods, we performed cell-typing 

using single-label CAMML, multi-label CAMML for the top two cells types, Garnett,15 

and SingleR13 on the aforementioned public scRNA-seq datasets from 10X Genomics and 

GEO.22,23 For each method, the processing and filtering of the public scRNA-seq data being 

tested and the cell types available for potential classification were identical, although Garnett 

does include an additional classification option of ”unknown” that CAMML and SingleR do 

not support.13,15 Furthermore, both the Garnett and SingleR classifiers were trained on data 

provided in their documentation as each method required a specific and unique structure 

for training data.13,15 In the case of SingleR, the training data was also based on HPCA; 

however, for Garnett, a manually curated training dataset was used.13,15 The motivation 

for evaluating CAMML both as a single-label and multi-label classifier was to test how it 

performed compared to other methods when restricted to a single label and to assess how 

multi-label classification may further inform cell-typing. Although not pictured, AUCell was 

also used for basal cell-typing to compare multi-label CAMML to another method capable 

of multi-label cell typing.36 The gene sets built for CAMML were fed into AUCell and 

cell-type classification was determined based on the default method for classification built 

into AUCell.36 In each case, multi-label CAMML performed comparably or better than 

AUCell, confirming the utility of CAMML as a multi-label classifier and the robustness of 

the gene sets we built.

As displayed in Figure 1a, single- and multi-label CAMML and SingleR performed with 

similar accuracy when tested on the Zheng dataset.13,22 Of note, the CD34+ cells in 

this dataset reported a FACS sorting purity of about 50%, which likely explains why all 

methods struggle with this cell type.22 Figure 1b similarly illustrates that all methods 

perform relatively consistently on the GEO melanoma dataset,23 with one notable exception. 

CAMML has a reduced accuracy for T cells in this dataset, particularly single-label 

CAMML. Further evaluation of the method performance in this cell type category indicated 

that CAMML detects a crossover of expression between T cell and NK cell gene sets, which 

is discussed in more detail in the multi-labelling section. Figure 1c displays the accuracy of 

cell-subtyping performed on the T cell subtypes available in the Zheng dataset.22 In most 

cases, single and multi-label CAMML performed better than SingleR.13 Of note, Garnett15 

was not used in this example because it does not currently have T cell subtype training 
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data available. Both CAMML methods and SingleR fail to achieve accuracy comparable to 

that observed in the basal cell-typing, supporting findings in previous literature that T cell 

subtypes often occur on a continuum of expression and may not be easily distinguishable 

from transcriptomic data.16,17 In both methods, cell types of similar origins were often all 

classified into one subtype, resulting in high accuracy of one subtype and relatively low 

accuracies in others. In all subtypes, the use of multi-labelling improves the accuracy of 

CAMML, supporting our hypothesis that multi-labelling provides more information and 

context when carrying out scRNA-seq analysis.

3.2. Multi-Labelling

In order to evaluate the reduced accuracy observed for T cells in the GSE72056 data23 

and to assess the benefits of a multi-label classifier in immune TME cell-typing, UMAP 

visualization was used to further study the similarity in gene expression between T cells and 

NK cells.26 Cells labelled by the original authors as T cells or NK cells were isolated, and 

Figure 2 shows these cells projected onto the first two UMAP dimensions. Figure 2a shows 

the VAM scores for T cells, NK cells, and an overlay of both, as well as a fourth panel 

illustrating the color key.21,25 Figure 2b shows what the cells were actually identified as in 

the original study.23

Cells identified as NK cells in the original study do not score highly for T cells, which is 

further supported by their near-perfect accuracy across single- and multi-label CAMML and 

SingleR as visualized in Figure 1b.13,23 However, many of the cells identified as T cells 

have high VAM scores for both T cells and NK cells. Given that cytotoxic T cells and 

NK cells often have overlapping gene expression and immune action, this overlap is not 

surprising.20,37 However, being able to detect this crossover through multi-label cell-typing 

provides context that would otherwise be lost. It appears from this data that many T cells 

are expressing genes that align with the cytotoxic profile of NK cells, potentially indicating 

that there is notable T cell activation occurring in this TME. In comparative studies of cancer 

therapies in the immune compartment of the TME, the use of multi-label cell-typing may 

aid in understanding how immune cells are transitioning and altering their phenotypes in 

response to cancer.

3.3. Stemness Analysis

Following CAMML’s performance with cell-typing, the potential for a second assessment 

measure emerged. We hypothesized that undifferentiated or stem-like cells may be 

responsible for cases where CAMML did not score strongly for any cell type. To evaluate 

the validity of this hypothesis, two public time series scRNA-seq datasets were evaluated for 

change in mSDI (Equation 1) as a proxy for measuring cell differentiation over time. Figure 

3 shows the results of this study, with about 60,000 cells across 9 time points from GEO 

dataset GSE11806833 in Figure 3a and 11,000 cells across 4 time points from GEO dataset 

GSE10712234 in Figure 3b.

Despite a consistent median mSDI, both datasets had significant decreases over time (p < 
.001) when modeled by univariate linear regression. As visualized in Figure 3a and 3b, the 

first time point has many fewer cells with low mSDI scores than other time points, leading 
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us to theorize that although the bulk of cells still have high mSDIs, certain cells are dropping 

in mSDI over time as they become differentiated. Furthermore, given that both datasets 

come from mouse scRNA-seq datasets that focus entirely on or start with embryonic cells, 

it is not surprising that most cells are still not completely differentiated throughout the 

time series data as mice brains are still developing.33,34,38,39 Interestingly, in Figure 3a, the 

linear process of differentiation also appears to slightly restart during the postnatal period, 

with postnatal day 0 having fewer low mSDI cells than embryonic day 18, and the low 

mSDI cells reemerging in later postnatal time points. In both cases, there is a significant 

trend in decreasing mSDI scores over time, indicating the potential for CAMML to capture 

meaningful patterns in stemness.

4. Conclusion

Single-cell RNA-sequencing has enabled characterization of tissues that was previously 

unattainable with bulk transcriptomics methods. However, the challenge of identifying 

the cell types present in a tissue and their proportions has been an ongoing challenge, 

particularly as a result of the sparsity and noise present in scRNA-seq data. Several 

approaches have been developed to ameliorate this issue. Manual clustering methods are 

a common way to assign cell types; however, the potential bias of performing cell-typing 

manually and the assumption that all cells within a computationally-defined cluster are the 

same cell type have limited the effectiveness of these methods. To overcome this, more 

complex computational methods, such as SingleR13 and Garnett15 have been developed to 

take an automated, unbiased approach to scRNA-seq cell-typing. While these are promising 

methods for identifying single cell types, in cases where cell types are continuous rather than 

discrete, these methods fall short of fully characterizing the complexities of the tissue being 

studied. This challenge is especially relevant for the tumor-immune microenvironment, 

where expression of cell types can occur on a spectrum and cells can alter their phenotype in 

response to cancer and immune signaling.16,17

In order to overcome the issue of continuous cell types while maintaining the effectiveness 

of single-label cell-typing supported by existing methods, we developed the Cell-typing 

using variance Adjusted Mahalanobis distances with Multi-Labeling (CAMML) method, a 

novel method that uses weighted cell type gene sets and a statistical technique optimized 

for sparse and noisy scRNA-seq data to score individual cells for multiple cell types.21 

Using cell type gene sets generated on existing public data sources, including MSigDB29 

and celldex,13 CAMML performs comparably or better than existing methods in terms 

of single-label classification accuracy. Furthermore, while we used fixed log fold-change 

thresholds of 5 for basal cells types and 3 for subtypes in our development of the gene 

sets for these analyses, users of CAMML with prior expertise on their cell types of interest 

could customize their cutoff in order to maximize their accuracy. In future, we also plan 

to develop a downregulated cell-type option, where genes with low or no expression in a 

certain cell type can be considered alongside those that are upregulated in order to improve 

specificity. By incorporating a multi-label option, CAMML provides additional context for 

cell phenotypes not available with existing cell typing methods, as illustrated in Figure 2, 

where the inclusion of a second label highlighted a group of T cells with a strong similarity 

to NK cells, suggesting a cytotoxic phenotype. This multi-label can be used to forego the 
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traditional option of only assigning one cell type to any single cell. However, it can also be 

used to inform phenotype even when a single label is chosen. Given that the VAM21 uses 

a CDF to score cells, a p-value is available for each cell type in each cell, allowing for 

informed cell classification. The versatility of CAMML is further promoted by its potential 

use in stemness analysis, whereby a modified SDI can be used to assess a cell’s level 

of differentiation. The incorporation of multiple datasets into the training and testing of 

CAMML, combined with its diverse analysis capabilities, make it a robust and promising 

method for analyzing scRNA-seq data, particularly in the immune compartment of the TME.
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Fig. 1. 
Classification accuracy of CAMML on the top 2 scoring cell types and the top scoring 

cell type, Garnett, and SingleR for (A) the FACS-sorted 10X Genomics dataset on B cells, 

CD34+ hematopoietic stem cells, macrophages, NK cells, and T cells,22 (B) the melanoma 

public scRNA-seq dataset23 on B cells, endothelial cells, fibroblasts, macrophages, NK cells, 

and T cells, and (C) on the T cell subsets identified in the FACS-sorted 10X dataset: CD4+ 

T cells, CD8+ T cells, naive CD4+ T cells, naive CD8+ T cells, memory T cells, and 

regulatory T cells.
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Fig. 2. 
Visualizations of cells classified as T cells or NK cells in the GEO GSE72056 melanoma 

dataset23 on the first two UMAP dimensions, (A) colored by weighted VAM scores for T 

cells, NK cells, and both, with a color key, and (B) colored by cell type assignments from 

the original study.23
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Fig. 3. 
Boxplots of mSDI (Eq. 1) across time in A GSE118068 data, with mouse cerebellum 

scRNA-seq data from embryonic timepoints of 10, 12, 14, 16, and 18 days of gestation and 

postnatal timepoints of 0, 5, 7, and 14 days old,33 and in B GSE107122 data of embryonic 

mouse brains at embryonic stages 11.5, 13.5, 15.5, and 17.5.34
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