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A B S T R A C T   

India, with around 15 million COVID-19 cases, recently became the second worst-hit nation by the SARS-CoV-2 
pandemic. In this study, we analyzed the mutation and selection landscape of 516 unique and complete genomes 
of SARS-CoV-2 isolates from India in a 12-month span (from Jan to Dec 2020) to understand how the virus is 
evolving in this geographical region. We identified 953 genome-wide loci displaying single nucleotide poly
morphism (SNP) and the Principal Component Analysis and mutation plots of the datasets indicate an increase in 
genetic variance with time. The 42% of the polymorphic sites display substitutions in the third nucleotide po
sition of codons indicating that non-synonymous substitutions are more prevalent. These isolates displayed 
strong evidence of purifying selection in ORF1ab, spike, nucleocapsid, and membrane glycoprotein. We also find 
some evidence of localized positive selections ORF1ab, spike glycoprotein, and nucleocapsid. The CDSs for 
ORF3a, ORF8, nucleocapsid phosphoprotein, and spike glycoprotein were found to evolve at rapid rate. This 
study will be helpful in understanding the dynamics of rapidly evolving SARS-CoV-2.   

1. Introduction 

The outbreak of coronavirus disease (COVID-19) was reported from 
Wuhan, China on 31 December 2019 and by March 11, 2020, it was 
declared as a global pandemic. The COVID-19 is caused by a novel 
human pathogen which was initially named 2019-novel coronavirus 
(2019-nCoV) and later officially named Severe Acute Respiratory Syn
drome Coronavirus 2 (SARS-CoV-2) by the Coronaviridae Study Group 
(CSG) of the International Committee on Taxonomy of Viruses (Gorba
lenya et al., 2020). The complete genome of the SARS-CoV-2 was first 
obtained and submitted by Wang et al. (2020). Phylogenetic analysis of 
the submitted sequence revealed 89.1% nucleotide similarity between 
the SARS-CoV-2 and SARS-like coronaviruses (genus Betacoronavirus, 
subgenus Sarbecovirus) previously found in bats (Hu et al., 2018), 
indicating viral spill-over from animals to humans (Wu et al., 2020). 

The genome of SARS-CoV-2 includes an orderly arrangement of 5′- 
untranslated region (UTR), replicase complex (ORF1ab), spike glyco
protein, ORF3a, envelope, membrane glycoprotein, ORF6, ORF7a, 

ORF7b, ORF8, nucleocapsid phosphoprotein, ORF10, and 3′-UTR 
(Jungreis et al., 2021; Wang et al., 2020). The ORF1ab refers to the two 
ORFs, ORF1a and ORF1b, combined via programmed -1 frameshift four 
codons before the end of ORF1a. ORFs 1a and 1b are broadly responsible 
for control of genome expression and viral replication, respectively 
(Jungreis et al., 2021). The SARS-CoV-2 is an enveloped virus, which 
belongs to the family of coronaviruses and carries ~ 30 kb positive-sense 
single-stranded RNA as its genetic material (Laamarti et al., 2020). 
SARS-CoV-2 has been estimated to origin somewhere between Oct and 
Dec 2019 (van Dorp et al., 2020) and has been reported to evolve 
relatively slowly (Singh and Yi, 2021). However, it has witnessed 
explosive population growth by circulation in millions of humans since 
its outbreak in Dec 2019. Therefore, the dynamics of its mutation and 
selection is an exceptionally active area of ongoing research. 

According to the World Health Organization (WHO), COVID-19 has 
infected nearly 148 million individuals globally and claimed 3.12 
million lives until April 27, 2021. The exponential spread of the SARS- 
CoV-2 virus across the globe has steered substantial interest in its 
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genome structure, evolution, and mutations. The first case of COVID-19 
in India was reported from the southern state Kerala on January 27, 
2020 (Andrews et al., 2020) and since then the nation has witnessed ~ 
17.6 million COVID-19 cases with ~ 198 thousand mortality by April 27, 
2021. With such a large number of active cases and mortality, India was 
declared as the second worst hit nation in April 2021. This made us more 
interested in studying the mutation and selection in SARS-CoV-2 isolates 
from India. 

The virus’s fitness requirements, including the host’s immune 
response, transmission, and colonization of new host species, changes 
rapidly. In addition, the virus also needs to maintain its essential func
tions such as its ability to infect and replicate within the host cell. On 
account of the antagonistic interplay between quickly changing fitness 
requirements of the virus and maintenance of its essential functions, 
viruses undergo strong and diverse selective forces (Spielman et al., 
2019). Considering that the genetic makeup and thereby the immune 
system of the host greatly varies in different geographical regions, it is 
conceivable that the SARS-CoV-2 would experience varying immune 
responses geographically and consequently virus substrains in India may 
undergo selection differently. This led us to our questions (i) which sites 
in SARS-CoV-2 isolates from India are evolving at higher rates, and (ii) 
which of the coding sequences (CDSs) are under selection pressure and 
are evolving rapidly. 

In this study, we characterize the single nucleotide polymorphism in 
516 complete genomes of SARS-CoV-2 sub strains isolated in India in 
2020 (Jan 2020–Dec 2020). We studied the entire genomes and also the 
individual coding sequences (CDSs) of these complete genomes and 
analyzed the single nucleotide polymorphism (SNP), genetic diversity, 
and selection pressure on individual CDSs over one year of time. This 
study would help us understand the dynamics of SARS-CoV-2 mutation 
and selection in Indian population. This study could be insightful for 
understanding various aspects of the virus including its pathogenesis, 
which is critical in combating COVID-19. 

2. Methods 

2.1. Acquisition of accession number for complete genomes of SARS-CoV- 
2 isolated in India 

The csv record file containing information on the complete and 
partial genome of SARS-CoV-2 was obtained from NCBI on March 6, 
2021. This record consisted of information about both the complete and 
the partial genomes of SARS-CoV-2 from different geographical loca
tions. The csv record file includes accession, release date, species, 
length, nucleotide completeness, geographical location, host, isolation 
source, and collection date (Supplementary File S1). The rows con
taining information only for complete genome sequences were extracted 
and the record of partial genomes was excluded (Supplementary File 
S2). The record of complete genomes was further subset based on rows 
containing the string “India” under the column ‘Geo_Location’. The re
cord was sorted on the basis of ‘Collection_Date’ year and month of 
isolation and the rows with no month information were removed. A new 
column was added for Year and Month for time-wise analysis of SARS- 
CoV-2 genomes (Supplementary File S3). 

2.2. Sequence retrieval and processing 

The accession numbers for complete genomes of SARS-CoV-2 
(collected in India) and one reference genome (Accession NC_045512) 
were retrieved from the record file (Supplementary File S3) and the fasta 
sequences were obtained from NCBI using the read.GenBank function of 
ape package (Paradis et al., 2004; Paradis and Schliep, 2019). The 
resultant fasta file (Supplementary File S4) was then converted into a 
dataframe and a new column of ‘Year_Month’ was added for the date of 
sample collection. 

The dataframe was screened for the sequences containing gaps, 

designated by the character “N”, which were then excluded to create a 
clean dataframe of complete sequences with no “N”. The redundant 
sequences from the clean dataframe were then excluded to create a 
clean-unique dataframe (Supplementary File S5). The Biostrings pack
age (Pages et al., 2013) was used for the efficient manipulation of se
quences. As the name of each sequence was large, a new column, namely 
SN ‘for a short sequence name’ was added with the purpose of adding a 
small header (reflecting their order of collection) to each sequence. Prior 
to adding the new name, the dataframe was sorted on the basis of the 
date of collection so that the new name was given in an order of date of 
collection (Supplementary File S6). This was then converted into fasta 
format. The resultant fasta file (Supplementary File S7) of unique se
quences was opened in BioEdit software (Hall et al., 2011; Hall, 1999) 
and the poly-A tail, wherever present, were trimmed to avoid any 
interference in multiple sequence alignment. The redundant sequences 
were removed, and only unique sequences were used for the analysis, 
unless otherwise stated. 

The number of unique sequences in genomes and also in individual 
sequences were also used as a raw measure of variation in the corre
sponding sequences. Considering the fact that (i) all the different CDS 
sequences are of different length, and (ii) with the increase in the length 
it is expected to observe increased mutations, it is conceivable that CDS 
of large size would display larger numbers of unique sequence compared 
to the CDS of smaller sizes. Therefore, in order to avoid the sequence 
size-dependent bias in determining the number of unique sequences for 
each CDS, the numbers of unique sequences were normalized with their 
sequence length using the following expression: V = U

(l/1000) , where U 
and l represent the number of unique sequences for a CDS and the length 
of CDS, respectively among 516 unique SARS-CoV-2 genomes. The 
dataframes, wherever needed, were converted into fasta files using R 
script as previously described (Negi et al., 2020; Pal and Negi, 2019). 
The computational analysis of data was performed using R programming 
language (Gentleman and Ihaka, 2000; Ihaka and Gentleman, 1996) in 
the platform-independent IDE RStudio (Racine, 2012) unless otherwise 
stated. 

2.3. Multiple sequence alignment 

The multiple sequence alignment of the clean unique genomes of 
SARS-CoV-2 collected from India was performed as described previously 
(Negi et al., 2020; Pal and Negi, 2019). The msa package (Bodenhofer 
et al., 2015), which provides an interface to the multiple sequence 
alignment in R was used for obtaining an alignment of 517 genome 
sequences. The muscle algorithm (Edgar, 2004a, 2004b) was utilized for 
multiple sequence alignment. The conversion of alignment into matrix 
and other downstream processing was performed by using the seqinr 
package (Charif and Lobry, 2007). The coordinates of individual CDSs of 
the reference genome were obtained from NCBI and used for extraction 
of corresponding CDSs from all the SARS-CoV-2 genomes used in this 
study. The multiple sequence alignment of individual CDSs were used 
for obtaining the distance matrices and genetic distances using ape 
(Paradis et al., 2004; Paradis and Schliep, 2019), phangorn (Schliep, 
2011), stats (R Core Team, 2020), dplyr (Wickham et al., 2021), readr 
(Wickham and Hester, 2020), and ggplot2 (Ginestet, 2011) packages. 

2.4. Single nucleotide polymorphism, and principal component analysis 

The analysis of single nucleotide polymorphism distribution was 
performed using the ape, ggplot2, and adegenet package (Jombart, 
2008; Jombart and Ahmed, 2011). The ‘DNAbin2genind’ function was 
used to convert the alignment to genind objects, which then were used 
as input for determining the SNP loci and alleles from entire genomes 
and each CDSs. The SNP density and position along the alignment were 
plotted using the ‘snpposi.plot’ function. The statistical analysis of the 
SNPs distribution was performed using the Monte Carlo simulation, 
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which tests if the distribution of SNPs is random. The alternative hy
pothesis, in this case, would be that SNPs are clustered. The Monte Carlo 
simulation is based on the distances of each SNP to their closest SNP, 
providing a measure of clustering for each SNP. The nucleotide positions 
of the SNPs in codons (C1, C2, C3) for each CDSs were also determined 
and plotted. Mutations in the entire genome and the individual CDSs 
were determined and plotted using ‘findMutations’, graphMutations, 
and ‘gengraph’ functions. The tables contained in the genind objects 
were subjected to a principal component analysis to determine the 
summary of the genetic diversity among the sampled individuals. 

2.5. Selection pressure and position-by position evolutionary rate analysis 

We studied both the positive and negative selections in the SARS- 
CoV-2 isolates obtained from India in the year 2020. First, we studied 
the alignments to determine if any of the CDSs is/are undergoing posi
tive/diversifying selection at any site. For this, all the alignments of 
different CDSs were subjected to ‘Branch-site Unrestricted Statistical 
Test for Episodic Diversification’ (BUSTED) model (Murrell et al., 2015), 
which is a gene-wide model to test for positive selection either 
throughout the evolutionary tree (pervasive) or only on some lineages 
(episodic). The ORF1ab is a polyprotein with some internal stop codons 
in its CDS. In the CDS for ORF1ab, there is no stop codon from nsp1 to 
nsp10 (coordinate 266–13441 of the reference genome NC_045512) 
containing 4392 codons and from RdRp to nsp16 (coordinate 
13468–21552 of the reference genome NC_045512) containing 2695 
codons. Therefore, two different CDSs corresponding to nsp1 to nsp10 
(nsp1_10) and RdRp to nsp16 (RdRp_nsp16) with no stop codons were 
used separately in the analysis. In addition to the gene-wide analysis of 
selection pressure, we also performed site-wide analysis using the 
‘Mixed Effects Model of Evolution’ (MEME) method (Murrell et al., 
2012) and ‘Single-Likelihood Ancestor Counting’ (SLAC) method 
(Kosakovsky Pond and Frost, 2005). All the selection analyses were 
performed on the Datamonkey server (Pond and Frost, 2005; Weaver 
et al., 2018). The MEME model identifies the site(s) in a gene subjected 
to positive/diversifying selection, whereas the SLAC method tests both 
positive/diversifying and negative/purifying selection at each site by 
employing an integration of maximum-likelihood (ML) and counting 
approaches. Based on the recommendations in previous studies (Spiel
man et al., 2019), the P-value threshold of P ≤ 0.05 for gene-wide 
method BUSTED and P ≤ 0.1 for the site-level methods MEME and 
SLAC were used in this study. 

The neutrality test, to determine if the SARS-CoV-2 sequences are 
evolving neutrally or non-randomly, was performed using Tajima’s 
Neutrality Test (Tajima, 1989) in MEGA X (Kumar et al., 2018). The 
coding data was translated using the standard genetic code table and all 
the ambiguous positions were removed for each sequence pair. The 
position-by-position evolutionary rates of the deduced amino acid se
quences of all the CDSs were determined using MEGA X (Kumar et al., 
2018). The sequences were translated assuming a standard genetic code 
table and the substitution pattern and relative rates were estimated 
under the Jones-Taylor-Thornton (JTT) model (Jones et al., 1992). 

3. Results 

3.1. SARS-CoV-2 complete genome isolates from India 

The SARS-CoV-2 csv record obtained on March 6 2021 comprised a 
total of 91705 accessions from different geographical regions across the 
world. The subsetting of data for removing partial genomes decreased 
the number of accession records to 53365 complete genomes of SARS- 
CoV-2. Further subsetting based on Geo_Location to extract complete 
sequence records from India resulted in only 655 accession records. The 
record for reference genome (Accession number NC_045512) was added 
and the file was converted into fasta format. Screening of gaps in the 
data of 656 sequences identified 75 sequences with ’N’, which upon 

removal from the dataset resulted in 581 sequences. The redundant 
sequences were removed for further analysis resulting in only 516 
unique SARS-CoV-2 genomes. The distribution of 655 redundant and 
516 non-redundant SARS-CoV-2 genomes by date of sample collection in 
India shows a large number of complete genomes from April 2020 to 
July 2020 in the NCBI database (Fig. 1). 

3.2. Number of unique sequences corresponding to the sequence length 

With reference to the 29868 nucleotides long reference genome 
(Accession NC_045512), a total of 516 unique SARS-CoV-2 genomes 
were identified from India within a 12-month span (Jan. 2020–Dec. 
2020). This is a raw indication of rapid ongoing mutation in the viral 
genome. Besides the entire genome, the individual coding sequences 
(CDS) were also analyzed for the number of unique sequences for each 
CDS among 516 unique genomes. 

The normalized numbers of unique sequences for the entire genome 
and for the longest ORF (ORF1ab) were nearly similar and were found to 
be 17.30 and 18.97 respectively. The normalized numbers of unique 
sequences for all the other CDS were notably higher than that of the 
entire genome/ORF1ab ranging from 26.31 to 70.30. The maximum 
numbers of normalized unique sequences (70.30) were displayed by 
ORF3a. This was followed by ORF8, nucleocapsid phosphoprotein, 
ORF6, ORF7a, membrane glycoprotein, spike glycoprotein, ORF7b, en
velope, and ORF10 with normalized unique sequences 60.60, 58.87, 
43.71, 41.32, 39.03, 37.18, 31.00, 26.66, and 26.31, respectively (Fig. 2, 
and Supplementary Materials S8) indicating the number of unique se
quences as a raw measure of mutation in the viral genome. 

3.3. ORF3a, ORF8, and nucleocapsid phosphoprotein CDSs exhibit higher 
percentages of polymorphic sites compared to that in entire genome 
sequences 

Multiple sequence alignment of 517 sequences was performed using 
the muscle algorithm of msa package and the resultant alignment was 
converted to fasta format using in-house R script. The fasta file of the 
muscle alignment of 517 unique genomes was analyzed for poly
morphism using the adegenet package (Jombart, 2008; Jombart and 
Ahmed, 2011). In the genome-wide analysis of SNPs, 3.19% sites of the 
entire genome i.e., 953 loci displayed SNP, of which 936 loci comprised 
2 alleles, whereas 17 loci were identified with three alleles making 
altogether 1923 alleles in the entire genome (Fig. 3, Table 1). 

After analyzing genome-wide SNP, we studied 11 coding regions of 
the genome including envelope, membrane glycoprotein, nucleocapsid 
phosphoprotein, ORF1ab, ORF10, ORF3a, ORF6, ORF7a, ORF7b, ORF8, 
and spike glycoprotein. The CDSs for ORF1ab, spike glycoprotein, 
nucleocapsid phosphoprotein, and ORF3a displayed more than 50 
polymorphic sites with 583, 126, 77, and 55 polymorphic loci (Table 1). 
However, all the CDSs are of varying length and it is plausible that with 
the increase in length of CDS, the degree of polymorphism will also 
increase. Therefore, we analyzed the percentage of polymorphic loci 
relative to the length of the respective CDS. 

Three of the CDSs including, ORF3a (828 nt), ORF8 (366 nt), and 
nucleocapsid phosphoprotein (1260 nt) displayed 6.64%, 6.28%, and 
6.11% polymorphic sites, respectively. The ORF3a displayed 72 loci 
with 2 alleles and 5 loci with 3 alleles, whereas 77 polymorphic loci of 
nucleocapsid phosphoprotein consisted of 72 loci with 2 alleles and 5 
loci with 3 alleles. All the 23 polymorphic sites of ORF8 displayed 2 
alleles per loci. The percentage of polymorphic sites in these three CDSs 
are ~ 2-fold compared to that in the entire genome. This suggests that 
ORF3a, ORF8, and nucleocapsid phosphoprotein display a higher rate of 
mutation compared to that of the entire genome or other CDSs. The CDSs 
corresponding to ORF6 (186 nt), ORF7a (366 nt), and spike (3822) 
displayed 3.76%, 3.55%, and 3.29% of their total nucleotides as poly
morphic sites. The ORF6 CDS comprised 7 polymorphic sites with 2 
alleles per site; the ORF7a exhibited 13 polymorphic sites including 12 
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loci with 2 alleles per site and 1 locus with 3 alleles. The CDS for spike 
comprised 126 polymorphic sites including 124 loci with 2 alleles each 
and 2 loci with 3 alleles per site. The CDS for membrane glycoprotein 
(669 nt) displayed 3.13% (21 loci) of their total nucleotides as poly
morphic sites including 20 loci and 1 locus with 2 and 3 alleles per site, 
respectively. The CDS for ORF1ab exhibited 2.73% of its sites as the 
polymorphic sites, which are represented by 583 loci including 578 with 
2 alleles per site and 5 with 3 alleles per site. The percentage of poly
morphic sites in these CDSs (ORF6, ORF7a, spike glycoprotein, mem
brane glycoprotein, and ORF1ab) are slightly higher/lower but nearly 
equal to that in the entire genome indicating that the mutation rate in 
these CDSs is similar to that of the entire genome. 

The percent polymorphic sites in CDSs corresponding to envelope 
(228 nt), ORF10 (117 nt), and ORF7b (132 nt) were found to be 2.19%, 
1.70%, and 1.51%. The envelope, ORF10, and ORF7b displayed 5, 2, 
and 2 polymorphic sites, respectively. All these polymorphic sites 
exhibit 2 alleles per site. The notably lower percent polymorphic sites in 
envelope, ORF10, and ORF7b compared to that of the entire genome 
suggest that these CDSs are relatively more stable than other CDSs of the 
SARS-CoV-2 genome (Fig. 3 and Table 1). All the CDSs altogether 
(29264 nt) consisted of 3.12% polymorphic sites relative to its overall 
length. In contrast, the non-coding regions of the genome exhibited 
6.42% polymorphic sites (relative to its length), which is twice the 
percentage of polymorphic sites of CDS (Table 1). 

3.4. Distribution of single nucleotide polymorphism (SNP) across the 
genome 

The densities of polymorphic sites of genomes or individual CDSs 
were plotted against their nucleotide position to visualize the distribu
tion of SNPs across the length of the genome (Fig. 4). The genome-wide 
SNP distribution appeared random in the graph. The Monte Carlo 
simulation was performed to analyze whether SNPs are clustered or 
randomly distributed in the genome. Based on 999 replicates with a 
simulated p-value of 0.03, the values for standard observation, expec
tation value, and variance were found to be − 2.5537026, 10.5835836, 
and 0.3845399, respectively, indicating that the alternative hypothesis 
is not true and the distribution of SNPs in the 517 complete genomes of 
SARS-CoV-2 genome is random. After analyzing genome-wide SNP dis
tribution, we analyzed the SNP distribution of 11 coding regions of the 
genome including envelope, membrane glycoprotein, nucleocapsid 
phosphoprotein, ORF1ab, ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10, 
and spike glycoprotein (Fig. 4). The CDS for envelope exhibited SNP at 5 
loci, 4 of which were clustered together from 136th to 184th nucleotide 
position, while one SNP was found at 12th nucleotide (Fig. 4). Similarly, 
the SNP loci in membrane glycoprotein, ORF6, ORF7a, and ORF7b also 
displayed SNP loci in small clusters (Fig. 4). 

3.5. Majority of SNP loci are at codon position 3 

The SNP loci of various CDS were also analyzed for the presence of 
SNP at nucleotide positions C1, C2 and C3 in the codons. The CDSs for 

Fig. 1. Time-wise distribution of the SARS-CoV-2 genomes isolated in India. The numbers of complete genomes of SARS-CoV-2 were plotted against the time of their 
collection over a period of 12 months from January 2020 to December 2020. The distributions of 516 unique, non-redundant genomes and 655 redundant genomes 
are shown in red and blue bars, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 2. Unique sequences and sequence length for each CDS in SARS-CoV-2 genomes isolated in India. The numbers of unique sequences for each CDS were 
normalized based on the length of the respective CDS to avoid the sequence size-dependent bias. The sequence length does not include the last three nucleotides of 
the stop codon. The CDS in the y-axis are arranged after the entire genome (ent_genome) in an order of their increasing size where ORF1ab is the longest CDS and 
ORF10 is the smallest CDS. 

Fig. 3. SNP in the entire genome and the corresponding CDS of 517 SARS-CoV-2 genomes isolated in India. The numbers of sites (y-axis) were plotted against the 
number of alleles (x-axis). 
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envelope, ORF7a, and ORF8 displayed the majority of SNP loci at codon 
position C1 with 80%, 46%, and 48% of their respective total SNP loci, 
respectively (Fig. 5a and Table 2). The CDSs corresponding to ORF6, 
membrane glycoprotein, spike glycoprotein, ORF1ab, and nucleocapsid 
phosphoprotein displayed the majority of SNPs loci at codon position 

C3. The percent abundance of C3 SNP loci in ORF6, membrane glyco
protein, spike glycoprotein, ORF1ab, and nucleocapsid phosphoprotein 
were found to be 71%, 67%, 45%, 43%, and 38% of their respective total 
SNP loci, respectively (Fig. 5a). The ORF3a displayed a nearly similar 
abundance of SNP loci at codon positions C1, C2, and C3 with 35% C1, 

Table 1 
SNPs in 517 complete genomes collected in India.  

Genome/CDS Coordinates SNP Number of loci with 

Start End Length Number of Loci % loci (relative to sequence length) Total Alleles 2 alleles 3 alleles 

ent_genome 1 29871 29871 953 3.190 1923 936 17 
Envelope 26245 26472 228 5 2.193 10 5 0 
membrane glycoprotein 26523 27191 669 21 3.139 43 20 1 
nucleocapsid phosphoprotein 28274 29533 1260 77 6.111 159 72 5 
ORF10 29558 29674 117 2 1.709 4 2 0 
ORF1ab 266 21555 21290 583 2.738 1171 578 5 
ORF3a 25393 26220 828 55 6.643 111 54 1 
ORF6 27202 27387 186 7 3.763 14 7 0 
ORF7a 27394 27759 366 13 3.552 27 12 1 
ORF7b 27756 27887 132 2 1.515 4 2 0 
ORF8 27894 28259 366 23 6.284 46 23 0 
spike glycoprotein 21563 25384 3822 126 3.297 254 124 2 
Overall CDS NA 29264 914 3.123 1843 899 15 
Overall non-coding regions NA 607 39 6.425 80 37 2  

Fig. 4. Distribution of polymorphic sites on 517 SARS-CoV-2 genome and their corresponding CDSs. The nucleotide positions are shown in x-axis and the density of 
polymorphism is represented at y-axis. The three different codon positions of the polymorphic loci in the CDS are shown in three different colors. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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31% C2, and 35% C3. The C2 codon position was not found to be the 
most abundant SNP loci position in any of the CDSs. However, it was 
found to be the second most abundant codon position for the SNP loci in 
the CDS of ORF1ab, ORF8, and spike glycoprotein. 

Interestingly, 42% of the total SNP loci in the CDS of the entire 
genome were found at codon position C3, whereas 26% and 32% of total 
SNP loci were identified at codon position C1 and C2, respectively 
(Fig. 5b). Unlike C1, the C2 was not found as the most abundant SNP loci 
codon position in any of the CDSs. However, the C2 represents the 
second most abundant codon position for SNP loci with 32% of the total 
SNP loci in the CDS. 

3.6. Principal component analysis of SNP data suggests an increase in 
genetic diversity with time 

To discover any potential pattern in SNP data of 517 non-redundant 

complete SARS-CoV-2 genomes, the genind object of the entire genomes 
was subjected to the principal component analysis (PCA). The missing 
data (NAs) in the genind object were replaced by the mean allele fre
quency. The eigenvalues, which indicate the amount of variance rep
resented by each principal component, were also calculated and a 
scatter plot was generated. Although the SNP data of the majority of 
genomes were found to cluster together with that of the reference 
genome, the SNP data of some of the genomes represented by ’F’ or ’I’ 
(followed by some numbers) were found to have separate clusters 
(Fig. 6). Interestingly, the genomes with ID starting with “F” or “I” 
represent genomes of SARS-CoV-2 isolated in July 2020 and afterward 
suggesting that the genetic diversity in the virus population is increasing 
with time. 

Fig. 5. Codon positions of SNP loci. (a) The codon positions of SNP loci for different CDS in 517 non-redundant complete genomes (isolated in India) were identified 
and their percentage relative to the total SNP loci was plotted as a stacked bar chart. The CDS with less than 5 SNP loci were not included in the analysis. (b) The 
codon positions of SNP loci from the CDS region of the entire genome were determined and their % abundance relative to the number of SNP loci was plotted as a 
doughnut chart. 
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3.7. The genetic distance of genomes and their CDS revealed time- 
dependent variation 

Multiple sequence alignment of 517 sequences was performed using 
muscle algorithm in msa package and the resultant alignment was 
converted to fasta format using in-house R script. The distance matrix for 
individual CDSs were obtained using their respective alignment file with 
ape and phangorn packages. The TN93 nucleotide substitution model 
(Tamura and Nei, 1993) was selected for creating a distance matrix. The 
TN93 model accounts for the difference between transitions and trans
versions and differentiates the two kinds of transitions i.e. purine to 
purine and pyrimidine to pyrimidine. The genetic distance plotted 
against time for entire genomes as well as individual coding regions 
demonstrates a gradual increase in the genetic distance with time 
(Fig. 7). 

The visualization of the patterns of genetic distances among 517 
complete genomes and among the various CDSs was also obtained from 
the multiple sequence alignment using the adegenet package. The 

mutation data, which includes details of mutations from one sequence to 
another, for the entire genome and also for the CDSs were obtained using 
the findMutations function. The genegraph function was then used for 
constructing graphs based on genetic distances (Fig. 8). In these graphs 
the genetically close individuals are connected and clustered near each 
other and vice versa. These graphs indicate that the viral isolates, which 
were obtained at the later stage of the 12-month time duration, appeared 
distantly and as separate cluster(s) for the entire genome and for the 
largest CDS, ORF1ab. Interestingly a similar pattern was observed in 
CDSs corresponding to nucleocapsid phosphoprotein and spike glyco
protein indicating that among all the CDSs, spike glycoprotein and 
nucleocapsid phosphoprotein display high divergence from reference 
sequence isolated in December 2019. 

3.8. Tajima’s D indicates abundance of non-random evolution in all the 
CDSs of SARS-CoV-2 

Tajima neutrality test was performed on the SARS-CoV-2 CDSs to 
determine if the virus is evolving randomly or through selection pres
sure. Tajima’s test statistics, D, represent the difference between the two 
measures of genetic diversity- the mean number of pairwise differences 
and the number of segregating sites. In the neutrally evolving pop
ulations, these two measures of genetic diversity are expected to be the 
same and therefore, the expected value for D is zero. The positive value 
of D indicates lack of rare alleles, which signifies the balancing selection 
and decrease in population size, while the negative value of D is ob
tained due to the abundance of rare alleles relative to expectation, which 
manifests population size expansion due to selective sweep. Interest
ingly, the Tajima’s D for all the CDSs were found to be negative 
(Table 3), indicating that SARS-CoV-2 viral population in India is 
evolving under selective sweep in response to host immunity (Table 4). 

Tajima test identified 186, 127, 80, 50, 7, 4, 39, 3, 7, 2, 15, and 1 
segregating sites in the CDSs corresponding to nsp1_10, RdRp_nsp1, 
spike glycoprotein, nucleocapsid phosphoprotein, membrane glycopro
tein, envelope, ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10, 
respectively. The Ps (ratio of the number of segregating sites and the 

Table 2 
Codon positions of CDS expressing SNP.  

CDS SNP 

Total 
loci 

C1 C2 C3 % 
C1 

% 
C2 

% 
C3 

Envelope 5 4 0 1  80 0 20 
membrane glycoprotein 21 4 3 14  19 14 67 
nucleocapsid 

phosphoprotein 
77 26 22 29  34 29 38 

ORF1ab 583 135 199 249  23 34 43 
ORF3a 55 19 17 19  35 31 35 
ORF6 7 2 0 5  29 0 71 
ORF7a 13 6 3 4  46 23 31 
ORF7b 2 1 1 0  50 50 0 
ORF8 23 11 9 3  48 39 13 
ORF10 2 1 0 1  50 0 50 
spike glycoprotein 126 28 41 57  22 33 45 
TOTAL 914 237 295 382  26 32 42  

Fig. 6. Principal component analysis (PCA) of the SNP data extracted from entire genomes isolated from 517 non-redundant complete SARS-CoV-2 genomes.  
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total number of sites in each CDS) values suggest that ORF3a, ORF8, 
nucleocapsid phosphoprotein, and spike glycoprotein of the viral 
genome are undergoing rapid non-random evolution. 

3.9. The ORF1ab, spike glycoprotein, and nucleocapsid phosphoprotein 
displayed evidence of positive/diversifying selection 

We performed BUSTED, MEME, and SLAC analysis to study gene- 
wide and site-wide selection analysis of the SARS-CoV-2 CDSs. The 
BUSTED analysis with synonymous rate variation found no evidence of 
gene-wide episodic diversifying selection in CDSs for nsp1_10, 
RdRp_nsp16, spike glycoprotein, membrane glycoprotein, envelope, 
ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10. However, BUSTED 
found evidence of gene-wide episodic diversifying selection in the CDSs 
corresponding to nucleocapsid phosphoprotein, indicating that at least 
one site on at least one test branch has experienced diversifying selection 
pressure (Supplementary material, S9 and Table 3). Being a gene-wide 
model, BUSTED identifies if a gene displays positive/diversifying se
lection at any of its sites, however, it does not provide the statistically 
valid identification of specific sites undergoing positive/diversifying 
selection. Therefore, we further analyzed all the CDSs using the Mixed 
Effects Model of Evolution (MEME) model, which identifies the site(s) in 
a gene subjected to diversifying selection. The MEME analysis of CDSs 
corresponding to membrane glycoprotein, envelope, ORF3a, ORF6, 
ORF7a, ORF7b, ORF8, and ORF10 did not display episodic positive/ 
diversifying selection in any of its sites. The MEME analysis of nsp1_10, 
RdRp_nsp16, spike glycoprotein, and nucleocapsid phosphoprotein 
identified 3, 4, 1, and 2 sites, respectively under episodic diversifying 
selection at p < = 0.1 (Table 3). The three sites of nsp1_10 include 

codon positions 676, 3405, and 3606, whereas the four sites of 
RdRp_nsp16 consist of codon positions 314, 871, 1176, 1701. The spike 
glycoprotein displayed diversifying selection at codon position 627, 
while nucleocapsid phosphoprotein CDS exhibited positive diversifying 
selection at codon positions 3 and 204 (Supplementary material, S10 
and S11). 

3.10. The ORF1ab, spike glycoprotein, nucleocapsid phosphoprotein, and 
membrane glycoprotein exhibited negative/purifying selection 

After a gene-wide test for positive selection using BUSTED followed 
by site-wide positive/diversifying selection using the MEME, we studied 
the site-level positive/diversifying or negative/purifying selection using 
the SLAC method. The CDSs corresponding to envelope, ORF3a, ORF6, 
ORF7a, ORF7b, ORF8, and ORF10 displayed neither positive nor nega
tive selection in any of their residues. The CDS for nsp1_10 and 
RdRp_nsp16 of ORF1ab displayed positive/diversifying selection at 
codon positions 3606 (in nsp1_10), and 314 (in RdRp_nsp16), respec
tively. Apart from these two sites of ORF1ab, none of the sites in any of 
the CDSs exhibited positive/diversifying selection in the SLAC method. 

The nsp1_10, RdRp_nsp16, spike glycoprotein, membrane protein, 
and nucleocapsid phosphoprotein displayed negative/purifying selec
tion at 17, 6, 4, 1, and 4 sites, respectively (Table 3). In nsp1_10 CDS of 
ORF1ab polyprotein, codon positions 16 (in nsp1), 857 (in nsp3), 924 
(in nsp3), 1273 (in nsp3), 1345 (in nsp3), 1868 (in nsp3), 1925 (in 
nsp3), 2352 (in nsp3), 2560 (in nsp3), 2638 (in nsp3), 2677 (in nsp3), 
2839 (in nsp4), 3291 (in nsp5), 3568 (in nsp5), 3606 (in nsp6), 3785 (in 
nsp6), 4117 (in nsp8), and 4218 (in nsp9) displayed evidence of nega
tive/purifying selection. The next highest number of sites displaying 

Fig. 7. Genetic distance of the SARS-CoV-2 genomes (isolated in India) and their individual coding regions. The genetic distance of all the 517 complete genomes 
(ent_genome) or individual coding sequences (envelope, membrane glycoprotein, nucleocapsid phosphoprotein, ORF10, ORF1ab, ORF3a ORF6, ORF7a, ORF7b, 
ORF8, spike glycoprotein) from 517 genomes were plotted against their time of collection. 
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negative/purifying selection were observed in RdRp_nsp16 CDS of 
ORF1ab polyprotein. The six sites in RdRp_nsp16 including the codon 
positions 619 (in RdRp), 942 (in helicase), 952 (in helicase), 1036 (in 
helicase), 1804 (exonuclease), and 2509 (in nsp16) displayed the evi
dence of negative/purifying selection. The CDS for spike glycoprotein, 
nucleocapsid phosphoprotein and membrane glycoprotein exhibited the 
signs of negative/purifying selections at codon positions 206 (in spike 
glycoprotein), 294 (in spike glycoprotein), 789 (in spike glycoprotein), 
856 (in spike glycoprotein), 110 (in nucleocapsid phosphoprotein), 157 
(in nucleocapsid phosphoprotein), 234 (in nucleocapsid phosphopro
tein), 298 (in nucleocapsid phosphoprotein), and 71 (in membrane 

glycoprotein). 

3.11. Spike glycoprotein glycoprotein, nucleocapsid phosphoprotein 
phosphoprotein, ORF3a, and ORF8 are evolving at higher rate than the rest 
of the CDSs 

The site-wise evolutionary rate analysis of sequence data was per
formed using MEGA X under the Jones-Taylor-Thornton (JTT) model. 
The evolutionary rates were scaled such that the average evolutionary 
rate across all sites is 1 implying that sites with a rate less than 1 are 
evolving slower than average, while sites with a rate more than 1 are 

Fig. 8. Mutation plot in 517 non-redundant complete genomes isolated in India. The genetically close individuals are connected and clustered near each other.  

Table 3 
Results from Tajima’s Neutrality Test. Evolutionary analyses were conducted in MEGA X.  

CDSs m N S Ps Ө π D 

nsp1_10 301 4391 186  0.042359371  0.006742263  0.000537337 - 2.822767096 
RdRp_nsp16 214 2694 127  0.047141797  0.007935189  0.000827848 - 2.783749436 
spike glycoprotein 142 1273 80  0.062843676  0.011365128  0.001933301 - 2.618418883 
nucleocapsid phosphoprotein 74 419 50  0.119331742  0.024480773  0.006228578 - 2.449889264 
membrane glycoprotein 26 222 7  0.031531532  0.008263071  0.003686764 - 1.695285254 
envelope 6 75 4  0.053333333  0.023357664  0.017777778 - 1.295030853 
ORF3a 58 273 39  0.142857143  0.030861252  0.006973668 - 2.577232862 
ORF6 8 61 3  0.049180328  0.01896762  0.012295082 - 1.447514187 
ORF7a 15 119 7  0.058823529  0.018090851  0.007843137 - 2.039958116 
ORF7b 4 43 2  0.046511628  0.025369979  0.023255814 - 0.709896168 
OTF8 22 117 15  0.128205128  0.035169414  0.011655012 - 2.41070917 
ORF10 3 38 1  0.026315789  0.01754386  0.01754386 n/c 

Abbreviations: m = number of sequences, n = total number of sites, S = Number of segregating sites, Ps = S/n, Ө = Ps /a1, π = nucleotide diversity, and D is the 
Tajima test statistic. 
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evolving faster than average. For the overall CDSs of SARS-CoV-2, a total 
of 5% amino acid sites were observed to be evolving faster than the 
average (Supplementary material S12, S13, and S14). The CDSs corre
sponding to ORF3a, nucleocapsid phosphoprotein, ORF8, and spike 
glycoprotein displayed 14%, 12%, 12%, and 6% amino acid sites 
evolving faster than the average, while the rest of the CDSs exhibited 5% 
or less amino acid sites evolving faster than the average (Supplementary 
material S12–S16). This indicates that the ORF3a, nucleocapsid phos
phoprotein, ORF8, and spike glycoprotein are evolving at a higher rate 
than other CDSs in SARS-CoV-2. 

4. Conclusions 

Within one year of the outbreak of SARS-CoV-2 in China, we iden
tified 516 unique and complete genomes that were isolated from India. 
The majority of the isolates were obtained from April to July 2020. After 
July 2020, we observed a sharp decrease in the virus genome isolates 
probably because of the decrease in the COVID-19 cases in India from 
August to December 2020. The CDS for ORF1ab is the largest CDS of the 
SARS-CoV-2 genome and encodes for the polyprotein. With 21.29 kb in 
size, the ORF1ab covers nearly 71% of the genome; the rest of the 
genome is primarily covered by other CDSs corresponding to spike 
glycoprotein, ORF3a, envelope, membrane glycoprotein, ORF6, ORF7a, 
ORF7b, ORF8, nucleocapsid phosphoprotein, and ORF10. The rapid 
accumulation of mutations is the fundamental basis of virus evolution 
and variability in its genome. RNA viruses such as SARS-CoV-2 undergo 
rapid evolution because of high mutation rates (Jenkins et al., 2002). In 
addition, the exponential spread of SARS-CoV-2 in pandemic since the 
first outbreak in Dec 2019, provides the virus favorable conditions to 
evolve rapidly. In addition, the genetic makeup and the resultant im
mune response of the host also plays a major role in virus evolution. In 
this study, we screened the CDSs of 516 genomes of SARS-CoV-2 from 
Indian population to study the impact of the immune challenge to 
SARS-CoV-2 in Indian population on virus evolution. 

The SNP analysis identified 953 loci displaying SNP genome-wide 
consisting of 914 in the CDS and 39 in the non-coding region. The 914 
and 39 polymorphic sites represent 3.12% of the CDS, and 6.42% of the 
non-coding region, respectively. Such a high percentage of polymorphic 
sites in the non-coding region is conceivable considering that the mu
tations in non-coding regions may not compromise the pathogenicity 
and survival of the virus. The majority of SNP loci (42% of the total 
polymorphic sites) were found to be at the 3rd nucleotide position of the 
codons, suggesting that the majority of substitutions in the SARS-CoV-2 

genome are of synonymous type due to redundancy of the codon. Our 
results, including the PCA of the genome dataset and analysis of genetic 
distances, suggest an increase in the genetic diversity in the SARS-CoV-2 
isolates with time. Particularly, the viruses isolated from India in July 
2020 and afterward displayed high variance. The mutation plot of in
dividual CDSs indicates high divergence with time in ORF1ab, spike 
glycoprotein, and nucleocapsid phosphoprotein. 

The selection process in which deleterious alleles are selectively 
removed is known as purifying (or negative) selection. This is a means of 
stabilizing selection by getting rid of detrimental genetic polymorphism. 
In contrast, positive selection is a process in which advantageous genetic 
variants are selected and increases in the population over time. Both 
weak deleterious selection and rare positive diversifying selection are 
now widely identified as important evolutionary forces (Fay et al., 
2002). 

The adaptive evolution of viruses including their adaptive immune 
escape is characterized by the positive selection in their genes. The 
BUSTED alternative model for the gene-wide method identified a very 
small proportion i.e., only 0.027% of sites in nucleocapsid phospho
protein evolved under a very large ω of over 100 (obtained value 
4001.526). Apart from nucleocapsid phosphoprotein, none of the genes 
of SARS-CoV-2 displayed evidence of positive/diversifying selection in 
BUSTED. This does not rule out the possible evidence of positive selec
tion in other genes of SARS-CoV-2. It could be because of a lack of sta
tistical power wherein the datasets for other genes did not contain 
statistically significant selection. 

The site-wide study of the alignments of all the CDSs using MEME 
model identified one site each in nsp2 (676 of nsp1_10 CDS), nsp5 (3405 
of nsp1_10 CDS), nsp6 (3606 of nsp1_10 CDS), helicase (1176 of 
RdRp_nsp16 CDS), exonuclease (1701 of RdRp_nsp16 CDS) and spike 
glycoprotein (627), and 2 sites each in RdRp (314 and 871 of 
RdRp_nsp16 CDS) and nucleocapsid phosphoprotein (3 and 204). The 
SLAC method identified only two sites under positive selection - codon 
position 3606 of nsp6 (in nsp1_10 CDS), and codon position 314 of RdRp 
(in RdRp_nsp16 CDS). Identification of a lesser number of sites under 
positive selection in the SLAC method is conceivable as unlike MEME, 
SLAC needs a larger number of substitutions to achieve significance 
(Spielman et al., 2019). 

The SLAC method also identified statistically significant evidence of 
negative/purifying selection at 32 sites - 1 in nsp1, 10 in nsp3, 1 in nsp4, 
2 in nsp5, 2 in nsp6, 1 in nsp8, 1 nsp9, 2 RdRp, 3 in helicase, 1 in 
exonuclease, 1 in nsp16, 4 in spike glycoprotein, 4 in nucleocapsid 
phosphoprotein, and 1 in membrane glycoprotein. We did not observe 

Table 4 
Sites of SARS-CoV-2 genome under positive/diversifying or negative/purifying selection.  

SARS-CoV-2 genomes BUSTED (gene- 
wide) 

MEME (positive/ 
diversifying selection) 

SLAC (positive & negative selection) 

CDSs Codons Positive/ 
diversifying 
selection 

Total 
sites 

Codon 
positions 

Total 
sites 

Codon position 
(Positive selection) 

Codon position (Negative selection) 

nsp1_10 4392 No  3 676, 3405, 
3606a 

18 3606a 16, 857, 924, 1273, 1345, 1868, 1925, 2352, 2560, 
2638, 2677, 2839, 3291, 3568, 3785, 4117, 4218 

RdRp_nsp16 2695 No  4 314a, 871, 
1176, 1701 

6 314a 619, 942, 952, 1036, 1804, 2509 

spike glycoprotein 1273 No  1 627 3 NA 206, 294, 789, 856 
nucleocapsid 

phosphoprotein 
419 Yes  2 3, 204 4 NA 110, 157, 234, 298 

membrane 
glycoprotein 

222 No  0 NA 1 NA 71 

envelope 75 No  0 NA 0 NA NA 
ORF3a 275 No  0 NA 0 NA NA 
ORF6 61 No  0 NA 0 NA NA 
ORF7a 121 No  0 NA 0 NA NA 
ORF7b 43 No  0 NA 0 NA NA 
ORF8 121 No  0 NA 0 NA NA 
ORF10 38 No  0 NA 0 NA NA  

a Sites identified in more than one method. 
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any statistically significant evidence of either positive/diversifying or 
negative/purifying selection in the CDSs for envelope, ORF3a, ORF6, 
ORF7a, ORF7b, ORF8, and ORF10.in the isolates of the year 2020 from 
India. Previous studies on SARS-CoV-2 with other coronaviruses re
ported strong and global purifying selection along with some site- 
specific (localized) positive selections (Singh and Yi, 2021). 

Our results also suggest that SARS-CoV-2 isolates from India are 
experiencing strong purifying selection to remove deleterious new mu
tations particularly in the CDSs corresponding to nsp1, nsp3, nsp4, nsp5, 
nsp6, nsp8, nsp9, RdRp, helicase, exonuclease, nsp16, spike glycopro
tein, nucleocapsid phosphoprotein, and membrane glycoprotein. Also, 
the localized sites displaying positive selection indicate adaptive selec
tion facilitating the maintenance of nonsynonymous substitution in 
these sites of nsp2, nsp5, nsp6, helicase, exonuclease, RdRp, spike 
glycoprotein, and nucleocapsid phosphoprotein. It is likely that these 
substitutions provide viruses some sort of advantages in terms of their 
pathogenicity and immune escape. Our analyses, including Tajima 
neutrality test, mutation analysis, and site-wise evolutionary rate anal
ysis indicate that ORF3a, ORF8, nucleocapsid phosphoprotein, and spike 
glycoprotein of the viral genome are undergoing rapid non-random 
evolution. The ORF3a encoded protein is the largest accessory protein 
with a TRAF binding motif, which promotes the activation of NLRP3 and 
NFκB inflammasome (Majumdar and Niyogi, 2020). ORF8 also encodes 
for an accessory protein, which interferes with the host immune 
response, induces IL17 signaling pathway, and induces overexpression 
of the proinflammatory factors (Lin et al., 2021). Considering the 
interplay of these viral proteins with the host immune response, it is 
conceivable that they are evolving at a rapid rate due to host immune 
challenge. These findings on mutations, selection pressure, and evolu
tionary rates of SARS-CoV-2 isolates from India populations are impor
tant for an improved understanding of the rapidly evolving virus and 
would be helpful in combating COVID-19. 
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