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Abstract
The second law of thermodynamics states that entropy, as a measure of randomness in a

system, increases over time. Although studies have investigated biological sequence ran-

domness from different aspects, it remains unknown whether sequence randomness

changes over time and whether this change consists with the second law of thermodynam-

ics. To capture the dynamics of randomness in molecular sequence evolution, here we

detect sequence randomness based on a collection of eight statistical random tests and

investigate the randomness variation of coding sequences with an application to Escheri-
chia coli. Given that core/essential genes are more ancient than specific/non-essential

genes, our results clearly show that core/essential genes are more random than specific/

non-essential genes and accordingly indicate that sequence randomness indeed increases

over time, consistent well with the second law of thermodynamics. We further find that an

increase in sequence randomness leads to increasing randomness of GC content and lon-

ger sequence length. Taken together, our study presents an important finding, for the first

time, that sequence randomness increases over time, which may provide profound insights

for unveiling the underlying mechanisms of molecular sequence evolution.

Introduction
The second law of thermodynamics states that a system tends to progress in the direction of
increasing entropy [1], where a system in this context includes engineered devices as well as
biological organisms and entropy is a measure of randomness; that is to say, a system naturally
progresses from nonrandomness to randomness [2]. Consistently, evidence has accumulated
that the diversity and complexity in biology tend to increase in any evolutionary system, agree-
ing well with the second law of thermodynamics [3–7] that randomness never decreases over
time. At the molecular level, genome sequences during evolution evolve toward incorporating
more intricate mechanisms, indicative of increasing entropy and complexity. Additionally,
aging is at least partially due to an accumulation of errors in DNA [8], which can be also
explained by an increase in randomness. Considering that cancer can be considered as an
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evolutionary process [9, 10], mutations and epigenetic imbalances during cancer progression
can lead to randomness increase [11, 12], which also consists with the second law of thermody-
namics. Therefore, characterizing the dynamics of molecular sequence randomness is of great
significance for providing profound insights in unveiling the underlying mechanisms in molec-
ular sequence evolution.

Over the past several years, efforts have been devoted to detecting randomness on molecular
sequences primarily at the protein level [13–20]. However, it remains unknown whether DNA
sequence randomness changes over time and whether this change consists with the second law
of thermodynamics. Specifically, previous studies converted amino acid sequences into bit
sequences, based on different groupings of amino acids according to their physicochemical
properties, such as size, hydrophobicity, charge, polarity, mass, etc. However, they adopted dif-
ferent physicochemical properties for conversion of amino acid sequences into bit sequences,
thus lacking a widely accepted conversion that can be used for randomness detection. In addi-
tion, previous studies ignored the degeneracy of the genetic code, that is, amino acids are
encoded by different n-fold degenerate codons that often have completely different features.
For example, CGN (N = A, T, G, C) and AGR (R = A, G) encode Arg, but the former presents
higher GC content than the latter.

Based on our previous studies [21–25], codons are not randomly allocated in the genetic
code, which can be divided into two halves in a more straightforward and informative manner
(Table 1), viz., pro-robustness half (PRH) and pro-diversity half (PDH) that represent robust-
ness and diversity, respectively. Specially, codons in PRH are robust to nucleotide changes at
the 3rd codon position (cp3) since they do not provoke the amino acid change (e.g., CCN
codes for Pro, where N represents any nucleotide). Conversely, codons in PDH are sensitive to
nucleotide changes at cp3; nearly most changes between purines and pyrimidines at cp3 lead to
amino acid change (e.g., GAR codes for Glu and GAY codes for Asp, where R = purines and
Y = pyrimidines). Although there are three amino acids (Arg, Leu and Ser) encoded by six-fold
degenerate codons, they are distributed across the two halves, playing important balancing
roles for error minimization [25]. Considering that robustness and diversity are two important
features, therefore, it would be desirable to detect sequence randomness based on PDH and
PRH and investigate whether a sequence is able to keep a balance between robustness and
diversity. As molecular sequences accumulate mutations during evolutionary process, will
sequences change the degree of randomness over time? Is this change consistent with the sec-
ond law of thermodynamics, that is, sequence randomness increases over time?

To address these issues, here we investigate molecular sequence randomness based on a col-
lection of eight statistical random tests. The availability of multiple strains’ genome sequences

Table 1. The content-centric re-organization of the genetic code.

1st base

A T G C

A AAR(K) TAR(St) GAR(E) CAR(Q)

AAY(N) TAY(Y) GAY(D) CAY(H)

2nd base T ATR(I, M) TTR(L) GTN(V) CTN(L)

ATY(I) TTY(F)

G AGR(R) TGR(St, W) GGN(G) CGN(R)

AGY(S) TGY(C)

C ACN(T) TCN(S) GCN(A) CCN(P)

Note: N represents any nucleotide. R represents A and G. Y represents T and C. St indicates stop codon.

doi:10.1371/journal.pone.0155935.t001
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for a given species provides opportunity to systematically track sequence randomness over
time as genes presenting in all related strains are believed to be evolutionarily ancient and
those presenting in individual strains are relatively young [26, 27]. Therefore, we collect a total
of 61 Escherichia coli strains and explore the sequence randomness in the context of pan-
genome where genes are classified into different groups according to their presence in different
number of strains. As essential genes are more evolutionarily conservative and ancient than
non-essential genes [27], we also perform similar analysis by grouping genes based on gene
essentiality. We further investigate GC content and sequence length that are in close associa-
tion with sequence randomness.

Methods

Conversion of coding sequences into bit sequences
Following by previous studies [14, 19, 20], biological sequences are converted into bit
sequences, which is of practical significance for making randomness detection doable that can
rely on many empirical statistical tests (such as The Runs Test, The RandomWalker Test and
The Serial Test). According to our previous studies [21–24], the genetic code can be re-orga-
nized based on both GC and purine contents and accordingly divided into two halves
(Table 1), viz., PRH and PDH. Based on these two halves, coding sequences can be converted
into bit sequences, where ‘0’ represents a codon in PRH and ‘1’ represents a codon in PDH.

Randomness testing of bit sequences
A bit sequence is composed of a series of ‘0’ and ‘1’ [28]. Various statistical tests have been pro-
posed to test a null hypothesis that biological bit sequences are random [13, 14, 16, 17, 20, 28–
30]. Among them, the National Institute of Standards and Technology (NIST) 800–22 Statisti-
cal Test Suite is widely used for random sequence testing. The NIST Statistical Test Suite
includes sixteen tests to assess the randomness of binary sequences and each test focuses on a
particular characteristic of binary random sequence (S1 Table). Since some tests require
sequences longer than 105 (which cannot be always satisfied for sequences in prokaryotes) and
thus are inapplicable in biological sequences, we adopt a total of 8 statistical tests (viz., the Fre-
quency Test, the Cumulative Sums Test, the Cumulative Sums Test Reverse, the Runs Test, the
Discrete Fourier Transform Test, The Non-overlapping Template Matching Test, The Serial
Test, The Approximate Entropy Test; see details in S1 Table), to examine the randomness of
coding sequences.

As there are 8 statistical tests used for randomness detection, an 8-dimension vector is
employed to describe a sequence, where each dimension represents a P-value that is derived
from a randomness test. For any given coding sequence X, its general randomness vector Rx is
formulated as

Rx ¼ ðS1x; S2x; � � � ; S8xÞ; ð1Þ

where Six is the rounded value of negative e natural logarithm of P-value in the ith random test.
Since any sequence can be represented as an 8-dimension randomness vector, we developed

a two-step clustering algorithm [30] based on randomness vectors to cluster sequences into dif-
ferent groups. The first step is to measure the similarity of different sequences using log-likeli-
hood distances and then to cluster sequences into multiple groups with a maximized log-
likelihood function. The second step is to further cluster groups by a standard agglomerative
clustering method, i.e., comparing their distances to a threshold, and then to determine the
best number of clusters based on Schwarz's Bayesian Inference Criterion (BIC) [31].
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Data collection
All coding sequences of 61 E. coli strains were downloaded from NCBI (National Center for
Biotechnology Information) [32]. Essential genes of E. coli were retrieved from DEG (Database
of Essential Genes; http://www.essentialgene.org) [33]. To avoid stochastic errors, sequences
that are less than 100bp were removed from analysis. Detailed information can be found at S2
Table.

Results and Discussion

Detection of randomness in molecular sequences
To fully capture sequence randomness, we integrate a collection of 8 statistical tests to detect
randomness in molecular sequences according to a content-centric organization of the genetic
code that splits codons into PDH and PRH (Table 1; see Methods). Based on these 8 tests, we
devise an 8-demension vector, where each dimension represents a P-value derived from a ran-
domness test. As a result, any sequence can be denoted as an 8-dimension randomness vector.
We further develop a two-way clustering algorithm based on randomness vector and apply it
to all sequences in E. coliMG1655, leading to two clusters with distinct statistical properties of
randomness (Fig 1): the random cluster (n = 2,892) and the nonrandom cluster (n = 1,069).
Detailed information of statistical testing on these two clusters is tabulated into S1 and S2
Tables. Considering the significance levels of 8 statistical tests, the random cluster has a higher
percentage (>89.42%) of sequences whose statistical significance levels are larger than 0.1,
clearly showing that the majority of sequences in this cluster have random patterns. Contrast-
ingly, the nonrandom cluster contains a larger proportion of sequences that have significance
levels less than 0.1 (Fig 1). Intriguingly, the runs test performs very similar in both clusters.
This result is in agreement with a previous finding that the runs test is unable to detect

Fig 1. Random and non-random clusters based on 8 statistical tests. Bars are color-coded by different ranges of P-value.

doi:10.1371/journal.pone.0155935.g001
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randomness in biological sequences [18]. Likewise, the spectral test yields similar performances
in both clusters, indicating its incapability in detecting randomness biological sequences as
well.

Investigation of sequence randomness over time
A pan-genome represents the union of all gene sets in all available strains of a species, which
includes core genes that are present in all strains and dispensable genes that are present in mul-
tiple but not all strains [34]. As core genes are believed to be more ancient [26], therefore, we
hypothesize that sequence randomness increases over time and core genes most likely contain
more randomness.

To test this hypothesis, we collect 61 publically available E. coli genomes from [35] (S2
Table), perform the pangenome analysis and classify genes of E. coliMG1655 into five groups
according to their presence in these 61 strains: Specific (that are genes presenting in 1–15
strains; n = 111), Medium-Specific (that are genes presenting in 16–30 strains; n = 126),
Medium (that are genes presenting in 31–45 strains; n = 315), Medium-Core (that are genes
presenting in 46–60 strains; n = 1,347) and Core (are genes presenting in all 61 strains;
n = 2,060). Consistent with our expectations, the proportion of random genes is significantly
different in these five groups (Chi-square test, P<0.0001; Fig 2) and grows gradually from spe-
cific genes to core genes, exhibiting 47.75% in specific genes and reaching the highest at 76.02%
in core genes. As core genes are more ancient whereas specific genes are relatively young [26],
these results clearly show that sequence randomness increases over time.

To further validate our results, we perform similar analysis by considering gene essentiality
since essential genes that are critical for an organism’s survival are thought to be more ancient
[26, 36, 37]. We retrieve 527 essential genes and 2,956 non-essential genes from DEG

Fig 2. Proportion of random sequences in E. coli.

doi:10.1371/journal.pone.0155935.g002
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(Database of Essential Genes) [38]. In contrast to core genes that are derived from computa-
tional analysis, essential genes derived from DEG are identified by experimental approach.
Consistently, a chi-square test of independence demonstrates that essential genes have a signifi-
cant excess of random genes compared with non-essential genes (P<0.0001; Table 2). Ribo-
some proteins play a significant role in translation machinery and are believed to be more
ancient than others [39]. We find that the majority of ribosome proteins (74%; S3 Table) are
random, consisting well with our results that old genes are more random. Taken together,
these results collectively demonstrate that randomness in molecular sequence increases over
time. As randomness is detected based on grouping codons into PRH and PDH, an increase in
sequence randomness during evolution leads to a uniform usage of codons in these two halves
(Table 3), suggesting that sequences evolve toward achieving a good balance between robust-
ness and diversity.

Variation of GC content and sequence length over time
As sequence randomness increase may provoke random nucleotide composition, we further
test whether GC content becomes more random over time. If nucleotide composition in one
gene is random, its GC content is expected to be around 0.514 (� (96–2) / (64×3–3×3) after
removal of three stop codons). Therefore, we compare GC contents of random and nonrandom
sequences and investigate their variations in the pan-genome context (Fig 3). Our results show
that random sequences present GC contents significantly different from nonrandom sequences
(t-test, P<10−14; Fig 3); GC content in random sequences fluctuates around 0.51, always higher
than that in nonrandom sequences, and intriguingly, such pattern is strikingly apparent in spe-
cific genes. This result is consistent well with a previous study that GC content in old human
genes is around 0.51 [40]. With the increasing presence in more E. coli strains, the difference of
GC content between random and nonrandom genes is radically reduced. These results show
that GC content indeed goes random over time; GC content in random sequences varies within
a very narrow range around 0.51, strongly indicating that random sequences achieve robust-
ness-diversity balance.

It has been extensively reported that GC content is correlated positively with sequence
length [41–43]. Therefore, we wonder whether sequence length varies over time (Fig 4).

Table 2. Statistical test of randomness between essential and non-essential genes.

Cluster Essential Genes Non-essential Genes 2×2χ2P-value

Random 418 2120 <0.0001

Nonrandom 109 836

doi:10.1371/journal.pone.0155935.t002

Table 3. Percentage of genes that equally use codons in PDH and PRH.

Pan-genome group Percentage*

Core 77.6%

Medium-Core 75.9%

Medium 65.4%

Medium-Specific 53.5%

Specific 46.8%

* P-value<0.05 (The frequency test)

doi:10.1371/journal.pone.0155935.t003
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Agreeing with expectations, core genes are longer than specific genes and therefore, sequence
length increases over time. In addition, random genes tend to be always longer than nonran-
dom genes. Collectively, with the increase of sequence randomness during evolution, sequences
evolve toward higher GC content fluctuating at random and possess longer length, which is
more pronounced in random sequences.

Conclusion
To fully picture the dynamics of randomness in molecular sequence evolution, here we
detected sequence randomness in E. coli and explored randomness variation over evolutionary
time based on the fact that in the context of pan-genome core genes are more ancient. Consis-
tent with the second law of thermodynamics, we found that core genes are more random than
specific genes, indicating that randomness in molecular sequence increases over time. More-
over, this conclusion still holds true when we considered gene essentiality, given that essential
genes are more conservative and ancient than non-essential genes. To our knowledge, our
study presents an important finding, for the first time, that randomness in sequence evolution
increases over time, coupled with an increase in randomness of GC content and longer
sequence length, which needs further validation in a wide range of species across three domains
of life.

Fig 3. Variation of GC contents in the E. coli pan-genome. Random and nonrandom sequences are examined
separately and each dot represents the average of GC content across a specific gene set.

doi:10.1371/journal.pone.0155935.g003

Sequence Randomness Increases over Time

PLOSONE | DOI:10.1371/journal.pone.0155935 May 25, 2016 7 / 11



Supporting Information
S1 Table. Characteristics of the NIST Statistical Tests.
(XLS)

S2 Table. 61 publically available E. coli genomes.
(XLS)

S3 Table. Ribosomal proteins in Pan-genome group and Random group.
(XLS)

S4 Table. Proportion of Each Test in Random Group.
(XLS)

S5 Table. Proportion of Each Test in Nonrandom Group.
(XLS)

Fig 4. Length of coding sequences in the E. coli pan-genome. Random and nonrandom sequences are examined separately
and each bar represents the average of sequence length across a specific gene set.

doi:10.1371/journal.pone.0155935.g004
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