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Abstract

Despite the important role of mechanical signals in bone remodeling, relatively little is known

about how fluid shear affects osteoblastic cell migration behavior. Here we demonstrated

that MC3T3-E1 osteoblast migration could be activated by physiologically-relevant levels of

fluid shear in a shear stress-dependent manner. Interestingly, shear-sensitive osteoblast

migration behavior was prominent only during the initial period after the onset of the steady

flow (for about 30 min), exhibiting shear stress-dependent migration speed, displacement,

arrest coefficient, and motility coefficient. For example, cell speed at 1 min was 0.28, 0.47,

0.51, and 0.84 μm min-1 for static, 2, 15, and 25 dyne cm-2 shear stress, respectively. Arrest

coefficient (measuring how often cells are paused during migration) assessed for the first 30

min was 0.40, 0.26, 0.24, and 0.12 respectively for static, 2, 15, and 25 dyne cm-2. After this

initial period, osteoblasts under steady flow showed decreased migration capacity and

diminished shear stress dependency. Molecular interference of RhoA kinase (ROCK), a reg-

ulator of cytoskeletal tension signaling, was found to increase the shear-sensitive window

beyond the initial period. Cells with ROCK-shRNA had increased migration in the flow direc-

tion and continued shear sensitivity, resulting in greater root mean square displacement at

the end of 120 min of measurement. It is notable that the transient osteoblast migration

behavior was in sharp contrast to mesenchymal stem cells that exhibited sustained shear

sensitivity (as we recently reported, J. R. Soc. Interface. 2015; 12:20141351). The study of

fluid shear as a driving force for cell migration, i.e., “flowtaxis”, and investigation of molecular

mechanosensors governing such behavior (e.g., ROCK as tested in this study) may provide

new and improved insights into the fundamental understanding of cell migration-based

homeostasis.

Introduction

For cell migration studies, considerable emphases have been placed on soluble factor-driven

cell migration, i.e., chemotaxis. On the other hand, recent evidences, including our own [1],

revealed the importance of fluid flow-induced shear stress in triggering and affecting cell

migration, i.e., “flowtaxis”. We showed that mesenchymal stem cell (MSC) migration and its
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path efficiency are dependent on fluid shear [1]. For bone, recruitment of bone-forming os-

teoblasts to the bone remodeling site will contribute to bone tissue homeostasis in vivo. The

repair of bone fracture and growth of engineered bone tissue may be improved if the osteoblast

recruitment (migration) process could be activated and encouraged. It has been established

for osteoblasts that fluid shear affects cytoskeletal restructuring, proliferation, differentiation,

mechanosensitive signaling, and guidance of bone forming activity [2–8]. Despite these observa-

tions that fluid shear regulates osteoblastic cell behaviors, relatively little is known about how

osteoblasts migrate in response to fluid shear. Here we subjected osteoblasts to steady fluid flows

at physiological level shear stresses and measured cell migration using time lapse imaging and

cell tracking software developed in our laboratory. Our results on osteoblast migration revealed

a unique short-term sensitivity to fluid shear in contrast to our previous data with MSCs reveal-

ing continued shear sensitivity [1]. Further investigation was carried out using molecular silenc-

ing of RhoA kinase (ROCK), a regulator of cytoskeletal tension signaling. Interestingly,

inhibiting ROCK activated osteoblast migration responses by enhancing cell recruitment to the

flow direction, increasing speed, and consequently resulting in an increase in migration length.

Bone is a hierarchical dynamic tissue that experiences significant shear stresses when fluids

move through the vasculature, microchannels, and porous regions. Osteocytes embedded in

bone lacunae could sense flow-induced mechanical loading and cause bone remodeling cells

to respond [9]. Despite osteocytes being the primary mechanosensor in bone, osteoblasts and

osteoclasts also respond directly to fluid shear but potentially having differing responses to

flow according to their roles in bone remodeling [10,11]. Osteoblasts have been shown to

migrate both on solid bone surfaces and through the vasculature to the sites of bone repair

guided by osteocytes and chemotaxis signals [12–14]. Shear stress in vessels may also regulate

circulating bone progenitor cells in their arrest and extravasation from the vasculature, e.g.,

intracardially injected MC3T3-E1 osteoblasts could migrate systemically to bone damage sites

and contribute to bone remodeling where rat femurs had been agitated with wear particles

[15]. Shear stress in bone by interstitial or blood flow is expected to be in the range of about

0.06–30 dyne cm-2 [16,17], which will be recapitulated in this study by applying fluid flows

with 2, 15, and 25 dyne cm-2 shear stresses to determine the potential shear-sensitivity of osteo-

blast migration. Further, osteoblast migration data will be compared with MSC migration

which we obtained at the same shear stress levels [1].

Materials and methods

Cell culture

MC3T3-E1 murine osteoblasts (ATCC) were maintained using the growth media composed of

alpha minimum essential medium (αMEM) supplemented with 10% fetal bovine serum (FBS)

and 1% penicillin/streptomycin. For assessing fluid flow effects on MC3T3-E1 migration, cells

were seeded on glass slides (25×75 mm2) at 1×105 cells in 1 ml of growth media. Cells were

allowed to adhere for 6 h. Then, the media were changed to flow media (serum-reduced media

with 5% FBS) and cells were kept overnight. The next day, the cell-cultured slide was assem-

bled with the flow chamber and cells were exposed to steady flows using the flow media. The

glass slide was not precoated with extracellular matrix (ECM) protein before cell culture.

Fluid flow

The FlexFlow fluid flow chamber (Flexcell International) was assembled as directed by the

manufacturer (Fig A in S1 File, also see S1 Fig from our previous publication [1]). The flow

route consisted of Masterflex L/S 16 tubing that connected a media reservoir, peristaltic

pump, Osci-Flow flow controller, pulse dampeners, and the flow chamber mounted on the
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fluorescent microscope. The flow regimens could be controlled by the peristaltic pump and

the Osci-Flow device which were governed by StreamSoft v. 4.1 software provided by the com-

pany. The volume flow rate to achieve the desired shear stress level was determined from the

chamber dimension, tube size, and the media viscosity. The shear stress applied to the cells

was assumed to be the wall shear stress for flows between two parallel plates with infinite depth

assuming the 2D Newtonian flow. More details of the flow device and shear stress calculation

are reported in our previous article [1].

The flow system was sterilized by flowing 70% ethanol for 10 min through the tubing,

which was then flushed out twice with deionized water. For tests, the reservoir was filled with

400 ml of serum-reduced flow media and kept in a 37˚C water bath. The media were then cir-

culated until all air bubbles were removed from the tubing. For each test, the cell-seeded glass

slide was assembled to the FlexFlow device using a negative vacuum pressure and the flow

media were primed for 30 sec to remove bubbles that could be introduced during the slide

changing process. After inspection of the flow lines and vacuum seal, the flow chamber was

placed on an inverted microscope (Leica DMI4000). A steady flow was applied for 120 min at

2, 15, or 25 dyne cm-2 shear stresses (labeled as FF2, FF15, and FF25, respectively). The static

unflowed control was used with the same flow device setup but not exposed to flow.

Time lapse imaging and data processing

Time lapse image stacks of the cells were obtained by recording the phase contrast images

once per minute during the flow with the inverted microscope. A region of the slide away

from the edge and containing many free cells was chosen for imaging. Cells that touched other

cells, exited the frame, or were washed away by the flow were excluded in the post-analysis.

The full details of image processing and cell migration data analysis followed our published

protocols [1]. Briefly, obtained images were first corrected to deal with potential microscope

and device drifts. This was achieved by using the template matching plugin of the open-source

FIJI software [18]. Then, image segmentation and automated cell outline tracking was per-

formed using the time lapse analyzer (TLA) [19]. Segmentation of phase contrast images was

performed by combining two binary masks, the first from Otsu thresholding of the image

entropy and the second created using Sobel edge detection. Detected cell outlines were used to

determine the cellular centroid position at each time frame. By connecting centroid points,

raw cell migration tracks for each cell were obtained. Cell migration tracks and binary mask

videos were exported to the Matlab script developed in our lab to further quantify cell migra-

tion. These include cell migration plots (raw migration and compass plots), percentage of cells

and time migrating with/against the flow, migration speed at each time frame, displacement

length, confinement ratio, arrest coefficient, etc. As a measure of collective cell migration

trend, the group dispersion was calculated at each time frame by using the root mean square

(RMS) displacement (XRMS):

XðtÞRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
½xiðtÞ � xið0Þ�

2

r

ð1Þ

where t is time, N is the total number of measured cells, and xi is the cell position vector for the

i-th cell. The term xi(t) − xi(0) is the displacement of i-th cell at time t from the initial starting

position xi(0). This calculation method produces an ensemble average, the average displace-

ment of all the cells in the measured group at each time point. The motility coefficient, the

slope of the plot of RMS displacement vs. square root of time which indicates the strength of

cell mobility analogous to the diffusion coefficient [1,20], was also calculated. Definitions of

other parameters are described in the Results sections.
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Silencing ROCK via small hairpin RNA (shRNA)

To reveal the role of ROCK in osteoblast migration under fluid flow, MC3T3-E1 cells with sta-

ble knockdown of ROCK were established. For this, shRNA-ROCK1 plasmid (Santa Cruz Bio-

technology, sc-36432-SH) and lipofectamine 2000 transfection reagent were used as described

in our previous publications [1,21]. Briefly, after 24 h transfection with shRNA plasmid, the

cells were washed with phosphate buffered saline and placed in selection media containing

2 μg ml-1 puromycin. Cells with silenced ROCK were then selected from puromycin resistant

cells, which were then established as a stably silenced cell line. This procedure was repeated to

create the vector control using the green fluorescent protein (GFP)-tagged control plasmid

(Santa Cruz Biotechnology, sc-108083). All the cell migration tests were completed with using

the vector control cells unless noted as ROCK-shRNA (ROCK-sh) in the figure. Stable knock-

down of ROCK by shRNA was confirmed by western immunoblotting after subcultures in

comparison with the GFP vector control (Fig C in S1 File). The effect of fluid shear was com-

pared for ROCK-silenced cells and vector control at a representative shear stress, 25 dyne cm-

2. We note that using the GFP plasmid vector control may have a slight limitation in that the

comparison is between a shRNA sequence that limits ROCK mRNA and a sequence that pro-

duces GFP, an exogenous protein. The use of a scrambled-shRNA vector control would have

been the best control sample, as there might be unintended effects from shRNA

manipulations.

Statistics

One way analysis of variance (ANOVA) with a Tukey-Kramer post-hoc test was used to assess

statistical significance. The data were checked to ensure that the ANOVA assumptions were

met. If necessary for ANOVA assumptions to be met, skewed data was log10 transformed

before applying statistical methods and back-transformed to present the results (Table A in S1

File). The data are presented as mean ± standard error of measurement (SEM) and statistical

significance is noted with symbols in each figure.

Results

MC3T3-E1 osteoblastic cell raw migration tracks are shown in Fig 1A, in which each cell track

is distinguished by color and the track initiation is shifted to the center of the plot. For fluid

flow (FF) cases, flow was applied from left to right. The image segmentation and exclusion cri-

teria were checked to ensure only individual cells with good segmentation were included.

Compass plots (Fig 1B) were drawn by connecting the cell migration track from beginning to

the ending position. The percentages of cells and time migrating with and against the flow

direction were quantified for the entire 120 min test period. A cell was considered to migrate

with the flow if the terminal track in the compass plot was within ± π/8 of the flow direction,

and migration opposite to this was counted to be against the flow (Fig 1C). There was an

increasing trend of osteoblastic cell number recruited to migrate with the flow direction with

increasing shear stress (Fig 1D) but not reaching statistical significance. Cells subjected to 15

and 25 dyne cm-2 spent more time migrating with the flow (Fig 1E), but again data did not

reach statistical significance. The cells subjected to 25 dyne cm-2 spent the least time migrating

against the flow especially when compared with FF2.

Cell migration speed quantified for each time frame is shown in Fig 2A. It is an average

speed of all cells observed at each minute of measurement (shown without error bars for clar-

ity; see Fig B in S1 File with error bars). MC3T3-E1 osteoblasts showed peak migration speed

with the onset of the flow and had a decreasing trend thereafter. The peak speed increased

with increasing shear stress (e.g., 0.28, 0.47, 0.51, and 0.84 μm min-1 for static, FF2, FF15, and

Flowtaxis of osteoblast migration
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FF25, respectively, at 1 min, Fig 2B). Cell migration speeds in the flowed groups were greater

than static control for up to about 30 min after the flow onset. FF25 displayed the fastest speeds

during this initial period, which were significantly greater than the static control and other FF

cases (Fig 2B). After about 30 min, there were no significant differences in osteoblast migration

speeds among test groups. The migration speed data indicate that osteoblasts may have fluid

shear sensitivity but only for a short period of time after the flow onset.

Data in Figs 1 and 2 may suggest distinction between short and long-term effects of fluid

shear on osteoblast migration. In Fig 3, cell migration behaviors quantified for the short-term

(up to 30 min) and long-term (entire 120 min) periods are shown. The cell displacement

length for the short-term period was found to depend on the shear stress level, with FF25 hav-

ing the greatest displacement and reaching statistical significance compared with the static

control (Fig 3A). This fluid shear sensitivity in displacement did not continue throughout the

entire period as seen in the long-term result. The confinement ratio (Fig 3B), a measure of the

directness of a cell migration path, was calculated by dividing the displacement by the total

path length (efficient straight path approaching 1 and tortuous path 0). The short-term con-

finement ratios were generally higher than the long-term ratios, implying that cell migration

paths were initially more direct and then became less direct as the time increased. However,

there were no marked differences in the confinement ratio with respect to shear stress either

for short or long-term periods. The arrest coefficient (Fig 3C) measures the percent of time

that a cell is paused during migration. A cell was considered paused if the cell speed was less

than one standard deviation below the average cell speed of the static condition. The static

average speed was 0.21 μm min-1 with a standard deviation of 0.05 μm min-1, which yielded an

arrest threshold of 0.16 μm min-1. The arrest coefficient exhibited strong short-term shear

Fig 1. Fluid shear effects on osteoblastic cell migration could be detected. MC3T3-E1 osteoblasts had

a trend of migrating with the flow direction with increasing shear and spent less time migrating against the

flow, especially under high shear. (a) Individual cell raw migration tracks. Flow was given from left to right for

fluid flow (FF) cases. FF2, FF15, and FF25 denote fluid shear stress of 2, 15, and 25 dyne cm-2, respectively.

(b) Compass plots connecting starting and ending positions. (c) Cell migration is considered to be with the

direction of flow if the migration angle in the compass plot is within ± π/8 of the flow direction. (d) Cells showed

an increasing trend of migrating with the flow with increasing shear. The percent of cells migrating against the

flow did not have a clear trend. (e) The cells under higher shear (FF15, FF25) tended to spend more time

migrating with the flow. The FF25 group spent the least time migrating against the flow (#: p < 0.05 compared

with FF2).

doi:10.1371/journal.pone.0171857.g001
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stress dependence. Cells in all flowed groups for the short-term spent significantly less time

paused compared with the static control. Specifically, FF25 spent significantly less time paused

relative to all other conditions. On the other hand, again, the differences in short-term arrest

coefficients were not detected in the long-term data. Combined results indicate that osteoblast

migration may have fluid shear sensitivity but with limited time duration after the flow onset.

The RMS displacement may be a more holistic measure of cell migration tendency, as was

used in our study on MSCs [1]. It calculates an average-sense migration length for all the cells

observed (Eq 1), and consequently reflects all combined characteristics of cell migration

including cell speed, displacement, confinement ratio, and arrest coefficient. The RMS dis-

placement plots for MC3T3-E1 osteoblasts are presented in Fig 4A. For comparison, MSC

data under the same fluid shear stresses are included in Fig 4B (from our publication [1], see

S2 Fig). For osteoblasts, detectable fluid shear dependency in the RMS displacement plot could

only be seen for a very short time period after the flow. This is reminiscent of the cell speed

data in Fig 2. A dashed line is drawn in the RMS displacement plot to mark 30 min after the

flow onset. For FF25, an initial fluid shear adaptation was followed by a long plateau. Both FF2

and FF15 had a more gradual shear adaptation with less of a plateau. Potentially due to the

lack of long-term shear dependency, at the end of 120 min osteoblasts under static condition

showed even greater RMS displacement relative to flowed cells. These osteoblast migration

behaviors are in sharp contrast to MSC migration. When exposed to the same fluid shear

stresses, MSCs migrated continuously with little plateaus and generally showed greater RMS

displacements compared with osteoblast counterparts, suggesting that MSCs under fluid shear

Fig 2. Osteoblast migration speed shows shear stress dependence but only for a short period after

the onset of the flow. (a) MC3T3-E1 osteoblasts under fluid flows showed peak migration speeds after the

flow onset, which then decreased. The flowed cells initially migrated faster than the static control, but after

about 30 min there were no notable differences among test groups. (b) FF25 showed significantly greater cell

migration speed at 1, 5, 10, and 20 min. * and ***: p < 0.05 and 0.001 compared with static control; #:

p < 0.05 with FF2; ψ: p < 0.05 with FF15.

doi:10.1371/journal.pone.0171857.g002
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may be more mobile than osteoblasts. Further, MSCs displayed a sustained trend of increased

migration with increasing shear, e.g., RMS displacement at the end of 120 min was in the

order of static < FF2 < FF15< FF25, which was not the case for osteoblasts. The RMS dis-

placement plots obtained under the same flow conditions thus illustrate the potential differ-

ences of osteoblast vs. MSC migration with respect to sustainable fluid flow effect and

sensitivity to shear stress magnitude.

Differences in osteoblast vs. MSC migration may further be revealed by the motility coeffi-

cient. In the RMS displacement plot against the square root of time, as noted above, the slope

is defined as the motility coefficient and has a physical meaning analogous to the diffusion

coefficient (or diffusivity) of the Fick’s first law of diffusion [1,20]. As in Table 1, the motility

coefficient of MC3T3-E1 osteoblast migration showed shear stress dependency (FF2 < FF15 <

FF25) but only for short periods of time after the flow onset (e.g., up to 30 min). Moreover,

osteoblast static control had even greater motility coefficients than flowed osteoblasts in several

time frames. For MSCs, motility coefficients were generally higher than those of osteoblasts

especially for FF cases, again indicating that MSCs may be more mobile than osteoblasts under

flows. Unlike osteoblasts, flowed MSCs had motility coefficients greater than static control for

both short and long-terms (the only exception was FF2 and static comparison at 120 min). A

strong short-term MSC migration induction at specific shear stress level (FF15), as we reported

[1], can also be seen by the higher motility coefficient for MSCs under FF15 at 5 min. When

assessed for the entire flow period (120 min), MSCs displayed an increasing motility coefficient

with shear stress (FF2 < FF15 < FF25), suggesting a prolonged fluid shear sensitivity acting on

MSCs.

Fig 3. The displacement length and arrest coefficient of osteoblast migration show fluid shear

sensitivity but only for a short period after the flow onset. Data were presented for the short-term (from 0

to 30 min) and long-term (the entire tracking from 0 to 120 min) durations. (a) The short-term displacement

increased with shear. FF25 migrated significantly further than the static control. These differences were not

observed in the long-term data. (b) There was no significant difference in the confinement ratio (directness of

the migration path) with respect to shear stress. The ratio generally decreased for all test conditions as time

increased, indicating reduced path efficiency with time. (c) Flow groups had significantly smaller arrest

coefficients (less time paused) compared with the static control in the short-term data, which was not

observed in the long-term result. *, **, and ***: p < 0.05, 0.01, and 0.001 compared with static control; ##:

p < 0.01 with FF2; ψ: p < 0.05 with FF15.

doi:10.1371/journal.pone.0171857.g003

Fig 4. RMS displacement plots show differences in osteoblast vs. MSC migration under fluid shear.

(a) The RMS displacement of all participating cells, a holistic measure of migration tendency, was plotted for

osteoblasts. (b) Data for MSCs were also included for comparison (reprinted from our publication [1] with

permission from the Royal Society, see S2 Fig). Note that the same flow conditions to produce the same

shear stresses were applied for both cells. MSCs showed continued fluid shear effect to induce migration.

MSCs also showed prolonged shear stress dependency, e.g., the RMS displacement at 120 min was in the

order of static < FF2 < FF15 < FF25. These trends lacked in the MC3T3-E1 osteoblast migration. In the RMS

displacement plot for osteoblasts, shear stress dependency was only visible for a short period of time after the

flow onset. The capacity of fluid shear to induce cell migration was reduced for osteoblasts with time. The

dashed vertical line marks 30 min after the flow onset.

doi:10.1371/journal.pone.0171857.g004
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To gain some insight into the molecular mechanism controlling osteoblast migration, we

repeated the test under interference of ROCK, one of the key cytoskeletal mechanosensors

(see stable silencing in Fig C in S1 File). In the raw migration tracks and compass plots for

MC3T3-E1 osteoblasts under ROCK-shRNA (Fig D in S1 File), significantly increased migra-

tion with the flow direction under ROCK-shRNA is noticeable. This can be seen as percent

cells (Fig 5A) and time (Fig E in S1 File) with the flow. Cells with silenced ROCK could also

migrate at higher speeds even after the initial period for both static and FF25 cases, e.g., 60 min

Table 1. Motility coefficient obtained as a slope of the RMS displacement vs. t1/2 plot.

Osteoblasts MSCs

Short-term Long-term Short-term Long-term

5 min 10 min 20 min 30 min 120 min 5 min 10 min 20 min 30 min 120 min

Static 1.83 3.93 3.65 2.62 1.29 1.30 1.71 2.37 2.67 2.54*

FF2 1.35 1.43 1.29 1.13 1.22 3.51 4.74 4.48 3.68 2.00*

FF15 2.57 2.26 1.77 1.42 1.40 4.99 4.54 3.61 3.26 2.87*

FF25 3.43 3.20 2.59 1.95 0.80 3.71 4.33 4.25 3.65 3.55*

* Data represented from our previous publication [1] with permission from the Royal Society.

doi:10.1371/journal.pone.0171857.t001

Fig 5. Osteoblast recruitment in the flow direction and motility under shear are increased with ROCK

interference. (a) Osteoblasts with ROCK-shRNA (ROCK-sh) under FF25 showed significantly greater

number of cells migrating with the flow direction. (b) Even after the initial period, the speeds of ROCK-silenced

cells were greater for both static and sheared conditions (e.g., 60 min). (c) The displacement of ROCK-shRNA

FF25 group assessed after 120 min was significantly greater compared with other conditions. (d) The ROCK-

shRNA static group was less confined in migration path. (e) The ROCK-shRNA cells paused significantly less

during the migration. (f) The RMS displacement shows that the collective migration of the ROCK-shRNA FF25

group was continued throughout the measurement time resulting in greater RMS displacement at 120 min. The

dashed vertical line marks 30 min after the flow onset. *: comparison with vector control static. ‡: comparison

with vector control FF25. +: comparison with ROCK-shRNA static. Single, double, and triple symbols represent

p < 0.05, 0.01, and 0.001, respectively.

doi:10.1371/journal.pone.0171857.g005
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speed data in Fig 5B (see full set of data with times in Fig F in S1 File). Increased motility

under ROCK silencing resulted in significantly increased displacement under sheared condi-

tion (ROCK-shRNA under FF25, Fig 5C). On the other hand, cells with ROCK-shRNA under

static condition had relatively less displacement regardless of higher speed, which can be

attributed to significantly decreased confinement ratio (Fig 5D) such that ROCK-silenced cells

without flow mostly wandered with no directional persistence. Increased motility by ROCK-

shRNA was also evident in the arrest coefficient (Fig 5E), showing that ROCK-silenced cells

had significantly less stops during migration. As in the RMS displacement plot (Fig 5F), cells

with ROCK-shRNA had continued migration tendency especially under fluid shear. The

ROCK-shRNA FF25 group showed greater RMS displacement due to increased persistent

migration at a higher speed with greater path efficiency. Distinction between short-term and

long-term flow sensitivities for osteoblasts (as described earlier) disappeared with ROCK inter-

ference. The motility coefficient also indicates the existence of long-term shear dependency

under ROCK-shRNA (Table B in S1 File, 120 min). The ROCK-shRNA static group lacked a

directed migration as noted with confinement ratio, which resulted in relatively lower RMS

displacement and motility coefficient.

Discussion

Migration and recruitment of osteoblasts to the bone remodeling site is important for fracture

repair, engraftment of prosthetics, and of general interest for developing treatments for bone

diseases such as osteoporosis. Osteoblast migration/recruitment is known to be activated by

various biochemical factors [14,22,23]. Our results demonstrate that osteoblast migration can

also be affected by fluid flow-induced shear stress to which the cells in bone are exposed.

Under physiologically relevant level shear stresses, recruitment of osteoblasts to participate in

the migration with the flow and the time spent with the flow direction had increasing trends

with increasing fluid shear. Furthermore, cell migration speed, displacement length, arrest

coefficient, and motility coefficient displayed notable changes depending on shear stress mag-

nitudes. Interestingly, such osteoblastic fluid shear sensitivities were found to be vital only for

a short period of time after the flow onset, which became less organized after the initial activa-

tion. As a result, osteoblast migration behaviors under flow were quite different from those of

MSCs that showed prolonged migration stimulatory effect by flow and well-maintained shear

stress sensitivity.

Cells in bone are sensitive to the time parameters of loading including the frequency, rest

period, and shear rate [24–27]. It is recognized that oscillatory fluid flow in bone is ubiquitous,

which is caused by the loading and unloading of bone that drives interstitial flows through

microchannels. Many studies have adopted oscillatory flows to test the fluid shear control of

bone cell behaviors [3,5,8,11]. Regardless of the biomimetic nature of oscillatory flows, on the

other hand, steady laminar flows have also been utilized in many studies. These studies exploit-

ing steady flows also aimed to examine the mechanotransduction of bone cells. Moreover,

many bone tissue engineering approaches have adopted steady flows in the flow bioreactors. It

was evidenced that steady and oscillatory flows may differentially regulate bone cell behaviors

such as actin stress fiber development, intracellular signaling, and differentiation [2,5,11]. In

some cases, interestingly, oscillatory flow showed less stimulatory effect than either steady or

pulsed flow [28]. Our data obtained with steady flows at physiologically relevant levels of shear

stress allowed for the identification of the initial shear stress-sensitive window for the osteo-

blast migration. We showed that most stress-sensitive adaptations in osteoblast migration

occurred during this initial period, after which the effects decreased. Such a decrease in osteo-

blast migration sensitivity to steady flow may be in analogy with reported results showing
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decreases in osteoblastic differentiation and remodeling after being exposed to continuous

flows [25]. It is acknowledged that results of our study with steady flow may not be directly

applied to in vivo osteoblast migration in which oscillating shear may play an important role.

However, our data can be used for comparison with other studies adopting steady flows for

osteoblastic cell gene expression, proliferation, and differentiation as mentioned above. Our

setup could also reveal the potential difference in the flowtaxis of osteoblasts vs. MSCs under

the same steady flows, as highlighted in Fig 4.

Taken together, a contextual framework can be provided here to facilitate interpretation of

the results obtained with steady flow. Steady flow has been useful for studying fundamental

responses of bone cells, such as secretion of tissue remodeling factors and the adaptation of

cell morphological features and signaling cascades. A more useful context would be that of tis-

sue engineering with perfusion flow acting both as a mechanical stimulus for cell inoculation

and as a way of nutrient transport. For instance, how to induce cells to penetrate inside the scaf-

fold within the flow bioreactors can be studied with steady flows. Several data support these

rationale for steady flows. At the individual cell level, unidirectional fluid flow could promote

cytoskeletal remodeling [4]. An increase in mechanical resistance to steady flow by upregulating

cytoskeletal crosslinking resulted in further maturation of bone tissues [11]. Starting with a tis-

sue scaffold and seeding with stem cells, it was found that steady fluid flow effectively guided

osteogenic lineage commitment even without soluble factors [27]. After cells were committed to

an osteogenic lineage, their bone-forming activities could be controlled by unidirectional shear

with increasing or decreasing stepwise magnitude, which respectively increased or decreased

scaffold mineralization and homeostasis-regulating soluble factors [26]. Within this context,

our results may help address the knowledge gap in osteoblast migration in mechanically active

milieus. Our results provide useful baseline data, considering few studies have measured osteo-

blast flowtaxis either in controlled steady or oscillatory shear environments.

Our results showed that osteoblast migration under steady flow may only have short-term

shear dependency. It is possible that shear sensitivity in osteoblast migration may be restored

with the insertion of rest periods. As an example (but not targeting migration), the presence of

rest periods improved the response of bone cells to flow in mechanotransduction, differentia-

tion, and remodeling activity [25,27]. While our study focused on the role of shear stress mag-

nitude, bone cells are also sensitive to the other shear parameter, e.g., rate of shear [24]. A

future study may be designed to more effectively incorporate time variance and initial stress

kicks, which would be useful for improved understanding of osteoblast migration and recruit-

ment and resultant bone tissue homeostasis.

Data comparisons between osteoblasts and MSCs lead to a tentative conclusion that os-

teoblasts have less sustainable fluid shear sensitivity than MSCs under the same steady flow

conditions. The changes in migration behavior among cell types could be due to intrinsic dif-

ferences in the rate of cytoskeleton and focal adhesion remodeling. It is established that focal

adhesion turnover and related cytoskeletal remodeling are essential processes in cell adapta-

tion to mechanical stimulation, and the rate of such remodeling processes could differ among

cell types and by the mode of stimulation. For instance, for sheared endothelial cells [29], ini-

tial focal adhesion remodeling started within 2 min of flow shear onset, focal adhesion kinase

(FAK) was recruited to the leading cell migration edge within 30 min, and the cell had polar-

ized migration with marked cytoskeletal changes in 60 min. Studies comparing focal adhesion

and cytoskeletal remodeling rates for osteoblasts and MSCs under flow may help reveal the

causes of observed differences in migration. Practically, once the cell-specific focal adhesion-

cytoskeletal remodeling timeline is known, the fluid flow stimulation may be tailored for tissue

engineering purposes to most effectively achieve the desired results of cell migration/penetra-

tion into the bone tissue engineering scaffold.

Flowtaxis of osteoblast migration
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Our data evidence that osteoblasts may have a transitory migration response with clear

short-term migration trends and long-term behaviors that may be indicative of altered tempo-

ral processing. MC3T3-E1 osteoblasts had a narrower time window of shear stress sensitivity

and had less persistent migration compared with MSCs. For MSCs, improved migration path

efficiency, more persistent migration, and more cells participating in migration resulted in

higher motility coefficients for both short and long-term flow conditions relative to osteo-

blasts. Since bone has a natural, well-organized network of sensing and remodeling cells, it

might not be critically requested to have continuous cell migration within the bone (relative to

stem cells which may tend to keep migrating, e.g., through the vasculature). Instead, in the

bone tissue a preference may be given to the nearby osteoblasts to migrate over relatively short

distances to the remodeling site. Additionally, MSCs are more likely to experience unidirec-

tional fluid flow in vivo, whereas steady flow is not a characteristic physiological stimulus for

osteoblasts which typically experience oscillatory flow. More flowtaxis studies will be needed

that explore the role of oscillatory and intermittent shears in controlling osteoblast migration,

which could be useful for understanding the nature of bone cell migration and resultant bone

tissue homeostasis.

The small GTPases of the Rho family, including ROCK, can control actin stress filament

remodeling. Inhibition of ROCK is currently explored to improve cell transplantation in

stress-sensitive cells, to control cell attachment to unfavorable surfaces, and to increase cell

migration in static environments [30–34]. The increased cell motility response in static cul-

ture by ROCK inhibition is proposed to act through modified actomyosin regulation [35]. It

is likely that ROCK interference may also allow under a flow shear environment higher cyto-

skeletal deformation and reduces the stimulus level required for remodeling, resulting in

increased cell migration. Our data supports the premise that ROCK inhibition in osteoblasts

increases motility and extends the result to include fluid shear environments, e.g., ROCK-

shRNA significantly increased osteoblast recruitment in the flow direction and extended the

shear-sensitive time window. These results are in line with our previous finding that ROCK

inhibition increased MSC migration under flow [1]. Such information could be useful for tar-

geted tissue engineering approaches that require long-distance migration of bone forming

cells.

Potential mechanisms may also include competition between ROCK and Rac. Since ROCK

and Rac pathways are known to have an antagonistic relationship, silencing ROCK should fol-

low with an increase in Rac. Rac can localize to the leading edge of the cell migration and in

some cases may drive the membrane protrusion behavior [36]. Thus, ROCK interference is

expected to increase cell migration under flow via upregulating Rac-mediated lamellipodia for-

mation at the leading edge of the cell migration. A future study can target the role of ROCK-

Rac crosstalk in osteoblast flowtaxis. Other molecular mechanosensors may also play a role. Of

particular interest is cadherin cell-cell adherens junction. The actin binding cadherin cell-cell

junction may facilitate communication of mechanical signals among cells when the cells are

collectively migrating (migration while keeping cell-cell contacts) [37]. This would provide

advanced knowledge on the ensemble migration of osteoblasts (bone-lining cells) in vivo,

which may suggest a useful strategy for improving osteoblast engraftment with bone tissue

engineering scaffold in dynamic bone remodeling environments.

Our previous work suggested that seeding osteoblastic cells on ECM protein-uncoated glass

slides causes αVβ3 integrin to be the main cell attachment site [38]. This was achieved through

transmembrane integrin αVβ3 binding to vitronectin adsorbed on the slide from serum pro-

teins. While vitronectin can be found in the connective tissue and is part of the disease repair

process [39], a more bone-mimicking ECM milieu, e.g., type-I collagen coating, may provide

more physiologically relevant osteoblast migration data. Another substrate consideration
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would be topographic modification in both micro and nanoscale, since bone cells in vivo are

exposed to such topographies. Our experience of surface topographic modifications and their

effects on osteoblastic cell behavior [40,41] could be used to explore the substrate topographic

control of osteoblast migration under fluid shear, as we evidenced for MSC sensitivity in cyto-

solic calcium response under nanotopography-flow co-exposure [42].

It is not unreasonable to extrapolate that fluid shear would be a vital factor in vivo for osteo-

blast recruitment for bone tissue homeostasis. Our results demonstrate that fluid shear can

directly activate bone cell migration, although the stimulatory effects were mostly within short

time periods. The fluid shear activation of osteoblast migration can definitely work in tandem

with chemotaxis such as soluble factors secreted by other bone cells (osteocytes, osteoclasts),

oxygen gradient, etc. Since the shear ranges tested in this study are known to activate bone

remodeling responses in primordial cells related to proliferation or differentiation, our study

of bone forming osteoblast migration/recruitment under fluid shear may be of significance as

a first step to understand mechanical bone remodeling. Further probing molecular mecha-

nisms, as partly achieved through ROCK silencing studies, related to heterogeneous osteoblast

migration responses to shear (e.g., why short-term shear sensitivity phases out with continuous

flow) may provide advanced knowledge on the fluid shear control of bone remodeling and

regeneration and for functional bone tissue engineering.

Conclusions

Our study provides new and possibly unexpected insights into osteoblastic cell migration. The

results demonstrated that steady fluid shear can initiate MC3T3-E1 osteoblastic cell migration

in a stress magnitude-dependent manner. However, the fluid shear sensitivity was substantial

mostly for the initial time span. As a result, a short-term shear-sensitive window, e.g., up to

about 30 min, was identified during which osteoblast migration behaviors such as speed, dis-

placement, arrest coefficient, and motility coefficient were dependent on the shear stress level.

Osteoblasts had reduced shear sensitivity after this window and demonstrated a decrease in

migration ability. Osteoblastic cell migration was enhanced with interference of ROCK, which

suggested that less cytoskeletal resistance to remodeling may support cell migration under

flow. The short-term shear sensitivity of osteoblast migration formed sharp contrast to MSC

migration which had a more robust migration response and sustained shear sensitivity. Future

investigations of osteoblast flowtaxis with further considerations on the effect of flow and time

regimens, ECM coating and substrate topography modification, and in-depth molecular

mechanisms may lead to better understanding of bone homeostasis in vivo and improved

bone tissue engineering protocols.
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